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SUMMARY 

 

The Exposure Controlled Projection Lithography (ECPL) is an additive 

manufacturing process, in which liquid photopolymer monomers cross-link into solid 

polymer with controlled ultraviolet irradiation. Unlike other types of stereolithography 

processes, the ECPL system cures a 3D part by projecting from beneath a stationary and 

transparent substrate ultraviolet radiation, which is modulated by a sequence of DMD 

bitmaps varying the exposure intensities, patterns and durations. It has become promising 

in fabrication of micro optics and fluidics components. 

Due to the complex chemical & physics interactions in photopolymerization 

process, unavailable in-situ metrology and the unmeasurable time-varying disturbances 

such as oxygen inhibition and light source fluctuations, a common practice in 

stereolithography process planning is to use experimental characterization and statistics 

models in an open-loop control mode, which cannot effectively control the nonlinear 

black/grey-box process. Hence, the ECPL system still suffers loss of accuracy, which 

limited it from becoming a more capable micro manufacturing method for wider 

applications. A potential solution for controlling the not-fully-known ECPL process is the 

methodology of closed-loop control, which requires measurement feedback to link input 

and output variables. An in-situ interferometric curing monitoring (ICM) system has been 

developed to monitor the ECPL process, but it is not accurate or ready for real-time 

measurement yet and only able to provide interferograms for posterior analysis of cured 

heights combined with offline microscope measurements. In all, to improve the ECPL 



 xxxi 

process accuracy and precision involves with extensive research in process modeling, 

measurement and control. 

A new research is needed to realize an automated, accurate and precise ECPL 

system. To attain this goal, two research questions will be investigated by this research. 

• How to develop a real-time metrology based on the existing in-situ 

interferometric curing monitoring system to measure the cured part dimensions, 

specifically the cured height profile across the curing area?  

• As a baseline control, without a constitutive process model of first 

principle differential equations, what is an applicable ECPL process control approach, 

which could utilize the real-time measurement system to improve the process accuracy? 

The intellectual merit of this research lies in developing real-time measurement 

and control methods for the ECPL process, with answers for the research questions. The 

scientific and engineering outcomes from this research will help achieve better 

manufacturing accuracy and precision thereby facilitating applications of the ECPL 

system in micro fabrication, and will offer an exemplification of the applicability and 

benefits of real-time feedback control methodologies for unknown nonlinear processes in 

other additive manufacturing methods.
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CHAPTER 1 INTRODUCTION AND MOTIVATION 

 

The following sections introduces the Exposure Controlled Projection 

Lithography (ECPL) process which is a stereolithography based rapid prototyping 

process. As a metrology for the ECPL process, the developed interferometric curing 

measurement (ICM) system is also presented. The knowledge gap involved in utilizing 

the ECPL as a reliable manufacturing process is presented. This provides a foundation for 

investigation of the research issues associated with the measurement and control of the 

ECPL process. 

1.1 Background 

1.1.1 Additive manufacturing process monitoring and measurement 

Additive manufacturing (AM), as a process for fabricating parts directly from a 

three-dimensional digital model, has tremendous potential for producing high-value, 

complex, individually customized parts. There are lots of individual AM processes which 

vary in material and machine technology [7]. AM offers multiple advantages over 

traditional manufacturing techniques, including reduced material waste, lower energy 

intensity, reduced time to market, just-in-time production, and construction of structures 

not possible with traditional manufacturing processes. While the use of AM has been 

growing, a number of challenges continue to impede its more widespread adoption, 

particularly in the areas of measurement science and standardization [8, 9]. 

Currently most AM processes do not employ feedback protocols based on multi-

scale measurement and modeling. Awareness and interest in research of AM process 

monitoring and measurement has been most vibrant for metal-based AM processes [8]. In 

2012, the National Institute of Standards and Technology (NIST) held a workshop 

entitled “Measurement Science Roadmap for Metal-Based Additive Manufacturing” to 
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understand and address the hurdles faced by the hard matter (metal) community from the 

perspective of measurement science [8]. Some sample research includes traceable 

thermal [10], meltpool shape [11] and dimensional metrology, which however remain 

mainly in fundamental measurement theory without real-time exploration yet. In-situ 

metrology modules available from AM machine manufacturers and measurement 

specialists include equipment such as pyrometer and camera [12], as well as technologies 

such as coherent imaging and X-ray tomography [13]. Many in-process sensing 

technologies have primarily focused on monitoring melt pool signatures, and to date 

correlations between process measurements, process parameter settings, and quality 

metrics have been primarily qualitative [14]. To facilitate and expand research on process 

monitoring and measuring for other AM processes, in 2016, NIST is focusing further on 

metrology development for additive manufacturing of polymer-based materials [6]. 

Generally, there still lacks substantial research and literature on real-time sensors 

and measurement along with control methods for AM processes especially for polymer-

based AM processes which usually involve complicated multidisciplinary physics 

phenomena and chemical photopolymerization. The measurement need for additive 

manufacturing of polymer-based materials is urgent because such soft materials present 

great processability and range of properties that enable applications across numerous 

industrial sectors [6]. 

1.1.2 Real-time control in commercial AM systems 

From a commercial manufacturing standpoint, in-process sensing technology for 

additive manufacturing is still in its infancy [14]. Process monitoring and controls for 

additive manufacturing are still in research and development phase [15], with metal 

additive manufacturing predominating the specific research area of measurement science 

and feedback control [8, 9] and the counterpart research for non-metal such as polymer 

and soft materials AM processes has just set out recently [6]. Status of real-time control 
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in commercial metal additive manufacturing systems is summarized in a most recent 

review literature [15], which found that continuous feedback control in commercial 

systems is more easily realized in directed energy deposition systems than in laser powder bed 

fusion (LPBF) systems due to the much lower processing speeds and larger melt pool 

size. The Optomec LENS (Laser Engineered Net Shaping) MR-7 offers the option of 

closed loop control, which is being tested and optimized by university collaborators [16]. 

In commercial LPBF systems, high-speed closed-loop control based on melt pool 

monitoring is not yet realized, however, layer-wise monitoring and control have been 

demonstrated. For example, Concept Laser’s QM coating module images newly formed 

powder layer surfaces, and actively detects and compensates for powder layer thickness 

variation [15]. 

1.2 ECPL System Overview 

Various micro fabrication applications in microelectronics, micro-optics, micro-

fluidics, MEMS and MEMOS demand smaller and smaller devices. Driven by the trend, 

micro stereolithography (µSL) is required to deliver photo-curable micro structures with 

decreasing feature sizes. Improved control of µSL is critical in realizing better 

manufacturing resolution and reproducibility. 

A prototypical µSL process consists of the following basic steps - substrate and 

chamber setup, photopolymerizable material preparation, photo exposure curing, post-

devloping and washing. µSL machines can be classified into two main categories laser 

scan and mask projection. The Digital Micromirror Device (DMD) based Exposure 

Controlled Projection Lithography (ECPL) system falls into the category of non-stacking 

mask projection stereolithography apparatus. It has promising applications in fabrication 

of microfluidics and micro optics components for biomedical devices. Different from a 

conventional laser scan projection stereolithography process, ECPL cures a 3D feature by 

projecting radiation through a stationary, transparent substrate and by varying exposure 
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patterns and durations with a timed sequence of DMD bitmaps. As illustrated in Figure 1, 

in the ECPL process, when the resin is exposed to a patterned light beam from DMD for 

certain time, photopolymerization takes place and a layer of liquid resin is cured. Each 

layer has a target cured height, and the cumulative layers form the final cured part. 

 

Figure 1: Exposure Controlled Projection Lighography Process Overview [17] 

1.3 ICM System Overview 

To identify the inherent variations of cured height with on-going exposure and 

provide reference to identify fabrication errors induced by post-cure process such as 

washing and final part measurement, Jariwala [17] designed an in-situ interferometric 

curing monitor (ICM) system for the ECPL process.  The (ICM) system, as seen in 

Figure 2, is based on a Mach-Zehnder interferometer and is described in detail in 

Jariwala, Schwerzel [18]. A coherent laser is directed, through a beam expander, 

moveable iris, and beam splitter, at the resin chamber. Light reflecting off the interface 

surfaces of the resin chamber reflect through the beam splitter and into the camera. Due 

to the optical path differences between the light beams reflected from different interface 

surfaces an interference pattern is observed by the camera. 

The laser source is a small, low-power, 532 nm wavelength laser diode, which 

provides the coherent laser light required for interferometry. The beam expander expands 

the narrow beam produced by the laser source such that the light output could cover the 
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entire curing area in the resin chamber and the camera can capture a full-field 

interferogram. The movable iris can adjust the size of the incident beam and selectively 

illuminate a specific location on the curing plane. The beam splitter reflects the laser 

source downward into the resin chamber while, at the same time, allowing for light 

coming from the resin chamber to pass through to the camera above. The camera captures 

the intensity of incoming laser light from the resin chamber, and provides an interference 

pattern of intensity profile across the shined chamber area. 

 

Figure 2: ICM System 

1.4 Motivation 

ECPL systems have been evolving since our first generation prototype in 2008, 

and the process has been continuously improved, resulting in a smaller and smaller 

fabrication error, from 25% [19] to 15% [17] to recently 10% [20]. However, to become a 

more capable micro manufacturing method for wider applications, ECPL still has limited 

process accuracy, which sparks a new study area of interest - advanced process control 

methods as will be investigated in this dissertation. 

Another motivation is the development of an in-situ measurement system - , the 

interferometric curing monitoring (ICM) system, proposed by Jariwala et al. ([18], [21]) 

in an attempt to build a more precise ECPL system. The plateau of current open-loop 
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process accuracy might be changed with a more mature interferometric curing monitor 

and measurment (ICM&M) system, which will be able to provide real-time measurement 

output enabling a closed-loop control. It is reasonable to think that advanced control 

methods with real-time closed-loop feedback could improve significantly ECPL process 

accuracy, as envisioned in Figure 3. 

 

Figure 3. An integrated ECPL System with Real-Time Measurement and Control 

This research aims to upgrade the ICM system into a real-time metrology, and to 

develop some advanced control system, defined under this particular scenario as closed-

loop real-time feedback control, for the ECPL system. 

1.5 Dissertation Organization 

A brief introduction to the ECPL process and ICM system is presented in Chapter 

1. This chapter also presents the motivation for the ECPL process measurement and 

control. Chapter 2 presents the limitations in the existing ECPL process control methods, 

and Chapter 3 reviews some advanced control methods for processes relevant to the 

ECPL process. A detailed explanation of the research gaps, research questions and 

hypothesis is presented in Chapter 4. Chapter 5 presents the development of the 

interferometric curing monitoring and measuring (ICM&M) sensor model and online 
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parameter estimation algorithms, with some initial experimental validations during the 

course of this research. Chapter 6 explores the data analysis methods underpinning of the 

ICM&M method for ECPL process measurement. A data mining approach for evaluating 

the ICM&M sensor model was developed and verified to be intelligent, accurate, robust 

and efficient for handling. To implement the ICM&M method for the ECPL process 

measurement, an application program – the ECPL M&C software - is designed and 

created in MATLAB as presented in Chapter 7. Chapter 8 designs and implements 

experiments for validation of the ICM&M method offline, and its measurement 

characteristics are also presented. Herein, the first research question and its hypothesis is 

validated in this chapter. To further evaluate the first research hypothesis and to validate 

the second research hypothesis, Chapter 9 demonstrates a real-time implementation of the 

ICM&M method for measuring and controlling the ECPL process with a developed 

feedforward-feedback control method. The real-time experiments results are interpreted 

and an error analysis is elaborated for evaluating the process control performance. In 

Chapter 10, the research questions are revisited and the contributions resulting from this 

work are summarized. The limitations of this work and directions for future work are also 

discussed. 
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CHAPTER 2 EXISTING ECPL PROCESS MEASUREMENT AND 

CONTROL 

 

Primarily due to the complicated nature of photopolymerization and 

stereolithogrphy process, so far no comprehensive control strategy exists yet except for 

some basic use of offline open-loop process control technology. This technique relies on 

characterization experiments, which are used to quantify the effects of exposure dose on 

the cured heights. Our group has worked extensively in an effort to realize an automated 

and precise ECPL system. This chapter provides the related previous research in order to 

identify gaps between the research goal and previous works. 

2.1 Process Control Method Developed by Zhao 

2.1.1 Process Model 

Zhao [19] found a process model (Equation ( 1 )) relating the exposure dose E to 

the final cured height Z by curve fitting of measurement data from many cured parts. 

Experiments were performed beforehand to determine the values of critical exposure Ec, 

and penetration depths of liquid (DpL) and of solid resin (DpS). This model was an 

analytical solution of the ordinary differential equation of a transient layer curing model 

developed by Limaye and Rosen [22], which was based on Beer-Lambert’s Law (Ec-Dp,, 

i.e., threshold exposure model). Before solving, it was simplified by applying Taylor 

series expansion with higher order terms omitted. 

 
𝑍(𝐸) = 𝐷𝑝𝑆 𝑙𝑛 [

𝐷𝑝𝐿

𝐷𝑝𝑆

𝐸

𝐸𝑐
+ 1 −

𝐷𝑝𝐿

𝐷𝑝𝑆
] 

( 1 ) 

2.1.2 Process Control 

Based on the process model above, an open-loop process control for ECPL was 

developed and the control scheme is summarized as shown in Figure 4. Given a 3D part 
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profile, based on the inverse process model, a timed sequence of bitmaps was generated 

to minimize the mean squares of errors between all voxels’ actual exposure dose to their 

required dose in order to cure the desired part. 

The process control method was implemented on a few examples of lenses 

fabrication by Jariwala [17]. The desired diameter was 200µm and the sag height was 

120µm. It was observed that the process control failed to adequately cure the heights and 

the overall diameter of the part. The height was under-cured by almost 20 µm and the 

diameter mismatch was up to 50µm, which corresponded to around 30%. 

 

Figure 4: ECPL Open-loop Process Control Scheme by Zhao [19] 

2.1.3 Critics and Summary 

Below lists some critical factors which prohibited an accurate process. 
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1) Admittedly the algorithms of least squares optimization and clustering were 

limited in only approximating rather than equating the ideal process input 

receipt, however it was not fair to account heavily on the algorithms for the 

errors because process uncertainties might be more devastating. 

2) The ECPL process is not well known and susceptible to unmeasurable 

material / equipment variations and disturbances and operational errors. 

3) Another critical error source could be the assumption that voxel curing 

behavior follows the part curing characteristics. That is, the working curve 

relating exposure dose to part cured height might be inaccurately or wrongly 

applied to the voxel curing, because in the process model ignored possible 

voxel-voxel interactions such as mechanics which might have induced surface 

shrinkage. 

As a summary, this process control has a virtue in terms of process automation 

development, but could not achieve good accuracy due to an over-simplified process 

model and process inherent challenges. This is a common problem of open-loop control. 

2.2 Process Control Method Developed by Jariwala 

2.2.1 Process Model 

To come up with a more accurate process model, Jariwala [17], investigated the 

photopolymerization chemical reaction kinetics and conducted both 1D and 2D 

simulations in COMSOL Multiphysics® to generate a semi-empirical material model 

based on the well-known Beer Lambert’s law of attenuation. This chemical kinetics 

based material model was validated to be able to estimate better the shape of a cured part 

than the experimental working curve above, because it added oxygen inhibition and 

diffusion effects. 
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The semi-empirical model, still based on the basic threshold exposure model, was 

revised by incorporating the idea that both Ec and Dp rather than remain constant, could 

actually change with the distance between substrate pixel and substrate center. In order to 

find out the functions of Ec and Dp with the substrate pixel’s distance away from the 

substrate center, a response surface named as material model was generated with 

COMSOL simulation data (note: not physical experiment, which was verified to agree 

with COMSOL simulation result with some acceptable errors).  

The final form of this process model is as shown in Equation (2), where R is the 

maximum radius (µm) of the part to be cured, r is the distance (µm) of the point of 

interest from the center E(r) is the irradiance energy (mJ/cm2) incident at the point of 

interest and is obtained from the material parameter database and Z is the cured part 

height at the point of interest. 

 

𝑍(𝑟, 𝑅) =  {

0, 𝑓𝑜𝑟 𝐸(𝑟) < 𝐸𝑐(𝑟, 𝑅)

𝐷𝑃(𝑟, 𝑅)× ln (
𝐸(𝑟)

𝐸𝑐(𝑟, 𝑅)
) , 𝑓𝑜𝑟 𝐸(𝑟) ≥ 𝐸𝑐(𝑟, 𝑅)

 

( 2 ) 

2.2.2 Process Control 

With the process model in the equation above, a process control scheme was 

formulated by interplaying the empirical response surface with COMSOL simulation of 

polymerization reaction kinetics to estimate the manufacturing process input required to 

cure a part with desired shape and dimensions.  

The process-planning problem, which was actually also an open-loop control, was 

split into two steps – estimating first bitmap and exposure time using material model 

database, and estimating subsequent bitmaps and exposure time based on simulated 

slicing techniques. Figure 5 shows the flow chart for estimating the subsequent bitmaps 

and exposure times. 
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Figure 5. ECPL Open-loop Process Control Scheme by Jariwala [17] 

In micro-lens curing experiments, Jariwala’s process control method yielded an 

error of about 15% between the cured part geometry and the desired part geometry, both 

in sag height and diameter. 

2.2.3 Critics and Summary 

Compared with Zhao’s control, this one outperformed in terms of less error due to 

the use of COMSOL simulation of the photopolymerization process. The process control 

method has following strengths and weakness. 

1. It is noted that in Figure 5, there is a closed loop in the control using the 

COMSOL simulation result as a feedback. The error between feedback 

simulated height and desired height was used to adjust both the bitmap and 

exposure time. Hence, it was closed-loop control which might be one reason 

other than improved process model that the control yielded better result. 
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However, because the time-consuming COMSOL simulation could not 

provide in-situ feedback, the controller calculated the input offline which was 

later implemented in an open-loop mode. Consequently, such kind of 

controller is incapable of dealing with process variations and disturbances. 

Hence, it is still an open-loop control system embedded with an offline 

closed-loop controller implemented in an open-loop mode. Generally, we 

could define it as semi-closed-loop. 

2. It didn’t unveil explicitly the exact formulation of process model, but merely 

relied on COMSOL simulation of chemical reactions and 2D finite element 

method to estimate the cured part. Without an analytical model, it was hard to 

claim that new knowledge about the ECPL process model was obtained 

except for some chemical kinetics rate constants. The part of finite element 

analysis by COMSOL indicated the analytical model if any is very complex 

and could be addressed only by numerical methods thus far. Even though the 

solution is challenging, the analytical model itself should have an explicit 

form, which was however not established by the author. 

3. A practical issue lies in the unrepeatable experiments which were tried by 

following researchers. The process control method seemed instable or 

unreliable. 

2.3 Process Control Developed by Jones 

2.3.1 Process Model 

Jones [20] experimented with a real-time sensor, an interferometric curing 

monitoring (ICM) system, to fit a model relating time (t in seconds) and phase angle (Φ 

and Φc in degrees) with part height (Z in µm) so that a comparison between the direct 

control of time and the control with measured phase angle could be performed. The time 
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to part height relationship, Equation. (3), was experimentally determined by curing a 

single square for a known amount of time, washing the sample, and then measuring its 

height. 

 Z(t) = 36.85× ln(𝑡) + 22.707 ( 3 ) 

The relationship, as shown in Equation (4), between phase angle and part height 

was also found using the same dataset. 

 Z(∅𝑐) = 30.144× ln(∅𝑐) − 159.83 ( 4 ) 

2.3.2 Process Control 

Corresponding to model in Equation (3), a simple open-loop controller, working 

like a stopwatch, was used to control the curing time so as to achieve a desired height. A 

second control method was proposed based on Equation (4) with the aid of ICM which 

could provide in-situ measurement. Equation (4) maps the in-situ measurement of 

interferogram phase angle with the ICM to the off-line measurement of cured part height 

with microscopy. The objective was that after characterizing the in-situ ICM 

measurement, real-time inference of cured height would be available to advance the 

controls towards real-time closed loop feedback control, which was proposed in Figure 6. 

This controller aimed to achieve real-time control by turning bitmaps on and off in 

response to ICM measurements of phase angle. 



 15 

 
Figure 6: Flow Diagram of the Control System Proposed by Jones [20] 

2.3.3 Critics and Summary 

The stopwatch type of control is simple and straightforward, and its accuracy 

depends on the model accuracy in Equation (3). 

As to the proposed control scheme in Figure 6, it is a quasi closed loop controller 

because it compares feedback with setpoint just to decide when to stop displaying the 

given bitmap, but can not adjust accordingly the exposure intensity or pattern. Another 

limitation is that it achieves control only in a conditioned scenario where the bitmap is 

known and all that needs control is just the bitmap’s display time. Simple examples of 

squares curing using only single or two bitmaps were conducted experimentally and the 

results demonstrated better accuracy than the use of open-loop, time-based control. 

However, more complete closed-loop feedback control across the entire build chamber 

for a 3D part is still needed. Furthermore, the controller performance depends heavily on 

the accuracy of the empirical model, and was constrained by a lacking of well-developed 

analysis of real time measurement data. 
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Jones’ work was more about development of a sensor rather than a controller. His 

research is meaningful in showing that the interferogram pixel intensity - time curve has 

potential to calculate the cured height thereon to provide a real-time feedback.  

2.4 Summary of existing ECPL controls 

The existing ECPL process control methods introduced above are summarized in 

Table 1. Such existing process controls suffer noticeable loss of accuracy because of the 

inherent weakness of the offline process model and open-loop control mode, which 

cannot track the changes in process, material and equipment. 

Table 1. Summary of Existing Process Controls 

 

 

Despite their effectiveness to some extent, the existent process controls suffer 

noticeable loss of accuracy because they cannot track the changes in process, material 

Zhao (2009) Jariwala (2013) Jones (2014)

Measurement Offline (Microscopy) Offline (Microscopy) Offline (Microscopy), Online (ICM)

Operation Offline Offline Offline

Methods Physical (Analytical Transient 

Layer Curing Model)

                        + 

DOE (to build Working Curve)

Physical (Revised Exposure Threshold 

Model) & Chemical Kinetics COMSOL 

Simulation 

                           + 

DOE (to build Material Database)

DOE (Purely Experiments Data Curve Fitting 

using Logarithmic Regression)

Process 

Knowledge
Preliminary Intermediate None

Parameters 1.Offline Preset.

2.Uniform all across time and 

space.

No variation or dynamics 

considered.

1. Offline Preset.

2. Changing radially.

Spatial variation but no dynamics 

considered

1. Offline Preset.

2. Constant Curve slope and interceptions 

(No physical meaning).

No variation or dynamics considered.

Variables Exposure dose E  (both bitmap 

and exposure time)

Exposure dose E  (both bitmap and 

exposure time)

Requiring Bitmap be given, 

Model #1: exposure time t;

Model #2: exposure time t (by comparing 

measured and desired Phase angel Φ)

Equations Model #1:

Model #2:

Algorithms 1. Offline 

2. Optimization & Clustering  to 

calculate process input from the 

model

1. Offline

2. Incremental Trial and error based on 

simulation feedback

Controller #1: Simple stopwatch type of time 

control using Model #1.

Controller #2: .Feedback time control using 

Model #2.

Implemention 

 Mode

implement the pre-calculated input 

in an open-loop mode

implement the pre-calculated input in an 

open-loop mode

Controller #1: Open-loop

Controller #2: Quasi Closed-loop

~ 25% ~ 15% ~ 10%

Controller

Control Methods

Process 

Model

1. "Offline" means the model parameters or controllers inputs are calculated ahead of the process. Oppositely, 

"Online" means the calculations are done during the process.

2. "DOE": Design of Experiments

3. Parameter “Dynamics” means its changes or evolution with time.

Notes

Fabrication Error
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and equipment. The techniques have some common limitations of the inherent weakness 

of the offline process model and non-closed-loop control mode. 

1) Offline process model 

It is noted that all the existent process controls are based on offline process 

model, which couldn’t address the online process variations and 

disturbances. The process input has been preset by the process model, 

whose parameters are obtained offline and prone to become oversimplified 

or obsolete due to the varying material properties and equipment 

conditions along with some stochastic phenomena present in the 

photopolymerization. Thus, offline static process model would undermine 

a desired accurate process control. 

2) Open-loop control mode 

On top of all, under the existing strategies it is common practice to operate 

the ECPL process in an open-loop mode. The fabrication process would 

go thru without adjusting the process input according to online process 

variations and disturbances. 
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CHAPTER 3 LITERATURE REVIEW ON CONTROLS OF 

MANUFACTURING PROCESSES RELEVANT TO ECPL 

 

Many of the limitations of the existing ECPL controls mentioned stem from the 

fact that fundamental understanding of photopolymerizaton based stereolithography is 

still incomplete; therefore an open-loop control cannot effectively address all the process 

control problems of concern. An advanced method for controlling processes, which are 

only partially understood, is closed-loop control where input and output variables are 

linked through information feedback [23]. Very few literature reports application of 

advanced control methods to micro stereolithography (µSL) process, not to mention to 

the specific kind of non-stacking DMD-based uSL process as is the ECPL case. This 

chapter presents some relevant research on the control technologies in other 

manufacturing processes which are similar to ECPL in one or another way, and thereby 

proposes at the end a few feasible control strategies for ECPL process. 

3.1 ECPL Property Space 

There is quite a lot of research effort on the control technologies in other 

manufacturing processes which are similar to ECPL in one or another way. Perusing 

literature in these process control methods could shed some light onto the guidelines or 

approaches of developing an improved ECPL control system. Figure 7 depicts the 

surveyed control strategies in a wide spectrum of processes linked to the ECPL process of 

our interest. The literature review started from the properties space of ECPL and reached 

out to similar processes in terms of a particular property. We wish to learn various 

controls and identify these suitable to ECPL. 
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Figure 7. Literature Survey on Controls of Processes Relevant to ECPL  

 

3.2 Controls of Polymerization 

First of all, ECPL could be deemed as a miniature polymerization reactor, 

specifically, a free radical chain-growth photo-polymerization process, which is one of 

various polymerization kinds. A polymerization process usually undergoes disturbances, 

which move the process away from the desired trajectories. In order to obtain in-

specification end-use polymer properties such as final form and shape, for the intended 

application, process measurement and control systems must be designed and 

implemented. 

3.2.1 Challenges in polymerization modeling and optimization: A population 

balance perspective  

Kiparissides [24] surveyed a unified population balance approach to follow the 

time evolution of molecular and morphological polymer properties in batch and 
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continuous polymerization reactors. The numerical methods as well as the computational 

issues related with the solution of the dynamic population balance equation were 

critically assessed. The orthogonal collocation on finite elements (OCFE) method and the 

fixed-pivot technique (FPT) are then applied to a free-radical batch polymerization 

reactor to calculate the dynamic evolution of the molecular weight distribution (MWD). 

Moreover, theoretical and experimental results were shown on the dynamic evolution of 

particle size distribution (PSD) in a suspension polymerization reactor. 

The numerical solution of the dynamic population balance equation (PBE) for a 

particulate system, especially for a reactive one, is a notably difficult problem due to both 

numerical complexities and model uncertainties regarding the particle nucleation, growth, 

aggregation and breakage mechanisms that are often poorly understood. Usually, the 

numerical solution of the PBE requires the discretization of the particle volume domain 

into a number of discrete elements that results in a system of stiff, nonlinear differential 

or algebraic/differential equations that is solved numerically. 

Recent advances in on-line monitoring of ‘‘polymer quality’’ were briefly 

discussed in the context of available hardware and software sensors. The problem of real-

time optimization of polymerization processes under parametric uncertainty is also 

examined. Finally, new issues related with the modeling, numerical solution and control 

of multidimensional population balance equations were conferred. 

3.2.2 Measurement and control of polymerization reactors 

Richards and Congalidis [25] presented a hierarchical approach to the control 

system design and reviewed traditional regulatory techniques as well as advanced control 

strategies for batch, semi-batch, and continuous reactors. The paper focused on process 

control in a complex industrial environment of free radical copolymerization reactor with 

environmental conditions (Pressure, Temperature, Level, and Flow) regulation, and 

material property (viscosity, MWD and PSD) measurement. This process had been used 
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as a benchmark to test various control and estimation schemes. It represents a wide class 

of free radical polymer reactors with no less challenge in general polymer industry than 

in ECPL. The logic is that if the control methods introduced in the literature could 

address the polymerization with more complex issues, they or their variations might also 

be applicable to ECPL, because the polymerization process is more aggressive than 

ECPL in terms of high nonlinearity, multiple inputs-outputs, multiple sensors and 

deadtime issues. 

The industrial measurement techniques are not applicable to ECPL micro process, 

however, as rationalized above, the controls methods might be leveraged to ECPL. 

Richards [25] started reviewing controls with a comparison of generic control 

methodologies as below. 

1) PID feedback control 

Very widely used because it requires minimal process knowledge. In particular, it 

doesn't require a mathematical model of the process. If properly tuned, the PID 

controller can be quite robust in maintaining good steady state in the face of 

unmeasured disturbances. However, it has a serious limitation: the PID controller 

requires control variables to be measured online so that the control action can 

occur after detecting a deviation between the set point and the measured variable. 

Perfect control is not possible because PID feedback control is reactive and 

compromising. 

2) Feedforward control 

It relies on the fidelity and accuracy of the process model, based on which it 

compensates the measured disturbances. 

3) Feedforward - feedback control 

A combination of feedforward and feedback control utilizes the best of both 

approaches by being able to provide compensation for both measured and 
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unmeasured disturbances as we as model inadequacy and measurement 

inaccuracies. 

As expected, the authors recommended feedforward-feedback control, which 

includes distinct control schemes based on different control algorithms. Academic 

researchers have established prominent nonlinear MPC (Model Predictive Control) 

technology for tough control problems in polymerization reactors. A nonlinear MPC 

control might be designed for ECPL, given real-time measurement and based on a 

reasonably accurate process model that can capture the interactions between input, 

output, and disturbance variables. The scheme of MPC is shown in the block diagram in 

Figure 8. If Jariwala’s [17] output prediction with COMSOL simulation could be fast 

enough to be in pace with real-time ICM measurement, a nonlinear MPC model might be 

interesting and applicable. 

 

Figure 8. MPC block diagram (Seborg, Edgar [26]) 

 

3.3 Controls of Lithography 

Lithography such as photolithography, DUV lithography and electronic beam 

lithography in semiconductor manufacturing all have some commonality with micro 

stereolithography in that they involve photo induced chemical process and need exposure 

dose control.  
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3.3.1 Model-based Adaptive Control of Photolithography [23] 

Adaptive control techniques, with their capability for providing satisfactory 

control even when the process changes with time, are promising candidates for dealing 

with common problems encountered in photolithography processing such as batch-to-

batch variations in resist properties, inconsistencies in resist curing, etc. Crisalle, Soper 

[23] proposed and evaluated an adaptive control strategy for the photolithography 

process. The design utilizes a reduced-order lithography model, an on-line parameter 

estimator, and a nonlinear model-inversion controller (NMIC). 

A crucial output of photolithography - the width of the printed resist lines - was 

controlled by automatically adjusting the exposure energy. In the calculation of the 

appropriate exposure adjustment, the controller uses both measured critical dimensions as 

well as estimated values produced by the process model. The control system is capable of 

tracking changes in the photolithography process by automatic updating of key model 

parameters as the process evolves in time. Simulation studies of the closed-loop adaptive 

control strategy using the PROLITH simulation package to represent the lithography 

process demonstrate the feasibility of this approach. 

The lumped-parameter model (LPM) of Hershel and Mack defines an explicit 

relationship between the critical dimension (a controlled variable) of the line or space 

feature, and the exposure energy (a manipulated input variable) by means of the integral 

equations. 

 

where, CD = critical dimension (nm), E = exposure energy (mJ/cm2), E0 = effective 

photosensitivity (mJ/cm2), De = effective film thickness (nm), γe = effective resist 

contrast (dimensionless), I(ξ) = aerial intensity distribution (mW/cm2), and ξ = horizontal 

location on the mask (nm). 
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The model-based adaptive control strategy proposed for photolithography consists 

of the concerted operation of the parameter estimation technique, the nonlinear controller, 

and the LPM equation. The relationship between these three elements is shown in the 

block diagram of Figure 9. At a given sampling instant the estimator first makes use of 

the measured input-output data N-tuples to calculate updated values of three model 

parameters De, γe and E0 which minimize the least-squares error. Next, the updated LPM 

parameters are used to calculate the estimated critical dimension CD (t). Finally, the 

nonlinear controller makes use of all available information— the updated LPM 

parameters, the estimated critical dimension, the desired set point, and the actual critical 

dimension measurement— to calculate the prescribed exposure energy according to 

inverse of LPM.  

 

Figure 9. Adaptive control of photolithography using the nonlinear model [23] 

 

The performance of the overall adaptive control structure is enhanced by 

including the data filtering operations and by adopting the deadband policy. Since 

commercial projection step-and-repeat steppers have a bound on the fastest reproducible 

shutter speed (typically of the order of 3 msec), exposure adjustments less than this limit 

are therefore not possible. This limitation in the control action is expressed in terms of a 

deadband variable, Emm, the minimum allowable exposure energy change. No attempt is 

made to adjust the exposure dose when this threshold is violated. The control policy is 

then ruled by the logical condition as below. 
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If |𝐸(𝑡𝑘) − 𝐸(𝑡𝑘−1)| ≤ ∆𝐸𝑚𝑖𝑛, then 𝐸(𝑡𝑘) = 𝐸(𝑡𝑘−1). 

The control deadband ΔEmin may be arbitrarily set to values greater than the 

resolution of the optical shutter. Such a choice prevents the controller from making small 

exposure adjustments that would have only a minor effect on the critical dimensions. The 

performance of the control loop is thus markedly enhanced. 

Similarly in ECPL, the UV light shutter and DMD flip time also limit exposure 

adjustment. This limitation in the control action could be expressed in terms of a 

deadband variable, ΔEmin, the minimum allowable exposure energy change. 

Deadband consideration can be an improvement in our proposed control method 

of ECPL compared with Jariwala's method [17]. 

It is necessary to clarify that “adaptive” control in this paper [23] is actually a 

recursive least squares digital control. By the term “adaptive,” the paper meant online 

parameter estimation. There are different forms of adaptive control, which is generally a 

broad class. 

3.3.2 Run-to-run control of DUV lithography [27] 

To achieve enhanced predictive model as well as to facilitate control of deep ultra 

violet (DUV) lithography, Jakatdar [27] presented a framework that integrates the 

metrology of wafer level observables with a physical model. For simulation, he.proposed 

a dynamic physical model for volume shrinkage in chemically amplified photo resists. He 

also designed an in-line run-to-run control with sensors. A static model of the DUV 

(Deep Ultra Violet) lithography process was obtained using regression on a design of 

experiment to predict the output CD (critical dimensions) in terms of exposure dose and 

bake time. Based on the static model, a process drift model was developed to attribute 

CD variability to wafer reflectivity variation, batch to batch resist variation and exposure 

and thermal dose variation, as well as measurement noises.  
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In a scenario with one sensor, the in-line reflectometer measures the resist 

thickness before and after the exposure and baking steps, in order to calculate the 

deprotection induced thickness loss (DITL). This DITL value is used to estimate the post-

develop CD which is then used in conjunction with a standard RtR control algorithm, to 

prescribe a recipe for the subsequent wafer. A schematic of the control architecture and 

notation is shown in Figure 10. 

 

 

Figure 10. Run to Run Control Architecture for DUV Lithography [27] 

 

The controller uses a Kalman Filter to provide estimates of the noise and uses 

process models based on a statistical design of experiments technique. Two scenarios 

were considered, differing in the type of metrology as well as the frequency of 

measurements available. The simulation results indicate the efficacy of using such a 

scheme for a real-world lithography sequence. 

3.3.3 Run-to-run controls of photolithography [28] 

Wu, Hung [28] described two run-to-run controllers, a nonlinear multiple 

exponential-weight moving-average (NMEWMA) controller and a dynamic model-

tuning minimum-variance (DMTMV) controller, for critical dimensions (CD) control in 
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photolithography processes. The experimental design and a multiple regression analysis 

were used to form relationships between the factors (exposure dose and focus) and the 

output quality property (critical dimension). Both controllers could easily update the 

dynamic model and obtain the optimal inputs for the next run. The simulation results 

demonstrated that the DMTMV controller was more powerful than the NEWMA 

controller for rejecting disturbances and increasing yields. Quantified improvements were 

obtained from simulations and real photolithography processes. 

3.4 Frequency Domain Control of Laser Metal Deposition [29] 

Also using laser to deposit material as ECPL does, the Laser Metal Deposition 

(LMD) process is an established additive manufacturing process which is comprised of 

melting powdered metal material with a laser to fabricate metal structures. While the 

process is usually modeled and controlled via pure temporal models and algorithms, the 

process is more aptly described as a repetitive process with two sets of dynamic 

processes: one that evolves in time and one that evolves in part layer. Therefore, it is 

advantageous to derive a model of the LMD process that captures these two dominant 

phenomena. Although first principles models are capable of capturing both phenomena, 

simpler models can be derived and characterized using system identification methods. 

Therefore, a Hammerstein model describing the LMD process is derived [29], which 

captures the two dominant aspects of the process and reproduces a common description 

of the melt pool shape. The model is then transformed into the frequency domain and the 

unknown dynamics are identified and validated using system identification techniques. 

The phase and magnitude properties of the model are also examined. 

3.5 Adaptive Neural Network Control of a Class of Unknown Nonlinear System  

Kwan and Member [30] proposed a robust controller for backstepping control of a 

class of general nonlinear system using neural network (NN). All errors and weight are 
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guaranteed to be bounded. The tracking error can be reduced to arbitrarily small values 

by choosing certain gains large enough. Several practical systems, including an induction 

motor and a RLFJ robot, were used to demonstrate the effectiveness of the proposed 

controller. The method does not require the system dynamics to be exactly known or 

require any off-line learning phase. 

A similar but more powerful control algorithm was presented by Yahui Li [31]. 

Two different backstepping neural network (NN) control approaches were presented for a 

class of affine nonlinear systems in the strict-feedback form with unknown nonlinearities. 

By a special design scheme, the controller singularity problem is avoided perfectly in 

both approaches. The closed loop signals are guaranteed to be semiglobally uniformly 

ultimately bounded and the outputs of the system are proved to converge to a small 

neighborhood of the desired trajectory. The control performances of the closed-loop 

systems can be shaped as desired by suitably choosing the design parameters. Simulation 

results obtained demonstrate the effectiveness of the approaches proposed. 

Although it still requires further research to check if ECPL could be really 

modeled into a backstepping system with a particular form of equations as described in 

literature [31] and [30], the salient feature of such model and robust adaptive neural 

network control algorithm for a class of general unknown nonlinear system is very 

interesting.  

3.6 Literature summary 

The literatures, as summarized in Table 2, have relevance to aspects of ECPL 

process control, but could not be applied directly due to the differences in material, 

equipment and approach. For example, the traditional lithography control design cannot 

be directly used for ECPL because the processes are fairly different in nature - the former 

is subtractive while the latter is additive. 
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Actually, system control is challenging and requires careful development across 

several levels of detail. There is no panacea control method and each class of system 

might have its own unique characteristics that require a special algorithm for stability and 

robustness. Hence, there is still no handy solution to ECPL advanced process control, 

which demands further research work on both the real-time measurement and process 

modeling. Even so, the literature review has tremendous value in providing inspirational 

insights into feasibility of advanced control for ECPL. 

 

Table 2. Summary of Literature Review on Controls of Processes Relevant to ECPL 

 

As we could see from the literature, Run-to-Run (R2R) control has been used 

extensively in lithography processes and actually other semiconductor processes as well. 

The R2R control literature is based on the processes where fundamental or first principles 

model are not available or are very difficult to obtain. In addition, large numbers of off-

line experiments are required for the generation of linear or nonlinear empirical models 

from experiments. All the features enable R2R to be a good candidate for ECPL because 
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currently we lack a first principles model for ECPL but already did lots of experiments 

and have empirical models. Obviously, considering the unique constraints of ECPL, we 

need a variation of R2R; one candidate variant has been developed, called evolutionary 

cycle-to-cycle (EC2C) control, which will be introduced in the next section. 

Additionally, adaptive neural network (ANN) methods also appear to be 

promising, based on their successful application in other process governed by unknown 

nonlinear systems.  Hence, it seems that applying advanced control technologies, such as 

EC2C and ANN, to ECPL is promising but requires further conclusive investigation and 

more specific detailed design of the control system. In the following section, we will 

explore more about the ECPL process control. 

3.7 Proposed Advanced Process Control Schemes 

The overall objective of an ECPL control system is to ensure that the final outputs 

of the process (i.e. the cured height and shape) conform to established specifications. 

Although all the final outputs are important, the cured height has been a most prominent 

concern because cured heights of discretized voxels define the shape. 

Considering the process control issues above, we focus the search space of 

advanced control methods on these which could update online process dynamics 

modeling and thus track the process evolution with various disturbances more accurately. 

3.7.1 Evolutionary Cycle-to-Cycle Control 

We proposed a digital control method – evolutionary cycle to cycle (EC2C) 

control method- based on the R2R literature. The name, changed from “Run” to “Cycle”, 

clarifies that the proposed controller works per measurement cycle instead of per 

experiment run. There is an essential difference between our EC2C approach and 

traditional R2R approaches. In semiconductor processes, run-to-run usually means wafer-

to-wafer, lot-to-lot or batch-to-batch, which is more of a statistical process control, even 
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though there are a broader classification of R2R including statistics, estimation and 

artificial intelligence [32]. In our proposed cycle-to-cycle control, we dive into a smaller 

scale and smaller time step, and focus on a single part fabrication process, that is, to 

control a single “Run” of process instead of “Run-to-Run” in a batch process. 

The EC2C control will inherit the advantages of present R2R control 

methodologies and adapt well to our ECPL process special issues. Furthermore, if 

physical (first principles) models can be developed, EC2C control might be extended by 

synthesizing both physical and empirical models for optimization to overcome the 

limitations and disadvantages of classical R2R. A recursive least squares (RLS) system 

identification and Kalman filters could be used in the EC2C for ECPL to enhance the 

controller performance. 

3.7.2 Hierarchical Framework of Control Methods for ECPL  

We already looked into a search space of ECPL-like process control methods. 

There is no panacea or all-purpose control method, but only myriad control methods 

dealing with various types of systems. Worse still, terminologies and definitions of 

various control methods seem to clutter in vast literature. It is confusing that there are a 

number of control methods which differ despite similar name or resemble despite 

different names. For example, in some paper adaptive control might mean a run-to-run 

control, which again could also be called as a cycle-to-cycle control or recursive least 

square digital control. Hence, we need clarify our candidate control methods. 

Furthermore, under the scenario of ECPL, which kind of control is suitable totally 

depends on the process model and measurement capability. It is always easier to start 

with a simple model and develop a baseline control. As our knowledge of the process 

develops along with improved in-situ measurement to provide real-time feedback, we 

might be able to progress towards a more and more complex process model based on 
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which a more advance control algorithm will become enabled. Hence, it is better to 

summarize the candidate methods in a hierarchical manner. 

Inspired by literature, tailored for ECPL, a hierarchical framework of control 

methods is put forward for different stages. The development stage of control methods is 

defined in two status coordinates: degree of process knowledge and degree of 

measurement capability. The hierarchical framework of control methods, both existing 

and potential in our research scope, is presented in Figure 11. 

 

 

Figure 11. Hierarchical framework of control methods for ECPL 

 

As shown in the control methods hierarchy in Figure 11, only when the in-situ, 

real-time measurement capability is fast and reliable can we attempt, in increasing order 

of complexity, the implementation of more advanced control strategies, dynamics model 

based control algorithms, and on-line optimization strategies to compute input recipes for 

the ECPL. 
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Considering current development of ECPL and ICM, we will investigate two most 

viable candidate controls, evolutionary cycle-to-cycle (EC2C) control and adaptive neural 

network (ANN) control, which are mostly likely to satisfy the search criteria - capability 

of adaptive learning and control of unknown or uncertain process. 

As shown in the hierarchical framework, the two proposed control methods adopt 

different theory and architecture, and can be applied under different development stages 

depending on the knowledge of the process dynamics. EC2C is basically a kind of digital 

control based on recursive least squares estimates. It can be used at the initial stage when 

we still have no good fundamental knowledge of the physical relationships among the 

ECPL photopolymerization variables. The EC2C digital control is envisioned as a 

baseline controller, which serves as both a guideline for controller tuning and a system 

identification tool for modeling the ECPL process dynamics in forms of sophisticated 

differential equations. As the research moves forward with better knowledge of the 

photopolymerization mechanism and ECPL process dynamics, a more advanced control 

strategy – adaptive neural network control- with developed process ordinary differential 

equations could be designed to manipulate the process input directly. 

3.8 Chapter summary 

Investigation of instrumentation and control methodologies, which will be needed 

to meet the evolving needs of photopolymerization based processes and other additive 

manufacturing processes, could be a challenging and vibrant area for academic 

researchers and industrial practitioners alike. 

The chapter reviewed existing control methods for processes relevant to ECPL. 

Advanced control methods for the ECPL process were identified and a search space of 

relevant literature was surveyed to reveal promising techniques. Inspired by literature, 

tailored for ECPL, a hierarchical framework of control methods is proposed. Candidates 
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include basic feedforward-feedback control, evolutionary cycle-to-cycle control, model 

predictive control, adaptive neural network control, and frequency domain techniques.  

Future work includes detailed design and physical implementation of some 

advanced control system onto the real ECPL system to further verify and explore their 

capability. 
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CHAPTER 4 RESEARCH GAPS, GOALS AND QUESTIONS 

 

It is common that for all micro manufacturing processes, in order to effectively 

achieve process control and quality enhancement, improved real-time metrology systems 

and sensors are needed along with models that describe the various manufacturing 

processes at the micro level such that true process control can be enabled [33]. This 

chapter presented the existing issues relevant to measurement and control of the ECPL 

process. The research gaps from existing literature were identified and presented. It was 

found that the existing literature lacks adequate models and effective closed-loop controls 

that could precisely fabricate the cured part. In order to accomplish the research 

objective, research questions and hypotheses were formulated. The main research 

question in this study is how to control ECPL with more accuracy and robustness. And 

our research hypothesis is that advanced control methods in unison with real-time 

metrology could provide effective and satisfactory control of ECPL process. We will 

break the process control question into two research questions in terms of metrology and 

control system. 

4.1 Issues of Real-time Measurement with ICM System 

To realize in-situ sensing of the ECPL process, Jariwala et al [18] and Jones et al 

[21] developed an interferometric curing monitoring (ICM) system. Various 

interferometry techniques and applications exist; however, there is no handy solutions to 

the real-time ICM measurement because: 

1) The ICM measurand – photopolymerization process cured part dimensions, 

involve complex unknown material properties and variations. Hence, a 

measuring principle model, i.e., an ICM model, is needed in order to interpret 

the interferogram accurately and to extract the desired measurement variables. 

The ICM model consists of two sub-models: interference optics model and 
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calibration model, both of which decide the unique issues and inherent 

challenges in real-time measurement with the ICM system. 

2) Many existent techniques of interferogram signal processing deal with spatial 

interferograms instead of temporal interferogram as in the ECPL case. 

Techniques for phase measurement can be split into two basic categories: 

electronic method which utilizes hardware of phase modulator, and analytical 

method of fringe pattern analysis such as Fourier transform which commonly 

adopts a phase shifter in one beam [34]. A different approach, based on a 1D 

unwrapping along the time axis rather than on a 2D spatial unwrapping, is 

needed for an important subclass of interferometry applications [35]. For the 

ICM, one is interested in phase changes rather than absolute phase values 

occurring over time and a sequence of incremental phase maps can be 

obtained leading up to the final phase-difference map of interest. 

3) Existing literature provides two approaches of temporal phase measurement: 

temporal phase shifting with a carrier modulation and Fourier analysis of 

time-dependent intensity signal [36, 37]. However, the ICM is not configured 

to be able to add a temporal carrier in the coherent light to modulate the 

intensity. If the last method is used, it is possible to measure the phase without 

introducing a carrier, but the sign of the displacement cannot be deduced. 

4) Even though there are some research in temporal phase unwrapping for 

interferogram, real-time measurement is rarely addressed and most of the 

algorithms are for posterior offline analysis. Gao, Huyen [38] proposed a 

parallel algorithm with a special GPU (Graphics Processing Unit) card and 

achieved only 4 fps for 256× 256 digital fringe patterns real-time windowed 

Fourier filtering. Real-time measurement demands both hardware and 

software to sufficiently be fast and precise [39]. 
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5) Some literature even requires the measured object to have special 

characteristics to implement its approach. For instance, Huntley and Saldner 

[35] assumed implicitly that the deformation rate was sufficiently low for 

negligible phase change to occur over the time scale required to digitize one 

set of phase-stepped images. This doesn't apply to ECPL process 

measurement which is fast and cannot use a four-step interferometer where 

four intensity values at a phase increment of π/2 are required.  

The existing ICM system could potentially provide an in-situ metrology to aid 

advanced controllers design. It has already provided insights into the real-time 

photopolymerization process, interferogram of which demonstrated vividly the stages of 

incubation period, exposure curing and dark reaction in ECPL process. However, 

Jariwala [1] used ICM for process monitoring process only, because it was only a 

qualitative and non-direct visualization of the curing process. Jones [20] mainly 

employed some data filtering and maximas estimation codes to quantitatively count the 

phase after obtaining entire interferogram and calculated cured heights from the empirical 

curve of phase vs height, hence it still remained at offline analysis rather than online 

measurement.  

Both existing approaches of using ICM to obtain information of cured heights are 

limited in the following aspects [40]. 

1) An interference optics model [17, 18, 20, 21, 41] as shown in Equation ( 5 ), 

which models a linear relationship of phase angle ∅ and refractive index 

change ∆n. However, to obtain the cured height, an empirical logarithmic 

curve is used to fit the cured height from phase shift ∅ as Equation ( 6 ) [20]. 

The two equations together imply a logarithmic relation between the two 

compounding variables of overall resin refractive index change ∆n and cured 

height Z. This logarithmic relationship needs justification otherwise an 

improved or modified model will be required. 
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Phase Angle ∅ = 2π ∙ (

2 ∙ ∆n ∙ t

λ
) 

( 5 ) 

 Cured Height Z = 78.96 ∙ ln(∅) − 259 ( 6 ) 

where ∆n is the change in overall refractive index, t is the fixed chamber height, λ 

is the coherent laser wavelength. 

2) The calibration by curve fitting an empirical model of intensity oscillation 

phase angle and cured height lacks a firm basis in physical phenomena and is 

not amenable in practice due to batch-by-batch and operator-by-operator 

variations. 

3) The simple method of phase angle counting of extrema is problematic in both 

accuracy and real-time implementation. By identifying a half-cycle from peak 

and valley extrema, the method has limited resolution fixed at π, and phase 

angle less than π is prone to interpolation errors, which might be significant 

especially in the case of non-constant periods and amplitudes. The unknown 

process variations and irregular oscillation patterns also makes it difficult to 

predict the next peak or valley. 

4) Considering the intensity dynamics of a single point could be highly biased, 

because it is not necessarily representative or comprehensive across the entire 

part. Accuracy is limited by the unwanted irradiance variations arising from 

nonuniform light reflection or transmission by the test object spatially. 

Consequently, ICM still confronts some modeling and software issues to be 

completely eligible as real-time measurement of cured heights to provide output feedback 

for advanced controller. 

No direct literature method is available for the unique ICM measurand and 

system. A mature ICM measurement method needs some research from scratch. 

1) Need an ICM model to interpret the interferogram accurately and to 

extract the desired measurand. 
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2) Need fast and robust algorithms to estimate the ICM model’s dynamic 

parameters online. 

3) Need experimental calibration to obtain reliable values of the ICM 

model’s static parameters. 

4) Need handle measurement noises in the camera and process. 

4.2 Issues of Controlling ECPL Process 

Kiparissides [24] summarized several valid reasons for the lack in closed-loop 

“quality” control applications for particulate polymerization processes. These reasons 

also well explained why herein no closed-loop control methods have been used in 

projection lithography such as ECPL and other photo polymerization based additive 

manufacturing. Like all other complex polymerization processes, ECPL also faces 

challenges on both issues of model formulation as well as control computation. 

1) Nonlinear process 

The photo polymerization process is highly nonlinear, involving a large number 

of time-varying kinetics and transport parameters. 

2) Lack of “Friendly” Differential Equations 

From a population balance perspective [24], modeling of particulate 

polymerization systems might lead to nonlinear integral-differential equations. Their 

infinite-dimensional nature does not allow their direct use for the design of nonlinear 

controllers that can be easily implemented in real-time. 

3) Unavailable or Non-direct On-line measurement 

So far it is very difficult to measure online of the cured part height, or in 

polymerization jargons – MWD (Molecular Weight Distribution) and PSD (Particle Size 

Distribution) which might be useful to model the cured height. Moreover, formulation of 

a meaningful objective function of cured heights in terms of distributed molecular and 

morphological properties (e.g., MWD, PSD, etc.) is not easy. The only promising in-situ 
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metrology – ICM [18], which is still under development, might be available in future, but 

it has foreseeable limitations as secondary measurements do. ICM might be insufficient 

for the accurate inference of the entire cured voxels heights. 

Like all other complex polymerization processes, ECPL also faces challenges on 

both issues of model formulation as well as control computation.  

Foremost, process knowledge, preferably in-depth, is very important in controller 

design. The nonlinear process involves multi physics such as photonics, chemistry and 

mechanics, which interact in a complex and unknown way. Consequently, no process 

dynamics has been modeled yet, not to mention control it. 

Another factor detrimental to process control is unmeasured or unmeasurable 

process variations including exposure UV light source intensity fluctuation, batch-to-

batch inconsistencies in photo material formulation, etc. 

Worse still, ECPL is vulnerable to external disturbances such as oxygen inhibitor 

distribution, and unquantified effects on cured thickness and shape caused by 

downstream operations such as post-curing developing and washing. 

 
Figure 12. Issues in ECPL Process Control 
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Therefore, it is difficult to control ECPL process because of the specific issues 

depicted in Figure 12, which become motivations for new research. The study aims to 

handle some controls of the corresponding unknown process with adequate design and 

appropriate measurements. 

4.3 Research Gaps of ECPL Process Measurement and Control 

To identify the research gaps in ECPL process control, we firstly review the 

system from the perspective of controls design. Control terminologies are adopted to 

lineate the ECPL controls skeleton as shown in Figure 13. 

 

 
Figure 13 ECPL System from the Perspective of Control Design 

 

With the help of the control system skeleton in Figure 13, we compare in Table 3 

the status quo and thereby identify research gaps to improve the process control for 

ECPL. Comparing with the current controls, we envision to fill the research gaps by 

developing an advanced control, which in future work is to be designed to possess the 

desired characteristics as highlighted in the table below for better control performance. 
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Specifically, to address the challenging issues in previous section, an advanced 

control method should be able to conduct online adaptive learning and dynamics control 

with real-time measurement. 

 

Table 3 Research Gaps Identification for ECPL Control 

 

 

It is worth noting that a close-up of the specific research gaps in the real-time 

measurement as presented in Section 2.4.2 and also highlighted in Table 3, are 

summarized in Table 4. 

Conclusively, to address the challenging issues in previous sections, a real-time 

metrology need be developed and an advanced control method should be able to conduct 

online adaptive learning and dynamics control with measurement feedback. 

 

 

Offline Online Offline
Online 

Real-time

Open-

loop

Closed-

loop

Zhao (2009) 

DOE & Simple 

Physical Model  

Optimizataion & 

Clustering

1. Binary Bitmaps

2. Dispay time of 

Each Bitmap

PowerPoint

Jariwala 

(2013)


DOE & 

Chemical 

Kinetics with 

COMSOL 2D 

Finite Element 

Simulation

 

Incremental 

Trial and error 

based on offline 

simulation 

1. Binary Bitmaps

2. Dispay time of 

Each Bitmap
PowerPoint

Jones (2014) 

DOE & 

Logarithmic 

Curve Fitting




(Immature)


(  Semi-  )

Monitor the 

height indirectly 

by the phase 

angle. 

Can NOT adjust 

accordingly the 

exposure 

intensity or 

pattern.

1. Only Dispay 

time of Bitmap 

(Binary Bitmap 

Given)

MATLAB

Advanced

(Proposed 

to Fill Gaps)

 

(Online 

Estimation 

 & Update)

DOE, 

Advanced 

Multi-Physics 

Models, 

System 

Identification

   

Advanced 

control 

algorithms with 

measurement  

feedback

e.g. PID control, 

adaptive, neural 

network.

1. Binary / 

Grayscale Bitmaps

2. Display time of 

Each Bitmap

3. Exposure 

intensity

4. Chemical 

composition

Candidate: 

LabVIEW 

MATLAB

Transmitter

Algorithms

Manipulated 

Input 

(DMD Bitmaps)

Control 

Methods
Process Model Controller

Mode

Method

Operation Mode

Measurement



 43 

Table 4 Research Gaps in ICM real-time measurement 

 

4.4 Research objective 
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well structured control strategies all contribute to the impediment of advanced control 

applications to polymer manufacturing. As a special polymer reactor, the 

photopolymerization based ECPL process, similarly confronts the following problems to 

be addressed in the development of a control policy. 

1) Ability to measure and characterize the cured polymer part dimensions via on-

line sensors and/or nonlinear estimation algorithms. 

2) Better understanding of process dynamics via mechanistic/data-based 

modeling and experimentation. 

3) Development of closed-loop model-based controllers with emphasis on 

achieving superior performance and disturbance handling. 

In response to research gaps identified in Table 3, we generally need to divide the 

research into three parts, process measurement, process modeling and process control, 

each of which presents some challenging research question. However, the process 

modeling and control are closely related, and each model associates with a specific 

control strategy, thus we would pursue a control-oriented modeling as we study a certain 

control method. The research questions of process modeling and process control are 

combined into a broader research question of process control issue as presented in the 

following sub-sections. 

To achieve the research goal, two research questions and hypotheses are proposed 

to formulate detailed problems of this research. Methods will be developed in order to 

answer the research questions and to validate the answers by testing the hypotheses.  

4.5.1 Research Question 1 

Research Question 1: How to develop a real-time metrology for the ECPL 

process based on the existing in-situ interferometric curing monitoring system to measure 

the cured part dimensions, specifically the cured heights across the curing area? 
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Hypothesis 1: A real-time metrology for cured part dimensions could be achieved 

by processing a time series of pixel intensities in a sequence of interferograms, which are 

provided by the existing in-situ interferometric curing monitoring (ICM) system, based 

on interference optics and online parameter estimation algorithms. 

Rationale: The ICM system aims to utilize the principles of interferometry to 

measure the dimensions, particularly the height at the current research stage, of the part 

cured in the resin chamber. In future work, it could be extended to 2D and 3D 

measurement. The sequential acquisition of a large number of interferograms and its 

postprocessing facilitate the recovery of the phase distribution, so that the whole-field 

dynamic displacement field can be determined [42]. In this framework, the phase 

distribution is commonly recovered using a temporal phase shifting algorithm, and the 

unwrapping is performed as a function of time. For ICM, the camera records frames of 

spatial interferogram produced by the optical path lengths differences of the light 

reflecting from the interface surfaces thru the resin chamber. A temporal intensity 

oscillation in the interferogram sequence is evident for pixels across the curing area, 

because the optical path length of the light reflecting from the top and bottom surfaces of 

cured part is changing with time as the photopolymerized resin cures in the chamber. The 

resultant temporal interference pattern presents a time series of intensity for each pixel 

across the chamber. The curing process causes the resin refractive index to change from 

𝑛𝑙 to 𝑛𝑠 as it crosslinks from liquid into solid. Meanwhile, it changes the height of liquid 

resin and solid resin in the chamber. Both changes in medium refractive index and height 

lead to a change in optical path length thus in the interferogram phase. Transform-based 

or reference-based approaches could be used to retrieve optical phase distributions coded 

in the temporal intensity [36, 43, 44]. Hence, signal processing of the pixel intensity time 

series could recover the cured height, based on a well-established ICM model which 

consists of two sub-models. One sub-model is the sensor model of interference optics that 

explains the intensity dynamics in the interferogram sequence. The other sub-model is the 
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calibration model that calculates the measured variable of cured height from ex-situ 

microscope measurement and estimated parameters in the sensor model.  

4.5.2 Research Question 2 

Research Question 2: As a baseline control, without a constitutive process model 

of first principle differential equations, what is an applicable ECPL process control 

approach, which could utilize the real-time measurement system to improve the process 

accuracy? 

Hypothesis 2: A basic On-Off control approach with the online measurement 

feedback, is applicable in ECPL process to control the height of cured part in real time 

without requiring sophisticated process model. 

Rationale:  

In one simplest control of the ECPL process operated by just switching the UV 

lamp, because of the discontinuous operating mode (i.e., on/off) of the exposure source, a 

discontinuous controller is a natural implementation choice over continuous controllers 

that may need to be applied by means of identifying the ECPL process model and 

carefully modulating the exposure intensity. It can be as simple as a switching between 

two states in the form of an On-Off controller [45]. In general, On-Off control is widely 

used in industry, especially for discontinuous actuators which have to be switched fully 

off if the output reaches a limit [46]. Previous ECPL experiments found that exposure 

time plays a significant role in determining the height of ECPL cured part. As a basic 

feedback control strategy, the ECPL process could adopt such a two-level control scheme 

that simply turning on or off the UV lamp, particularly by turning off the UV lamp when 

the feedback of measured height reaches the setpoint of cured height. 

A more advanced version of on-off controller could be designed by incorporating 

predictive model to enhance its robustness. As seen from the literature, Run-to-Run 

(R2R) control has been used extensively in lithography and other semiconductor 
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processes [23, 27, 47, 48]. It is based on processes where fundamental or first principles 

models are not available or are very difficult to obtain, and requires offline experiments 

for the generation of empirical models. All the features enable R2R to be a good 

candidate for ECPL under a black-box situation where a first principles model is not yet 

available except for only some experiments and empirical models. A variation of R2R, 

Evolutionary Cycle to Cycle (EC2C) time control, which is suitable for the ECPL process 

will be needed due to the unique constraints of ECPL. The name, changed from “Run” to 

“Cycle”, clarifies that the proposed controller works per measurement cycle instead of 

per experiment run. There is an essential difference between the EC2C method and 

traditional R2R approaches. In semiconductor processes, run-to-run usually means wafer-

to-wafer, lot-to-lot or batch-to-batch, which is more of a statistical process control [32]. 

This proposed cycle-to-cycle control adopts a smaller scale and smaller time step, and 

focus on a single part fabrication process, that is, to control a single “Run” of the process 

instead of “Run-to-Run” in a batch process. The EC2C could inherit the advantages of 

conventional R2R control methodologies and adapt well to the ECPL process. 

4.6 Chapter summary 

This chapter firstly identified the challenges in realizing the desired real-time 

ICM based metrology and an accurate ECPL process control system, respectively. The 

research gaps for ECPL process control were presented. It was found that the existing 

research lacks adequate measurement and control methods that could precisely monitor 

the height profile of the cured part in real time. In order to accomplish the research 

objective, two research questions and hypotheses were formulated. 
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CHAPTER 5 ECPL PROCESS MEASUREMENT: ICM&M SENSOR 

MODEL AND ALGORITHMS 

 

For monitoring the polymerization based ECPL process, this chapter begins with 

an overall review of existing state-of-art monitoring for general polymerization reactions 

in Section 5.1. The molecular level reactions monitoring is not directly applicable to the 

mesoscale observation of cured part dimensions in ECPL, however, the literature helps 

understand the current design scope of metrology for ECPL real-time monitoring and 

helps orient the future research for advanced multi-sensor instrumentation system.  

To enable advanced closed-loop control for ECPL, an in-situ interferometric 

curing monitoring (ICM) system has been developed to infer the output of cured height. 

However, the existing ICM method based on an implicit model and rough phase counting 

is not fast and accurate enough. This chapter develops an interferometric curing 

monitoring and measuring (ICM&M) method which addresses the sensor modeling and 

algorithms issues. A physical sensor model for ICM&M is derived based on interference 

optics utilizing the concept of instantaneous frequency. The associated calibration 

procedure is outlined for ICM&M measurement accuracy. To solve the sensor model, 

particularly in real time, an online evolutionary parameter estimation algorithm is 

developed adopting moving horizon exponentially weighted Fourier curve fitting and 

numerical integration. As a preliminary validation, simulated real-time measurement by 

offline analysis of a few videos of interferograms acquired in the ECPL process is 

presented. The agreement between the cured height estimated by ICM&M and that 

measured by microscope indicates that the measurement principle is promising as real-

time metrology for global measurement and control of the ECPL process. 
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5.1 Monitoring polymerization reactions 

Various studies on polymer analysis and characterization, as well as mechanistic 

and kinetic studies of polymers have been reported [49]. Much effort has been devoted to 

study polymerization processes and modern experimental techniques have improved their 

understanding. As new stimuli-responsive and "intelligent" polymers continue to be 

developed, the ability to monitor reactions will become increasingly important. Polymer 

scientists and engineers can take full advantage of the latest monitoring strategies to 

optimize reactions in both the lab and the manufacturing plant. Monitoring 

polymerization reactions enables laboratory researchers to optimize polymer reactions by 

providing them with a better understanding of the underlying reaction kinetics and 

mechanisms. Moreover, it opens the door to improved industrial-scale reactions, 

including enhanced product quality and reduced harmful emissions. 

Principles and applications of important polymer characterization tools include 

light scattering, gel permeation chromatography, calorimetry, rheology, and 

spectroscopy. Among various fundamental and recent advanced developments in 

characterization and analysis of polymers, spectroscopy has, over the years, proved itself 

to be the most popular family of techniques in providing information at molecular levels, 

such as the reaction kinetics rate constants, rate of polymerization, and molecular weight 

distribution (MWD). For instances, microstructure of synthetic copolymers is obtained by 

NMR spectroscopy; monomeric composition and structure can be obtained via pyrolysis 

mass spectrometry; both structural and dynamical properties of a wide range of 

physiologically relevant biopolymer (e.g. noncovalent protein complexes) can be 

determined in real time by Nano Electrospray Ionization Mass Spectrometry.  

Automatic continuous online monitoring of polymerization (ACOMP) reactions, 

is a flexible platform that enables characterization tools to be employed simultaneously 

during reactions in order to obtain a complete record of multiple reaction features [49]. 

The first work on automatic continuous online monitoring of polymerization reactions 
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(ACMOP) was published in 1998 [49]. It is not straightforward to apply the 

characterization tools for ACMOP. For example, Raman and near infrared techniques are 

difficult to calibrate and both invasive requiring in situ probes to be inserted into the 

reactor leading to fouled measurement data.  

With the various scientific metrology tools being able to monitor a wide range of 

polymerization processes at molecular level, higher level observation of mesoscale and 

macroscale polymerized structures is desired, especially in polymerization based 

manufacturing processes such as photo-lithography and stereolithography. Microscopic 

and macroscopic monitoring and measuring polymerization processes might utilize the 

reported molecular-based characterization and analysis above, which however demands 

sophisticated process models to scale up the determined kinetics reaction rates, molecular 

weights, chain lengths and particle size. 

In manufacturing plants, direct characterization tools could be helpful to measure 

and control the final cured polymer parts. Particularly, as polymerization-based additive 

manufacturing processes continue to be developed, in-situ or real-time monitoring tools 

are necessitated to improve the process accuracy and product quality and to fulfill their 

potential applications in a great diversity of industry sectors [1]. Reflectance real time 

infrared spectroscopy was reported to quantify photopolymerization reactions in a time 

range of millisecond and monitor the isothermal cure profiles with application to 

stereolithography resins [50]. The photopolymerization reaction data for different 

combinations of conditions (chemical composition, radiation intensity and temperature), 

obtained from the time-resolved infrared technique, could shed some light on monitoring 

the photopolymerization based AM process at molecular level and help establish some 

constitutive process models to predict the cured part’s dimensions, mechanical and 

optical properties. 
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5.2 Overview of Metrology for ECPL 

In this chapter, with the interferometric curing monitoring (ICM) system initiated 

by former lab colleagues [17], the author developed a physics sensor model and online 

algorithms to address the compelling issues of real-time process monitor and 

measurement for the ECPL. 

5.2.1 Need and Requirement for online Metrology 

Metrology is essential to the development and improvement of new processes and 

tools for future technology generations (Jakatdar, 2000) [19]. Metrology can potentially 

reduce the cost of manufacturing and time-to-market for new products through better 

characterization of process tools and processes. As device dimensions shrink, the 

challenge for physical metrology will be to keep pace with online testing that provides 

critical performance data. Manufacturing sub-micron devices will require the availability 

of robust in-situ equipment and online analysis tool, i.e. both hardware and software. 

For the ECPL process, measurement would supply information on the current 

state of the plant. It forms the basis to control the process for optimal output. An indirect 

method to obtain a measure of cured height that is quick and inexpensive is the in-house 

designed interferometric curing monitoring (ICM) system. It must have adequate 

repeatability, reproducibility and calibration capability to provide the necessary real time 

information for fault detection and process control. This would need the development of 

increasingly faster data acquisition and computational algorithms for converting sensor 

data into useful information. 

5.2.2 Offline Metrology for material properties and process characterization 

Besides online measurement, offline measurement is also critical to complement 

the system characterization. For the ECPL, as is also typical in industry polymerization 

reactor, it is still difficult to have online direct measurements of the cured polymer part 
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properties such as refractive index, molecular weight and composition, so the control 

design has to incorporate some available offline cured sample properties measured at the 

laboratory. 

Refractive index is one of the most interesting properties measured offline to 

calibrate the online ICM&M measurement. Some typical metrology which could serve as 

offline characterization tools for the ECPL process were tried, including ellipsometer and 

reflectometry, which however were not able to detect signal from the ECPL cured sample 

and failed to obtain the desired solid cured part’s refractive index. One possible reason is 

because the cured part was transparent and too thin (less than 100 µm). Perhaps in future, 

we could try some more advanced techniques for refractive index distribution over the 

cured part. 

It is worthy to note another promising offline instrument, the Q-Sense E4 Quartz 

Crystal Microbalance with Dissipation (QCM-D), which is a four module instrument 

used to measure bulk-surface interactions for materials, chemistry, and life sciences 

research. A wide range of crystal surfaces are available for flexible immobilization of 

proteins, nucleotides, cells, and polymers. The provided modeling and analysis software 

enables quantification of viscosity, elasticity, and thickness of any soft film, while 

reaction kinetics can be extracted as well. 

Many literatures report research findings and progress on photopolymerization 

process characterization and modeling with the QCM-D equipment. Duner, Thormann 

[51] followed the QCM response due to the in situ growth of a polymer layer on the 

sensor surface, and compared the measured response with predictions from one 

continuum viscoelastic model that describes the polymer layer response in terms of a 

spring and a dashpot coupled in parallel. Jeon, Schmidt [52] used QCM-D to measure 

polymer thickness (nanometer) over time and found linear growth of the living radical 

polymerization, ensuring the smooth, uniform films necessary for consistent laser 

ablation. The QCM-D measurement helped determine the chemical, physical, and optical 
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parameters necessary to pattern methacrylate-based polymer thin films at sub-diffraction 

resolutions, and helped provide precise control over the film thickness and uniformity, 

particularly important parameters for patterning nanoscale features [52]. 

We also tried to use the QCM-D sensor [53] to characterize the photo-

polymerization process which is essential in the ECPL process by trying to measure the 

curing thickness and refractive index while the liquid material was photo cured into solid. 

Normally, QCM-D enables real-time, label free measurements of molecular adsorption 

and/or interactions on various surfaces. Unfortunately, we could not proceed with QCM-

D to measure and model the photo-polymerization process in this study. The abnormality 

and failure was probably due to the ECPL material hardness, viscosity or weight or large 

cured thickness. Nevertheless, it is a good lesson that in future if we want to use ECPL 

machine to cure smaller (a few microns or sub micros) parts or if we use other materials 

for the ECPL process, it would be interesting to utilize the QCM-D for process 

characterization and modeling as described in the QCM-D application literatures [51, 52, 

54], which may benefit the process control and applications as well. 

In this study, ECPL cured product size is of top priority and the major control 

concern. After considering the candidates above, it turns out that one available and 

feasible offline metrology is the Olympus LEXT 3D Material Confocal Microscope 

which could measure film thickness and cured micro part profile. It is chosen as the 

offline calibration metrology for the online ICM&M measurements. We will use it to 

compare with the online measurement thereby calibrating the ICM&M measurement 

parameters specifically the refractive index. 
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5.3 ICM&M model 

5.3.1 Phase extraction technique for ICM&M 

The ICM&M system aims to utilize the principles of interferometry to measure 

the dimensions, particularly the height at the current research stage, of the part cured in 

the resin chamber. In future work, it could be extended to 2D and 3D measurement. The 

sequential acquisition of a large number of interferograms and their postprocessing 

facilitates the recovery of the phase distribution, so that the whole-field dynamic 

displacement field can be determined [42]. 

There are quite a lot of phase extraction techniques for interferometric fringe 

patterns and these are classified into three categories: phase shifting methods, transform-

based methods, and others [55]. The phase-shifting techniques can be classified into 

temporal and spatial phase shifting. In the temporal phase shifting technique, at least 

three phase-shifted fringe patterns are collected. In order to keep the phase nearly 

unchanged during the phase shifting, a fast phase shifter and a high capturing rate are 

necessary. In the spatial phase-shifting techniques, several phase shifted fringe patterns 

are captured in one shot at different locations by either different cameras or on different 

areas of a camera. Transform-based techniques are the predominant phase extraction 

methods in the imaging-based IDM. These techniques include Fourier transform, Hilbert 

transform, windowed Fourier transform, wavelet transform, and a combination of Fourier 

and windowed Fourier transform. Like the phase-shifting techniques, the transform-based 

phase extraction methods can be applied in the spatial domain, temporal domain, or even 

spatial-temporal domain. The only requirement is that a carrier has to be introduced along 

one axis in the processing domain to avoid the phase ambiguity. 

In a common interferometric dynamics measurement framework, reference-based 

or transform-based approaches could be used to retrieve optical phase distributions coded 

in the temporal intensity [36, 43, 44, 55]. However, the ICM&M system does not feature 
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the required frequency carriers in its hardware configuration, and cannot adopt the 

abovementioned phase-shifting or transform algorithms. 

There exist phase extraction methods other than the two broad classes of phase-

shifting and transform algorithms [55]. For example, Li, Soh [56] proposed two phase 

demodulation methods to measure the thin film large deflection - time sequence phase 

method and sequence pulse counting method. Although the methods are a variant of max-

min or peak-valley scanning method similar to what has been used in the previous ICM 

system [20], they are more sophisticated and are able to process the interferograms 

sequence in decimal when the detected phase changes are smaller than π. Especially, 

compared with phase-shifting or transform methods, the temporal phase extraction 

algorithm of time sequence analysis is more simple but fairly efficient by retrieving the 

phase from the grayscales variation. However, the literature time sequence phase 

methods are still too rough for analysis of the relatively fast ECPL curing and we need 

investigate a more suitable and accurate phase extraction method for ICM&M. 

Conclusively, since the ICM&M optical setup is simple and does not require 

phase shifting or carrier devices, a new generation of ICM&M measurement method can 

be achieved by developing a better time sequence analysis based phase detection method. 

A time sequence phase method is based on the point-wise comparison of the change of 

intensity in time domain to obtain the continuous phase map, which is then converted to 

determine the real displacement of the specimen tested [56]. It involves a segment of time 

when a number of frames are to be processed. Signal processing of the pixel intensity 

time series could recover the cured height, based on a well-established ICM&M model 

which consists of two sub-models. One sub-model is the sensor model of interference 

optics that explains the intensity dynamics in the interferogram sequence. The other sub-

model is the calibration model that calculates the measured variable of cured height from 

ex-situ microscope measurement and estimated parameters in the sensor model. 
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5.3.2 ICM&M sensor model 

For ICM&M, the sensor of camera records frames of the spatial interferogram 

produced by the optical path length differences of the light reflecting from the interface 

surfaces thru the resin chamber. A temporal intensity oscillation in the interferogram 

sequence is evident for pixels across the curing area, because the optical path length of 

the light reflecting from the top and bottom surfaces of the cured part changes with time 

as the photopolymerized resin cures in the chamber. The resultant temporal interference 

pattern presents a time series of intensity for each pixel across the chamber. The curing 

process causes the resin refractive index to change from nl to ns as it crosslinks from 

liquid into solid. Meanwhile, it changes the height of liquid resin and solid resin in the 

chamber. Both changes in medium refractive index and height lead to a change in optical 

path length thus in the interferogram phase. 

5.3.2.1 Multi-beam interference optics 

Firstly, a prototype sensor model based on multiple beams interference optics is 

built for ICM&M. An example case of the interference of five optical waves is illustrated 

in Figure 14, where it is assumed that the waves interfere above any curing point in space 

after reflection and refraction in the resin chamber. It is noted that due to the special 

configuration of perpendicular incidence in ICM&M, the waves are assumed to be 

linearly polarized at the same plane and travelling in the vertical direction. Meanwhile, 

other possible beams are omitted because chances are these beams have been attenuated 

greatly and become insignificant after multiple reflections, scattering and absorption. 



 57 

 
Figure 14. Multi-beam Interference Optics Model for ICM&M 

 

Furthermore, a key simplifying factor in the analysis of the interference optics 

model in Figure 14 is the use of a virtual interface; that is, curing front to extract values 

of both the refractive index and growth rate of a film [57]. It has been shown that 

multiple-layer film is mathematically the same as a single layer on an “effective 

interface”, which is the case for compound semiconductor films where both chemical 

composition and growth rate need to be determined [57]. The concept of single virtual 

interface could also be applied in the ECPL resin curing process with the same 

assumption that each thin cured layer is homogeneous and isotropic with fixed refractive 

index and growth rate in the plane normal to the incidence direction. 

The phenomenon of interference occurs when multiple waves overlap. In Figure 

14, mathematically the vector addition of the wave components in Equation ( 7 ) results 

in a total wave of Equation ( 8 ). 

𝐸𝑛 = 𝐴𝑛𝑒
𝑖∅𝑛 , 𝑛 = 1,2,⋯ ,5 

where, 𝐴𝑛 is the real positive amplitude, ∅𝑛 is the wave phase angle. 

( 7 ) 

𝐸𝑇 = ∑𝐸𝑛

5

𝑛=1

= ∑𝐴𝑛𝑒
𝑖∅𝑛

5

𝑛=1

 
( 8 ) 
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In the interference field, each camera sensor pixel receives the coherent 

superposition of the multiple beams. When the field is observed by a CCD camera, the 

result is the average of the field energy by area unit during the integration time of the 

camera, that is, the irradiance 𝐼 [58], which is proportional to the squared module of the 

amplitude as shown in Equation ( 9 ). 

𝐼 =  |𝐸𝑇|
2 = |∑𝐴𝑛𝑒

𝑖∅𝑛

5

𝑛=1

|

2

= ∑|𝐴𝑛|
2

5

𝑛=1

+ 2∑∑𝐴𝑗𝐴𝑘 cos(δjk)

5

𝑘=1
𝑘≠𝑗

5

𝑗=1

 

( 9 ) 

where, 𝛿𝑗𝑘 = ∅𝑗 − ∅𝑘, is the relative phase difference between the component 

of each wave (for simplicity, the temporal and spatial dependencies have been omitted 

in the general expression here but will be taken into consideration in the analysis later). 

The phase differences 𝛿𝑗𝑘 in Equation ( 9 ) are caused by optical path length 

differences between each set of two wave components. The stationary items such as 𝛿21 

stem from beams such as 𝐸1 and 𝐸2, which have constant path length difference - a 

product of the glass slide height and refractive index in the case of 𝛿21. Hence, the term 

of 𝛿21 in Equation ( 9 ) will contribute to the average, i.e., DC (direct current), term in the 

detected intensity signal. Only the changing optical path length will contribute to the 

detected cycling of interferogram intensity. The oscillation, i.e., AC (alternative current), 

terms come from the beams 𝐸3, 𝐸4 and 𝐸5, whose optical path are affected by the curing 

block in the chamber. 

The ICM&M aims to measure the ECPL process dynamics, thus the oscillation of 

intensity signal is of interest. It is worth noting that the AC terms in the intensity signal 

convey information about the optical path length difference (OPLD) coupling both 

varying height and refractive index in the curing block. As noted in the virtual interface 

in the optics model, the curing front is an imaginary interface between the uncured liquid 

resin and curing part, which is defined as the whole curing block that might consist of 

intermediate phases between liquid and solid depending on the curing degree – portion of 
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cross linked monomers [59]. Thus the cured height is defined as the height of the curing 

front relative to the cured solid bottom. As shown in Equation ( 10 ), one can use the 

integral form of the cured height and refractive index to calculate the OPLD between the 

beams 𝐸3 and 𝐸4 thru the curing part with a curing front at height z. The vertical 

distribution of refractive index is assumed continuous as the curing proceeds, and thus 

according to the mean value theorem of integration, there exists an intermediate value 𝑛𝑚 

between 𝑛𝑠 and 𝑛𝑐𝑓 such that the OPLD is a product of the height z and 𝑛𝑚. 

𝑂𝑃𝐿𝐷𝐸4−𝐸3 = ∫ 𝑛(𝑥)𝑑𝑥
𝑧

0

= 𝑛𝑚𝑧,

𝑤ℎ𝑒𝑟𝑒 𝑛(0) =  𝑛𝑠, 𝑛(𝑧) = 𝑛𝑐𝑓 

( 10 ) 

where, 𝑛𝑠 and 𝑛𝑐𝑓 are the refractive indices of cured solid bottom and curing front 

respectively, 𝑛𝑚 is the mean, i.e., effective refractive index of the curing part. All are 

assumed to be constant. 

Theoretically, the ICM&M method is able to detect the product of cured/curing 

bulk height and refractive index. With a bulk effective refractive index being calibrated 

beforehand, the cured height could be estimated without involving the curing degrees in 

molecular reactions. This is a macroscopic measurement of part height (unit: microns). It 

does not utilize conventional concept in chemical engineering of curing degree to identify 

the specific cured part of certain crosslinking degree. The ICM&M is developed to focus 

on measuring the cured part at micro scale. Experiments will be performed to 

demonstrate its capability of measuring the height of cured part, or inferring where the 

liquid resin becomes solid without knowledge of curing degrees. 

According to the model in Figure 14 and Equation. ( 9 ) - ( 10 ), the phase 

difference components are analyzed as shown in Table 5. The red items highlight time-

varying items which induce the oscillations in intensity captured by the CCD camera in 

ICM&M.  
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Table 5. Phase component analysis of the ICM&M multi-beam interference optics model 

No. Phase Difference Source 

Beams 

Role 

1 
𝛿21 =

4𝜋

𝜆
𝑛𝑔𝐻𝑔 

𝐸1, 𝐸2 Constant DC term 

2 
𝛿31 = −

4𝜋

𝜆
𝑛𝑙𝑍 +

4𝜋

𝜆
𝑛𝑙𝐻𝑐 + 𝛿21 

𝐸1, 𝐸3 Oscillating AC term 

3 
𝛿41 =

4𝜋

𝜆
(𝑛𝑚 − 𝑛𝑙)𝑍 +

4𝜋

𝜆
𝑛𝑙𝐻𝑐 + 𝛿21 

𝐸1, 𝐸4 Oscillating AC term 

4 
𝛿51 =

4𝜋

𝜆
(𝑛𝑚 − 𝑛𝑙)𝑍 +

4𝜋

𝜆
𝑛𝑙𝐻𝑐 + 2𝛿21 

𝐸1, 𝐸5 Oscillating AC term 

5 
𝛿32 = −

4𝜋

𝜆
𝑛𝑙𝑍 +

4𝜋

𝜆
𝑛𝑙𝐻𝑐 

𝐸2, 𝐸3 Oscillating AC term 

6 
𝛿42 =

4𝜋

𝜆
(𝑛𝑚 − 𝑛𝑙)𝑍 +

4𝜋

𝜆
𝑛𝑙𝐻𝑐 

𝐸2, 𝐸4 Oscillating AC term 

7 
𝛿52 =

4𝜋

𝜆
(𝑛𝑚 − 𝑛𝑙)𝑍 +

4𝜋

𝜆
𝑛𝑙𝐻𝑐 + 𝛿21 

𝐸2, 𝐸5 Oscillating AC term 

8 
𝛿43 =

4𝜋

𝜆
𝑛𝑚𝑍 

𝐸3, 𝐸4 Oscillating AC term 

9 
𝛿53 =

4𝜋

𝜆
𝑛𝑚𝑍 + 𝛿21 

𝐸3, 𝐸5 Oscillating AC term 

10 
𝛿54 =

4𝜋

𝜆
𝑛𝑔𝐻𝑔 = 𝛿21 

𝐸4, 𝐸5 Constant DC term 

 

5.3.2.2 Instantaneous frequency analysis 

The phase components listed in Table 5 reveal that the oscillating phases are all 

attributed to the cured height 𝑍, the change rate of which is the curing velocity. Because 

the nonlinear ECPL process is known to exhibit non-constant curing velocity, the 

ICM&M signal in Equation ( 9 ) has frequency content that changes over time. The 

instantaneous frequency (IF) represents one of the most important parameters in the 

analysis of such signals with time-varying frequency [60]. Despite the possibility that 

light intensity and material properties (e.g. 𝑛𝑙, 𝑛𝑠, 𝑛𝑐𝑓, 𝑛𝑚) are subject to change with 

time during the process, for a short duration, these factors may be assumed to be constant. 

With the assumption that all the process parameters are momentarily invariant, the only 

varying factor is the cured height, and thus the IF, defined as the time differential of 
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phase, is only associated with the curing velocity �̇�. As shown in Table 6, the IF 

components based on the phase components in Table 5 are analyzed. 

 

Table 6. Instantaneous frequency of the multi-beam interference optics model in ICM&M 

Instantaneous Frequency 

(Hz) 

Corresponding Phase Estimated Value 

(Hz) 

𝑓0 = 0 𝛿21, 𝛿54 0 

𝑓1 =
2

𝜆
𝑛𝑙�̇� 

𝛿31, 𝛿32 31.5 

𝑓2 =
2

𝜆
𝑛𝑚�̇� 

𝛿43, 𝛿53 32.1 

𝑓 =
2(𝑛𝑚 − 𝑛𝑙) ∙ �̇�

𝜆
 

𝛿41, 𝛿51,  𝛿42, 𝛿52, 0.6 

 

 

A rough estimation of the IF values is performed using the experimental data 

obtained by Jones, Jariwala [20], who cured a 51.5 μm part in 9 seconds with the same 

material composition and exposure intensity. Hence, the average curing velocity �̇� is 

about 5.7 (μm/s). The interferograms intensity signal is about 0.6 Hz, which is obviously 

the lowest non-zero frequency component 𝑓 in Table 6. Since the refractive index of resin 

𝑛𝑙 is 1.4723 [41], one could back-calculate (𝑛𝑚 − 𝑛𝑙) = 0.0279 by plugging the average 

�̇� of 5.7 into 𝑓 =
2(𝑛𝑚−𝑛𝑙)(5.7)

0.532
= 0.6 Hz. Hence, the mean effective refractive index 𝑛𝑚 

was estimated to be 1.5002. Furthermore, the other two frequency components could be 

estimated as below. 

𝑓1 =
2

𝜆
𝑛𝑙�̇� ≅

2

0.532
(1.4732)(5.7) = 31.5 𝐻𝑧 

𝑓2 =
2

𝜆
𝑛𝑚�̇� ≅

2

0.532
(1.5002)(5.7) = 32.1 𝐻𝑧 

Exposure time and exposure intensity are the two main process parameters, and 

the frequency is mainly determined by exposure intensity. Intuitively, higher exposure 

intensity means a faster curing process and, larger instantaneous frequency. Please note 

that the 9s curing process under normal exposure intensity (UV iris level at 22% in this 

study) was presented to estimate roughly the magnitude of the frequencies, especially to 
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disclose that low frequency item dominates the signal, in order to come up with a sensor 

model in the subsequent section. The IF values in Table 6 are subject to change with the 

actual exposure parameters, but found to show similar phenomenon as analyzed below. 

The IF analysis above concludes that three non-zero instantaneous frequencies 

exist in the ICM&M intensity signal. However, the actually observed ICM&M intensity 

signal frequency is low about 0.6 Hz. Two possible reasons could explain that only the 

low frequency component 𝑓 is detected in the captured signal. Firstly, 𝑓1 and 𝑓2 are about 

30Hz and cannot be detected by the CCD camera with a sampling frequency of 30Hz, 

which could detect up to 15 Hz signal according to the Nyquist theorem. Secondly, both 

𝑓1 and 𝑓2 involve the beam wave 𝐸3, which is modeled to reflect from the vague virtual 

curing front that has a refractive index close to the liquid resin and thus has very small 

amplitude due to a weak reflectivity. 

Even if the high-frequency items of 𝑓1 and 𝑓2 could be detected with high-speed 

camera, since they have similar values, it requires computation effort to distinguish one 

from the other in the signal. From the viewpoint of practicability, the high frequency 

items are not easily observable and worse still could only provide redundant information 

about �̇�. The primary goal of the sensor is to measure the curing velocity and thereby 

height. In sharp contrast to 𝑓1 and 𝑓2, the low frequency component 𝑓 has been shown to 

be able to provide vivid signal pattern which could form an adequate sensor model about 

�̇�. 

The presence of 𝑓1 and 𝑓2 could add up to the amplitude of 𝑓 signal, but would 

not affect its phase angle - the real thing that matters in the target measurand. Besides, a 

filter will be used to reduce the amplitude effects of high frequency oscillation including 

𝑓1, 𝑓2and noise. In that regard, it is assumed in the sensor model that the potential error 

caused by 𝑓1 and 𝑓2 is negligible. 

Furthermore, to validate the abovementioned assumption that high-instantaneous-

frequency interference beams are truly negligible, reflectance is estimated as shown in Figure 15. 
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Assuming lossless dielectric media, the intensity of the incident beam is divided into 

reflected and transmitted parts [61]. In this rough estimation, nominal values are used for 

the quantities listed in Figure 14, specifically, 𝑛𝑎 = 1, 𝑛𝑔 = 1.52, 𝑛𝑙 = 1.4723, 𝑛𝑚 =

1.4945, 𝐻𝑔 = 200 𝜇𝑚, and for a cured part of 50 microns high, 𝑍 = 50 𝜇𝑚 and 𝐻𝑐 =

150 𝜇𝑚. Given an incident beam (E0), part of it gets reflected by the top and bottom 

surfaces of the glass lid, and the other part transmitted into the layer of liquid resin can 

get reflected by the top and bottom (i.e., curing front) surfaces of the liquid layer and 

transmitted upward thru the glass lid to the interference field (e.g., camera). Similarly, 

further transmission - reflections - transmissions happen in the layers of cured part and 

glass substrate. Fresnel equations are used to compute the reflectivity at each interface, 

and thereby reflectance is calculated for each layer of thin film [61]. Please note that, the 

reflectance means the ratio of the reflected intensity back from the entire chamber to the 

original incident intensity, and the reflected intensity includes all the reflections and 

transmissions along the pathway from original incidence to the layer then upward to 

above the glass lid.  

 

Figure 15. Multi-layer thin film reflectance in the ICM&M sensor model 
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As a result, a total of about 16.16% of original incident beam (E0) intensity is 

reflected upward to the top area (above the glass lid) forming multi-beam interferences 

that are then captured by the camera, while the other part (83.84% of irradiance) is 

transmitted downward thru the resin chamber to the air beneath the substrate. Only a tiny 

fraction of incident intensity is found to be reflected by the internal chamber. Clearly, 

0.091% and 0.033% of E0 intensity are reflected by the liquid resin layer and the cured 

part layer, respectively, in sharp contrasts with that 8.847% and 7.19% are from the glass 

lid and substrate, respectively. The low quantitative value of reflectance from liquid and 

cured resins provide a convincing evidence that the amplitude (square root of intensity) 

of beam wave 𝐸3 is very small and therefore its resultant high-frequency modes 𝑓1 and 𝑓2 

are really negligible. 

5.3.2.3 Established ICM&M sensor model 

As a summary, the ICM&M directly-measured intensity 𝐼𝑀 is modeled as a sum 

of the reference and all the low instantaneous frequency 𝑓 components in the multi-beam 

interference optics model. Note that all the cosine terms with frequency 𝑓 but different 

amplitudes and phase offset can add up to a single cosine wave, which still preserves the 

same frequency but possesses different phase offset and amplitude. The multi-beam 

interference optics model in Equation ( 9 ) ends up with a lumped single-frequency 

cosine formula, which resembles what has been observed from the ICM&M 

interferogram signal. 

As shown in Equation ( 11 ), an implicit model interprets the observed 

interferogram intensity (𝐼𝑀) in terms of the cured height (Z), refractive indices (𝑛𝑚, 𝑛𝑙), 

amplitudes (𝐼0, 𝐼1) and phase offset 𝜑, all of which are unknown and dynamically 

changing.; hence the cured height Z is unsolvable by a single observation of intensity at 

one time point. However, the time derivative of the phase component in Equation ( 11 ), 

termed as instantaneous angular frequency, essentially corresponds to the curing velocity 
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– the temporal derivative the cured height, i.e., �̇�, and can help derive a further implicit 

sensor model as shown in Equation ( 12 ). 

The implicit ICM&M sensor model is derived as shown in Equation ( 11 ) and ( 

12 ). 

𝐼𝑀 = 𝐼0 + 𝐼1 𝑐𝑜𝑠(𝛿 + 𝜑) = 𝐼0 + 𝐼1 𝑐𝑜𝑠 (
4𝜋(𝑛𝑚 − 𝑛𝑙)

𝜆
∙ 𝑍 + 𝜑) 

( 11 ) 

𝜔 = 2𝜋𝑓 =
𝑑(𝛿 + 𝜑)

𝑑𝑡
=
𝑑𝛿

𝑑𝑡
=
4𝜋(𝑛𝑚 − 𝑛𝑙)

𝜆
∙
𝑑𝑍

𝑑𝑡
+
4𝜋𝑍

𝜆
∙
𝑑(𝑛𝑚)

𝑑𝑡

≅
4𝜋(𝑛𝑚 − 𝑛𝑙)

𝜆
∙
𝑑𝑍

𝑑𝑡
 

( 12 ) 

where, 𝐼𝑀 is the directly measured intensity by CCD camera; 𝐼0 is the overall average 

intensity; 𝐼1 is the superposed intensity of all the interference beams with the same 

instantaneous frequency 𝑓; δ is the time-varying phase component in the intensity model; 

𝜑 is the static superposed phase offset of all the interference beams with the same 

frequency; 𝑓, 𝜔 are the instantaneous frequency and instantaneous angular frequency, 

respectively; λ is the laser wavelength 0.532μm , 𝑛𝑚 and 𝑛𝑙 are mean cured and liquid 

part refractive index. 

With the implicit ICM&M sensor model that illustrates the intensity signal, we 

desire to further infer the measurand – cured height from it. Hence, an explicit sensor 

model for ICM&M is required to calculate the cured height from the estimated 

parameters of instantaneous frequency in the model along with the calibrated parameters 

of refractive index in the ex-situ measurements. 

By rewriting Equation ( 12 ), a differential form of the cured height is derived in 

Equation ( 13 ). The model of curing rate incorporates both the nonlinearity in the 

numerator part of instantaneous frequency, and nonlinearity due to the potential changes 

in refractive index. In future work, the nonlinearity of cured rated due to the refractive 

index changes will be investigated. 
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𝑑𝑍

𝑑𝑡
=

𝜔𝜆

4𝜋(𝑛𝑚 − 𝑛𝑙)
=

𝑓𝜆

2(𝑛𝑚 − 𝑛𝑙)
 

( 13 ) 

To evaluate the cured height from the differential form in Equation ( 13 ),a 

numerical integration approach using Euler's Method is proposed as below in Equation ( 

14 ), which forms the final ICM&M sensor model. The one-step method is used for 

computation efficiency. Potential error due to the first-order integration would be 

elaborated in subsequent experiment analysis and shown to be at an insignificant 

submicron level. 

𝑍 =
𝜆

4𝜋(𝑛𝑚 − 𝑛𝑙)
∑𝑇𝑖𝜔𝑖

𝑖

=
𝜆

2(𝑛𝑚 − 𝑛𝑙)
∑𝑇𝑖𝑓𝑖
𝑖

 
( 14 ) 

where 𝑇𝑖 is the time step of integration, 𝑓𝑖 (or 𝜔𝑖) is the instantaneous (angular) 

frequency in the 𝑖𝑡h  run of parameter estimation. The refractive index difference term 

∆n = (𝑛𝑚 − 𝑛𝑙) requires calibration with ex-situ microscope measurements of cured 

height. It is noted that the cumulative sum term ∑ 𝑇𝑖𝜔𝑖𝑖  is essentially the total phase 

angle that has changed during the curing process; and so is ∑ 𝑇𝑖𝑓𝑖𝑖  but has a unit 

referred as cycle (one cycle is 2π rad). 

As a result, Equation ( 13 ) is an explicit ICM&M sensor model in derivative form 

for curing velocity, and Equation ( 14 ) is an explicit ICM&M sensor model in integral 

form for cured height. 

5.3.3 ICM&M Calibration Model 

Fundamentally, metrology calibration is required to maintain the quality of 

measurement as well as to ensure the proper working of the instrument. As shown in the 

ICM&M sensor model, one primary uncertainty is the difference ∆𝑛 between the 

refractive index of the effective solid resin 𝑛𝑚 and that of the liquid resin 𝑛𝑙, which 

provides the instrument design capacity for holding a calibration. Having a design with 

these characteristics increases the likelihood of the actual measuring instruments 

performing as expected. Specifically, in the ICM&M sensor model, Equations ( 13 ) and ( 
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14 ), the difference between refractive indexes 𝑛𝑚 and 𝑛𝑙, assumed to be natural physical 

constants, is unknown and should be quantified with known standard metrology. In this 

study, the Olympus LEXT OLS4000 3D material confocal microscope [62] is used as a 

scientifically sound measurement apparatus to transfer the primary standard value of 

sample heights profile to the ICM&M measured object – ECPL cured part heights profile. 

With such measurement assurance methodology by comparing the in-house 

ICM&M to the commercial microscope, a calibration process for cured height is achieved 

by solving the unknown or uncertain refractive index difference term Δ𝑛 in a test 

measurement, which can be used in subsequent measurements for cured heights. The 

equation for deriving refractive index difference ∆𝑛 in the calibration process is referred 

as the calibration model. By inverting the ICM&M sensor model in Equations ( 14 ), the 

calibration model is available as shown in Equation ( 15 ). 

∆𝑛 =  𝑛𝑚 − 𝑛𝑙 =
𝜆∑ (𝑇𝑖𝜔𝑖)𝑖

4𝜋𝑍
=
𝜆∑ (𝑇𝑖𝑓𝑖)𝑖

2𝑍
 

( 15 ) 

To implement the measurement and control in 3D printing practice with the ECPL 

system, the ICM&M calibration procedure should be performed beforehand. The 

ICM&M calibration process is introduced as the following steps. 

1. Firstly, cure a test sample with the in-situ ICM&M system recording the 

interferograms video simultaneously. 

2. Secondly, measure the test sample with the ex-situ confocal microscope 

and obtain the cured height Z as a reference standard. 

3. Thirdly, estimate the instantaneous frequencies and thus the total phase 

angle ∑ (𝑇𝑖𝜔𝑖)𝑖  by analysing the process video with the ICM&M 

algorithm as presented in the following section. 

4. Finally, compute the refractive index term Δ𝑛 by substituting the previous 

results of Z and ∑ (𝑇𝑖𝜔𝑖)𝑖  to the calibration model in Equation ( 15 ). 
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During ECPL curing, to compute cured height, the ICM&M estimated parameters 

should be plugged into the sensor model in Equation ( 14 ), along with Δ𝑛 derived in the 

calibration process. 

Refractive index is subject to change with photopolymerization process dynamics 

(e.g. crosslinking degree and density), as well as with environment conditions variations 

(e.g. temperature and oxygen diffusion). Regardless of the underlying causes, it is surely 

important to consider about the changes in refractive index into the sensor model. By 

calibration against the microscope measurement, the derived refractive index is supposed 

to incorporate the in-process variations and can provide an effective group refractive 

index for succeeding measurements using the ICM&M method. The calibrated refractive 

index could work best for ECPL processes under similar settings to the calibration 

conditions, which makes sense in minimizing the effects of refractive index changes. 

Generally, the calibration should be performed for every new batch of photopolymer 

resin, and whenever necessary as the material refractive index tends to vary under 

different process conditions including exposure time and intensity. 

5.4 Parameter estimation for ICM&M model 

In the ICM&M model, the cured height of a voxel is coded in the temporal 

intensity dynamics observed in the corresponding camera pixel. It is discovered that 

adjacent voxels, which are expected to have close if not identical cured heights, share 

similar phase angles across the curing area. Hence, Fourier analysis along the time-axis is 

one candidate method to evaluate the phase map [36], but the Fourier transform based 

analysis is efficient only when the frequency content of the analyzed signal does not 

change over time. In the ICM&M application, one deal with signals where the cured 

height information is conveyed within time-variations of the signal’s instantaneous 

frequency that corresponds to the curing velocity. Hence, a method of time-frequency 
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analysis [60] is needed to solve the ICM&M model, which requires estimation of the 

unknown parameter of instantaneous frequency 𝑓 or 𝜔 to calculate the cured height. 

5.4.1 Curve Fitting with One-term Fourier Model 

A curve fitting method is adopted to minimize the square errors between the 

sensor model prediction and measurement. Because there is only one outstanding 

frequency in the ICM&M sensor model, the method of 'fourier1' - a Fourier series model 

with only one frequency item as shown in Equation ( 16 ), is used in the curve fitting to 

estimate the instantaneous frequency locally. 

𝑦 = 𝑓(𝑡) = 𝑎0 + 𝑎1 ∙ 𝑐𝑜𝑠(𝜔𝑡) + 𝑏1 ∙ 𝑠𝑖𝑛(𝜔𝑡) ( 16 ) 

It could be written into the trigonometric form as shown in Equation ( 17 ). 

𝑦 = 𝑓(𝑡) = 𝑎0 +√𝑎12 + 𝑏1
2 ∙ cos(𝜔𝑡 + 𝜃), 

𝑤h𝑒𝑟𝑒 𝜃 = tan−1(−
𝑏1
𝑎1
) 

( 17 ) 

The one-term Fourier model in Equation ( 17 ), can be mapped to the ICM&M 

sensor model, and used to estimate the instantaneous angular frequency 𝜔. 

5.4.2 Online Parameters Estimation 

5.4.2.1 Estimation method of moving horizon exponentially weighted fitting: rolling fit 

The conventional least squares method that assumes constant parameters over the 

entire curing period may not work in this case [63], because the assumption of static 

parameters is only valid in a short time. During the entire curing period, the growth 

velocity of the cured part tends to change with the temperature, composition, and 

microstructure. An in situ sensor must be able to deal with a time-varying process if 

feedback control is to be used. In on-line parameter estimation, a model is fitted 

optimally to the past and present process measurements while the process is in operation 

[64]. For the ICM&M application, parameter estimation via on-line optimization can be 
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performed by solving online a minimization problem such as sum of squared errors in the 

abovementioned ‘Fourier 1’ curve fitting. This parameter estimator can have an 

increasing (with time) or constant horizon. An estimator with an increasing horizon has 

been referred to as batch estimator and one with constant horizon as moving horizon 

estimator. A solution to the ICM&M model with varying instantaneous frequency is to fit 

the parameters over a short window of data, i.e., a moving horizon. 

Exponential weighting is typically used in a recursive update procedure for 

parameter estimation. Figure 16 compares curve fitting without and with weights. The top 

graph displays an unweighted fitting which fits a much shorter length of latest data and 

could not estimate the current frequency as well as the weighted fitting did in the bottom 

graph. This demonstrates the necessity of applying exponential weights to fit the Fourier 

model for the most recent set of data, which is critical in estimating the latest 

instantaneous frequency. 

 
Figure 16. The need for exponentially weighted curve fitting to improve the curve fitting 

for most recent data (Top: unweighted fitting; Bottom: exponential weighted fitting) 

Conclusively, a windowed exponentially weighted curve fitting with moving 

horizon, is developed for ICM&M parameter estimation. With the one-term Fourier 

model in Equation ( 17 ), and given a sequence of measurements in a window size 𝑚 
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starting from 𝑗 − 𝑚 + 1 up to 𝑗 along with exponential decay half life, the parameters in 

this window can be estimated by solving the following minimization problem in Equation 

( 18 ). Note that “half life” means the width decaying weight to one half, and it is related 

to the exponential decay constant 𝜏 by a factor of ln(2). 

min ∑ 𝑒−
𝑗−𝑙
𝜏 (𝑦𝑙𝑚𝑒𝑎𝑠

− 𝑦𝑙𝑓𝑖𝑡𝑡𝑒𝑑)
2

𝑗

𝑙=𝑗−𝑚+1

 

( 18 ) 

where 𝜏 = ℎ𝑎𝑙𝑓_𝑙𝑖𝑓𝑒/ ln(2), and 𝑦𝑙𝑚𝑒𝑎𝑠
, 𝑦𝑙𝑓𝑖𝑡𝑡𝑒𝑑 is the 𝑙𝑡ℎ measured and fitted 

data respectively in the curve fitting with one-term Fourier model. 

When new measurement data are acquired, the window is shifted to include these 

new data and at the same time part of the old data is discarded using a suitable forgetting 

factor – exponential weights in this case. The training data set is used to estimate the 

sensor model parameters, and succeeding (or test set) data are used to validate the 

accuracy of the parameters. In other words, the estimated parameters in the current run of 

rolling fit are applied to a rolling prediction for upcoming measurement data, in order to 

verify the estimation accuracy and prediction capability, which is critical for real-time 

measurement and control. 

5.4.2.2 Estimation Performance Evaluation: Goodness of Fit 

After fitting data with the ICM&M model online, we should evaluate the 

goodness of fit. As is common in statistical literature, the term goodness of fit (GOF) 

could be used here in the following sense to assess the online parameter estimation. A 

"good fit" means the above-proposed ICM&M model and parameter estimator could 

reasonably, given the assumptions of least-squares fitting, explain a high proportion of 

the variability in the interferograms sequence of grayscale data, and is able to predict new 

observations with high certainty. 

MATLAB Curve Fitting Toolbox™ software supports the goodness-of-fit 

statistics for the parametric model [65]. 
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R-square is defined as the ratio of the sum of squares of the regression (SSR) and 

the total sum of squares (SST). SSR and SST are defined as in Equation ( 19 ). Please 

note that SST is actually the sum of SSR and SSE (sum of squared errors). Given these 

definitions, R-square is expressed as in Equation ( 19 ). 

𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒 =  
𝑆𝑆𝑅

𝑆𝑆𝑇
=
∑ 𝑤𝑖(𝑦�̂� − �̅�)2𝑛
𝑖=1

∑ 𝑤𝑖(𝑦𝑖 − �̅�)2𝑛
𝑖=1

 
( 19 ) 

where, n is the number of datapoints, 𝑤𝑖 is the weight of the ith data 𝑦𝑖, 𝑦�̂� is the ith 

estimated value by regression, and �̅� is the average of all datapoints. 

R-square can take on any value between 0 and 1, with a value closer to 1 

indicating that a greater proportion of variance is accounted for by the model. For 

example, an R-square value of 0.85 means that the fit explains 85% of the total variation 

in the data about the average. 

We use R-square defined as above to examine the ICM&M model estimation 

accuracy. The higher R-square in a run of curve fitting, the more confident we are at the 

estimated model parameters. Obviously, R-square of 0.9 is a good fit, while 0.1 is a bad 

fit. However, in-between it is hard to gauge a watershed value of R-square to distinguish 

a good fit and a bad fit. 

On one hand, one could always adjust the watershed value to guard a fitting pass 

or failure, and to meet the experimental result. In practical sense, an R-square of 0.8 or so 

could suggest that the estimated parameters in the ICM&M model is acceptable. 

On the other hand, R-square is affected by multiple factors such as data length 

and weights; hence one can increase R-square by changing these factors to get a better 

fitting result. 

5.4.2.3 Another method of estimation performance evaluation: rolling prediction 

Besides the R-square for goodness of fit, to verify the online estimation accuracy 

and prediction capability, which is critical for real-time control, another method is to 

perform rolling prediction. In such a validation procedure, the training data set, i.e., the 
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windowed data by moving horizon in a run of rolling fit, is used to estimate the sensor 

model parameters; and the test data set, i.e., measurement data in the succeeding run, 

could be used to validate the accuracy of the estimated parameters. The prediction is 

based on an existing fit to the data. Specifically, one can use the estimated parameters in 

the current run of rolling fit to predict the upcoming measurement data in next run, and 

then compare the predicted data set with the test data set by metrics of the mean square 

errors (MSE). Thereby, a rolling fit is accompanied and validated with a rolling 

prediction while acquiring a real-time video online or replaying an acquired video offline. 

Please note that the estimated parameters for an offline video should be the same as the 

online estimated parameters for a real-time video, because the same ICM&M model and 

algorithms as previously presented are employed in an identical way. The less rolling 

prediction MSE is, the more accurate the parameters estimation is. 

One assumption behind the validation method with rolling prediction MSE is that 

the process remains fairly constant in the two consecutive runs, that is, the parameters in 

this time segment won’t change too much in the next run of fitting. It holds when the 

duration of each run is sufficiently short so that the process could be regarded as constant 

for a brief instant. In practice, the time interval of each run may be fairly long, e.g. 

hundreds of milliseconds, limited by the hardware speed; hence the rolling prediction 

MSE may not be a valuable or valid metrics for estimation performance in the nonlinear 

and varying ECPL process. 

Nevertheless, given fast enough rolling, the rolling prediction provides a fair 

evaluation of the estimated parameters during the ECPL curing process and could help 

predictive process control. The rolling prediction MSE is supposed to spike when the 

process transitions to dark curing. Large rolling prediction MSE at this transition time 

doesn’t necessarily mean that the previous estimation fails; instead it might serve as a 

flag for the process transition. 
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Please note that in this study for metrology, the ICM&M method adopts R-square 

(Equation ( 19 ) in Section 5.4.2.2) as a criterion for goodness of fit in the curve fitting 

algorithm both online and offline. The rolling prediction introduced in this section, could 

be employed as a predictive model for real-time control but not real-time measurement. It 

is only suitable for offline evaluation but not feasible for real-time measurement as it 

requires information from future data. 

5.5 Summary of the developed ICM&M sensor method 

As a summary, the ICM&M sensor should sense the local change in the 

interference pattern, estimate the instantaneous frequency of the interference pattern, and 

estimate the resulting change in part cure height. This procedure needs to be repeated for 

each subsequent time period as the part is being fabricated. When part fabrication is 

completed, an estimate of total cured part height and total interferogram phase angle are 

produced. 

The relationships among the CCD camera sensor, the interferograms sequence, 

the ICM&M model and algorithms presented in Sections 4.2 and 4.3, are shown in Figure 

17. As stated, the ICM&M model includes a sensor model and calibration model, which 

provide formulated problems for the parameter estimation and cured height algorithms to 

solve. The algorithm of parameter estimation by moving horizon exponentially weighted 

“Fourier1” curve fitting is developed to estimate the instantaneous frequency 𝑓 in the 

sensor model. Note that all the blue symbols in Figure 17 denote frequency items and 

conversions between the model and algorithms. The calibration model will be used to 

estimate the key index of refraction difference between solid and liquid resin off-line, 

then used to compute cured height during on-line operation. The overall scheme of the 

developed ICM&M measurement method with evolutionary estimation and incremental 

accumulation enables a promising real-time implementation. 



 75 

 
Figure 17. Scheme of ICM&M measurement method: models and algorithms 

5.6 Initial experimental validation for the ICM&M method 

To study the feasibility of the ICM&M method above, we initially validate it thru 

an offline approach – the offline ICM&M, which applies the measurement method onto a 

video of interferograms recorded by the camera with an acquisition speed of 30 frames 

per second during the curing experiment. Please note that in the offline ICM&M, the 

videos are always acquired in real-time, and only the measurements are done off line in 

order not to demand sophisticated computing power. Implementing the ICM&M method 

in offline mode is actually a simulated real-time process measurement as the 

measurement analysis is conducted while playing a video which exactly displays the 

curing process monitored by the in-situ ICM&M system.  

In this preliminary validation experiment, a new batch of photopolymer resin was 

made and calibrated first, followed by a sequence of validation experiments curing square 

blocks of difference widths. For best ICM&M performance, it is recommended that the 

calibration conditions, especially the exposure time and intensity, should be the same as 

will be used in the to-be-measured process conditions. Both calibration and validation 

experiments in the section of work adopted a normal exposure intensity at UV lamp iris 
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level 22% and exposure time 12 seconds. The cured parts heights were measured by both 

the proposed offline ICM&M method and a confocal microscope, which comparison 

demonstrates the qualification of the ICM&M method as an offline and real-time 

metrology for the ECPL printed 3D parts. 

5.6.1 Calibration in test measurement 

For the calibration, a square block part was cured by the ECPL system. A 

200×200 pixels square bitmap as shown in Figure 18 was displayed on DMD for 12 

seconds while the UV lamp (OmniCure® S2000) was on with the lamp iris level being 

22%. The ICM&M camera captured the video of interferograms. In Figure 19, A line of 

120 pixels in the interferograms was selected for ICM&M analysis, and the pixel info at 

the bottom of the figure shows that the rightmost pixel of the line is (365, 220) - pixel 

width being 365  and height 220 in the interferogram. The cured part is supposed to have 

a uniform heights profile due to ideally uniform UV light intensity and material 

properties across the curing area; hence the adjacent pixels are supposed to have very 

similar if not identical changed phase angles during the curing process. It is found that to 

evaluate the line profile of heights, measuring heights for pixels in the line at an interval 

of five pixels would not affect the accuracy significantly but requires much less 

computation expense than measuring every pixel for the whole line. In this particular 

case, the ICM&M method was applied to a horizontal line of 25 pixels starting from Pixel 

(245, 220) to Pixel (365, 220) with 5 pixels between each two neighbouring measured 

pixels; and the measured horizontal pixels line is denoted as Pixels (245:5:365, 220). The 

ICM&M model and algorithm estimated the total phase angle, ∑ (𝑇𝑖𝑓𝑖)𝑖  in Equation ( 15 

), for each measured pixel; and the average total phase angle is 6.175 cycles (i.e., 

6.175×2π rad) as shown in Figure 20. Figure 21 presents the line profile measured by the 

laser confocal microscope and the average height was 73.866 µm, which substitutes Z in 

Equation ( 15 ). The calibration process is completed by solving the calibration model of 
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Equation ( 15 ) for ∆𝑛 =  𝑛𝑚 − 𝑛𝑙 =
𝜆∑ (𝑇𝑖𝑓𝑖)𝑖

2𝑍
=

(0.532)(6.175)

2(73.866)
= 0.022237, which value 

will be used in the following experiments to calculate some example parts heights to 

validate the ICM&M measurement capability and accuracy. 

 

 
Figure 18. Initial ICM&M validation (calibration part): the DMD bitmap pattern for 

curing a square part with the ECPL process (Note: the dashed outline indicates the edge 

of the DMD which consists of 1024×768 micromirrors). 

 

 
Figure 19. Initial ICM&M validation (calibration part): select a line in the acquired video 

of interferograms to measure the cured part heights with the ICM&M method. 
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Figure 20. Initial ICM&M validation (calibration part): estimate the individual and 

average total phase angles for 25 pixels from Pixel (245, 220) to (365, 220) at an interval 

of five pixels in the selected horizontal line. 

 

 
Figure 21. Initial ICM&M validation (calibration part): measure the sample line profile 

with the Olympus 3D confocal microscope. 
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5.6.2 Validation Experiment 

After the calibration which results in a known refractive indexes difference∆𝑛 =

 𝑛𝑚 − 𝑛𝑙 = 0.022237, the same batch of resin material was used in the following 

experiment to validate the ICM&M model and algorithms in previous sections. In the 

validation experiments, we cured two square blocks of different widths by changing the 

DMD bitmap size to 150×150 pixels and 50×50 pixels in two experiments, respectively, 

while all the other conditions were kept the same, that is, all the parts were cured under 

UV exposure for 12 seconds with the same UV lamp (OmniCure® S2000) iris level as in 

the calibration process. The purposes of the two experiments are: (1) to validate that the 

above-described ICM&M model and algorithms can successfully measure the height of 

ECPL fabricated part with accuracy; (2) to demonstrate that the measurement technology 

is repeatable and versatile in measuring parts of a range of lateral sizes; (3) to verify that 

ICM&M measurement is consistent and precise in universal measurement for heights all 

over a part, particularly by the second experiment measuring both lateral and vertical 

profiles; (4) as a by-product to show the potentiality of the ECPL process for applications 

in manufacturing micro parts.  

Figure 22 shows the DMD masks used in the the two experiments - Experiment 

#1 and #2. 

 

(a) 

 

(b) 

 
Figure 22. Initial ICM&M validation: DMD exposure pattern in (a) Experiment #1: 

150X150 pixels square bitmap; (b) Experiment #2: 50X50 pixels square bitmap. 
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To apply the ICM&M method in an off line mode, we replayed the curing process 

video, and in the last frame of the interferogram that presents a better shape of the cured 

part we selected a line of pixels as the region of interest (ROI) to measure. Since the 

cured parts analysed in this study are cuboid, theoretically it should not matter much 

which line to choose for measuring the height; however considering the not-perfectly-

uniform UV irradiation in the ECPL system, and also for easy visual match with the 

microscope measurement in later comparison of results, it is recommended to choose 

lines in the central cured area. Figure 23 displays the lines of ROI for measurement in the 

experiments, and the information at the bottom provides the pixel coordinates of (Width, 

Height) for one end pixel in the selected line; e.g., Pixel (356, 230) denotes the right end 

pixel at width of 356 and height 230 in the interferogram. As noted in Figure 23, the 

interferogram of Experiment #1 shows a clear square shape corresponding to the desired 

square block, while that of Experiment #2 displays a tiny area which resembles a circle 

instead of a square. The number on the line, i.e., “106” in Figure 23(a) and “41.05” in 

Figure 23(b), indicates the lengths in pixels of the selected line. As in the calibration 

process, for each line only these pixels at an interval of every five pixels are measured to 

save computation time at little expense of accuracy. Hence, the measured pixels, in the 

selected horizontal lines in figure 23, are actually pixels (250:5:355, 230) in Experiment 

#1, denoting the pixels located at the width ranging from 250 to 355 at an interval of 5 

and at height of 230, and in Experiment #2, the pixels are given as (265:5:305, 225).  
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(a) 

 

(b) 

 
Figure 23. Initial ICM&M validation: selected line of horizontal pixels to measure with 

ICM&M in (a) Experiment #1; (b) Experiment #2. 
 

After setting the measured object (pixels in the ROI), we simulated the real-time 

ICM&M metrology by replaying the video and extracting the time series of grayscales 

for all the measured pixels in the same time, thereby immediately estimating the 

instantaneous frequency and summing up the total changed phase leading to the final 

computing of the cured heights as per the algorithms presented in Section 5.4.2.1. To 

illustrate the process of implementing ICM&M algorithms, the sequence of figures from 

Figure 24 to Figure 26 depicts the time sequence of grayscales, estimated instantaneous 

frequency, and curve of cured height for a typical pixel in each experiment, specifically, 

Pixel (275, 230) in Experiment #1 and Pixel (290, 225) in Experiment #2. In Figure 24, 

the grayscale has a range of [0, 255] expressing the intensity of the pixel in the 

interferograms captured by the CCD camera in the ICM&M system. It is not exactly 

sinusoidal due to the nonlinear curing process and stochastic noises including the 

nonlinear response of camera electronics [37]. The black dots in the figure depict the raw 

data and the red dotted line is correspondingly the fitted curve by the online parameter 

estimation algorithm. The fitted curve agrees very well with the raw data, demonstrating 

the effectiveness of the moving horizon curve fitting and capability of real-time 

measuring. 
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(a) 

 

(b) 

 
Figure 24. Initial ICM&M validation: time sequence of grayscale for (Left) Pixel (275, 

230) in Experiment #1; (Right) Pixel (290, 225) in Experiment #2. 
 

In Figure 25, the instantaneous frequency is estimated consecutively after playing 

every 10 frames of the video and obtaining a new batch of 10 raw grayscale data points. 

Please note that the measurement period, 10 samples (frames) per run of measurement in 

this study, could be changed as the computation power supports; and a sufficiently fast 

measurement is expected to be more accurate because it can capture the process dynamic 

better. Figure 25 also shows the cumulative sum of total phase change during the curing 

process, which is used to replace the item of ∑ 𝑇𝑖𝑓𝑖𝑖  in Equation ( 14 ) for calculation of 

the voxel cured height as shown in Figure 26. The total phase angle is estimated to be 

6.0469 cycles producing the cured height of 72.36 µm for the voxel on Pixel (275, 230) 

in Experiment #1.  Similarly, as to the voxel on Pixel (290, 225) in Experiment #2, the 

total phase angle is 5.7804 cycles resulting an estimated height of 69.14 µm. As will be 

reported in Figure 28, the measured cured heights for the two experiments were 72.42 µm 

and 69.48 µm, respectively.  
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(a) 

 

(b) 

 

Figure 25. Initial ICM&M validation: estimated instantaneous frequency for (a) Pixel 

(275, 230) in Experiment #1; (b) Pixel (290, 225) in Experiment #2. 

 

(a) 

 

(b) 

 
Figure 26. Initial ICM&M validation: estimated cured height for the voxel on (a) Pixel 

(275, 230) in Experiment #1; (b) Pixel (290, 225) in Experiment #2. 
 

 

Figure 26 also indicates the exposed cured height before the time when the UV 

lamp was closed. It is worth to point out that a stereolithographic cure process involves 

mass and energy transport during the curing process, incorporating exposure and dark 

reaction [59], which is vividly shown in Figure 24 by that the pixel grayscales oscillation 

still persists for a while after the UV light is turned off at about 12 seconds. As continued 

“dark” gelation is expected in photopolymerization [66], the cured height by the ECPL 
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process can also be classified into exposed and dark cured height. The ECPL process is 

continuous while the ICM&M measurement is discrete with the digital signal of 

grayscales measured every 10 frames – 0.333 second with the camera acquisition speed 

being 30 frames per second. Hence, the UV close time is approximated instead of being 

determined with an error up to 0.333 second. 

The same procedure was repeated to calculate the cured height for all the other 

voxels on the selected line of pixels in Figure 23, and the average height is evaluated as 

the final result which can be compared with the microscope measurement for accuracy 

check. As a result, the measured line profile is represented by the 22 pixels in Experiment 

#1 and 9 pixels in Experiment #2 as shown in Figure 27. The cured parts in the 

experiments were measured with the Olympus 3D confocal microscope as shown in 

Figure 28. The black outer frame corresponding to the edges in the sample imparts an 

uncertainty in the lateral dimensions of the cured part, but doesn’t affect the height we are 

interested in measuring. Attention is focused on the dimensions especially “Height” result 

at the right-bottom box of the confocal microscope screenshot in Figure 28. For 

Experiment #1, the cured height is 73.140 µm by the ICM&M method, and 72.424 µm by 

the confocal microscope, yielding to a relative error of 0.99%; for Experiment #2, the 

cured height is 69.790 µm by ICM&M, and 69.480 µm by microscope, yielding to a 

relative error of 0.45%. The good agreement between the ICM&M method and the 

confocal laser microscope measurements demonstrates that the ICM&M method 

developed in this dissertation is capable of measuring the vertical height for parts cured 

by the ECPL process.  
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(a) 

 

(b) 

 
Figure 27. Initial ICM&M validation: ICM&M measured horizontal line heights profile 

for voxels on (a) 22 pixels of (250:5:355, 230) in Experiment #1; (b) 9 pixels of 

(265:5:305, 225) in Experiment #2. 

 

(a) 

 

(b) 

 
Figure 28. Initial ICM&M validation: microscope measured line profile for (a) sample 

cured in Experiment #1; (b) sample cured in Experiment #2. 

 

The variations of the cured height in Figure 27 are not unusual due to the inherent 

stochastic factors in the chemical reactions, uneven UV irradiation for 

photopolymerization process, and non-uniform material properties, all of which could 

contribute to the actual spatial roughness. Other than the inherent process characteristics, 

another possible cause of the varying cured height is the measurement errors due to the 
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noise in the interferograms and ICM&M algorithms deficiency. However, it is noted that 

in Figure 28 the microscope measured line profile also presents fluctuations for the cured 

part (white part within the black frame), which could justify the variations measured by 

the ICM&M method to some extent. 

Herein we have validated that the ICM&M method is accurate and feasible as 

both an ex-situ and real-time metrology. To further demonstrate that the ICM&M is 

versatile in full-field measurement, we continued to use the sample cured in Experiment 

#2 and measured a vertical line Pixels (300, 200:5:240) with the same method. Measuring 

a horizontal line and a vertical line together can serve as an effective validation for 2-

dimensional area’s heights profile measurement with easy computation effort. The reason 

we just chose the second experiment sample for validation of universal measurement 

capability is that the part is much smaller and more difficult to measure. If the ICM&M 

method could measure all over a small part, it can also easily measure a bigger part. 

Figure 29 shows the selected vertical line to measure, ICM&M and microscope 

measurement results. The average height for this vertical line profile was calculated as 

68.93 µm using the ICM&M method, while the microscope measurement was 69.19 µm, 

resulting in a relative error of 0.59%. 

Graphs (b) in Figure 23 to Figure 28 for a horizontal line in Experiment #2, and 

Figure 29 for a vertical line in Experiment #2, provide encouraging results of 

comprehensive multi-voxel heights profile, verifying that the ICM&M method is not 

restricted to a single point or a single line measurement and promising in achieving the 

desired full-field measurement capability.  
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(a) 

 

(b) 

 
(c) 

 
Figure 29. Initial ICM&M validation: measuring a vertical line profile for Experiment #2 

(a) selected line in the interferogram: Pixel (300, 200) to Pixel (300, 240); (b) ICM&M 

measurement result; (c) microscope measurement. 
 

In this study, the lateral boundary in the interferograms was approximated 

manually by human eyes, and the chosen ROI was aimed to measure the main part height 

for a direct comparison with the microscope measurement. Theoretically, by measuring 

voxels height profile, the lateral shape could be defined naturally and compared with 
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microscope images, as in Figure 28. In future, if desired, image segmentation and pattern 

recognition techniques could be applied to help detect the curing area automatically. 

Conclusively, the ICM&M measurement method is in accordance with the 

microscope in terms of both average height and observed deviations. It features real-time 

and full-field measurement capabilities with accuracy and precision. 

5.7 Chapter summary 

An interferometric curing monitoring and measuring (ICM&M) method was 

developed and successfully applied to measure the height of part cured by an in-house 

stereolithographic apparatus – Exposure Controlled Projection Lithography (ECPL) 

system. The ICM&M sensor model of instantaneous frequency based on interference 

optics is built to interpret the fringes in-situ automatically, and algorithms of online 

parameter estimation adopting moving horizon exponentially weighted Fourier curve 

fitting and numerical integration is developed to extract the phase change underlying the 

fringes so as to measure cured object shape and height. It is used to calculate the phase 

from a sequence of interferogram images for dynamic cured height measurements on the 

continuous growing surfaces produced by ECPL. The proposed ICM&M method is 

promising to enable real-time, full-field shape measurements, specifically, of the 

evolving vertical growth that occurs during photopolymerization based ECPL process. 

Based on this principle of ICM&M model and algorithm, the original primarily 

monitoring system can be upgraded into a real-time metrology equipment for the ECPL 

process. 

To validate, experiments were performed with an established calibration 

procedure as introduced with the sensor model, followed by two experiments curing two 

square blocks of different widths. Accurate estimation of the cured parts height profile 

was provided by the ICM&M method. It is proven to be repeatable and universal, making 

it a method of choice for both in-situ and ex-situ height tracking and lateral sizing in the 
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ECPL process. The ICM&M algorithms may need elaboration to reduce the effect of 

measurement noise in the upcoming ICM&M validation and characterization 

experiments. The designs of the ICM&M sensor model and algorithms have incorporated 

the consideration for real-time deployment. The algorithms of measurement analysis take 

less than 0.2 second, which is smaller than the measurement period of 0.333 second, 

indicating that the developed ICM&M method is qualified for real-time process 

measurement.  

This chapter is aimed to addresses Research Question 1 by developing a sensor 

model based on interference optics and the corresponding online parameter estimation 

algorithms. The initial experiments which are aimed to test the developed ICM&M 

method, provide a preliminary validation of Research Hypothesis 1. 

Research about the ICM&M algorithms and parameters is elaborated in Chapter 

6. A software of real-time image acquisition and analysis should be developed to 

implement the model and algorithms, and Chapter 7 presents the development of the 

software. More validation and characterization results are presented in Chapter 8. 

Furthermore, Chapter 9 presents more research of implementing real-time measurement 

with the developed ICM&M method, which is sensitive to the process and sensor noises 

and depend upon the speed of the ECPL process as well as the ICM&M sampling and 

computation time [67]. 
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CHAPTER 6 DATA ALGORITHMS IN THE ICM&M SYSTEM FOR 

MEASURING THE ECPL PROCESS 

 

In the previous chapter, an in-situ interferometric curing monitoring and 

measuring (ICM&M) system has been developed to infer the output of cured height. 

Successful ICM&M practice of data acquisition and analysis for retrieving useful 

information is central to the success of real-time measurement and control for the ECPL 

process. As the photopolymerization phenomena occur continuously over a range of 

space and time scales, the ICM&M data analysis is complicated with computation speed 

and cost. The large amount of video data, which is usually noisy and cumbersome, 

requires efficient data analysis methods to unleash the ICM&M capability.  

In this chapter, we designed a pragmatic approach of ICM&M data mining to 

intelligently decipher part height across the cured part. As a data-driven measurement 

method, the ICM&M algorithms are strengthened by incorporating empirical values 

obtained from experimental observations to guarantee realistic solutions, and they are 

particularly useful in real time when limited resource is accessible for online 

computation. Experimental results indicate that the data-enabled ICM&M method could 

estimate the height profile of cured parts with accuracy and precision. The study 

exemplifies that data mining techniques can help realize the desired real time 

measurement for AM processes, and help unveil more insights about the process 

dynamics for advanced modeling and control. 

6.1 Objective and organization of the chapter 

To upgrade the original primarily monitoring system into a real-time 

measurement equipment, we have created a sensor model based on interference optics to 

interpret the dynamic fringes in-situ automatically as presented in Chapter 5. With the 
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sensor model, for measuring the continuous growing surface of the part produced by the 

ECPL machine, online parameter estimation algorithms have been developed by adopting 

moving horizon exponentially weighted Fourier curve fitting and numerical integration to 

extract the phase change underlying the evolving interferograms [68, 69]. The developed 

sensor model and measurement algorithms, together, establish a methodology of 

interferometric curing monitoring and measuring, and provide a feasible metrology 

system promising to enable real-time and full-field measurement of the photopolymer 

part dimensions. 

This chapter continues the authors’ research initiative in seeking for real-time 

measurement method for the dimensions, primarily the vertical height, of additively 

manufactured photopolymer parts made by the ECPL process. With the ICM&M sensor 

model and algorithms established in previous chapter [68], the main practical aspects, 

data processing and effects of algorithms and algorithm parameters, which are critical for 

effective implementation of the ICM&M method, remain unresolved. Based on the 

developed ICM&M method resultant from previous research on sensor modeling and 

algorithms [68, 69], this study is aimed at the potential of harnessing the rich but usually 

noisy data from video of interferograms with data mining techniques to realize a real-

time metrology of cured part height for advanced process control [70]. 

To start, Section 6.2 identifies the research issues raised by the real and rich data 

in physical implementation of the ICM&M. Sections 6.3 - 6.9 are focused on addressing 

the practical issues from the data perspective with the aid of a data mining approach to 

fulfill the ICM&M’s role as a reliable metrology for the ECPL process. The developed 

ICM&M data analysis algorithms are summarized in Section 6.10 followed by 

conclusions in Section 6.11. 
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6.2 The ICM&M method from data perspective 

6.2.1 Data analytics in manufacturing 

Enormous literature is available in the area of data analysis techniques, and 

solution approaches are often adjusted or rediscovered for the specific application domain 

such as manufacturing processes and materials development. Data analysis is pervasive in 

scientific simulations, experiments and observations with the aim of finding useful 

information [71], and is used extensively to improve the performance of manufacturing 

systems at different levels. The focus of the research so far is on data mining techniques 

as well as on the stages before and after data mining, including data collection, 

processing, cleaning, transformation and decision making based on data [72]. Developing 

data enabled sensing and control techniques is an emerging research line for advanced 

manufacturing with higher efficiency and lower cost [72]. 

6.2.2 To materialize the ICM&M method with data techniques 

The ICM&M method, consisting of sensor model and algorithms, is by nature a 

data-driven measurement method, developed to gain insights for the ECPL curing process 

and to infer with confidence about the final height of the cured product. In practice, the 

conceptual level of the ICM&M sensor models and algorithms should be embedded into 

the context of real data environment during data acquisition, algorithms implementation, 

model evaluation, and final decision making. Employing the data science process [73], a 

diagram as shown in Figure 30 illustrates from the data perspective the implementation 

level of the ICM&M method with yellow highlights (1) to (4) identifying the nodes 

where substantial data analysis may be performed. 

Firstly, during image acquisition, the video often has missing frames. Worse still, 

the images may be of low quality, for instance, interferograms are low contrast and noisy 
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due to camera electronics issues [37]. Preprocessing and classification (yellow highlight 

(1) in Figure 30) could help obtain a clean dataset for ICM&M analysis. 

Furthermore, the ECPL process parameters and the ICM&M algorithm 

parameters will affect the accuracy and robustness of the ICM&M method for ECPL 

cured part measurement. The ECPL process parameters such as the exposure intensity 

and exposure time would be important considerations in dealing with the stream data 

from the ICM&M camera. The algorithm parameters in the rolling fit (yellow highlight 

(2) in Figure 30) would be highly critical in outputting a realistic and meaningful 

estimation of the dependent curing process variables. Afterwards, evaluating the mean 

instantaneous frequency for each iteration (yellow highlight (3) in Figure 30), which 

corresponds to outlier removal and choices of different numerical integrations while 

translating the instantaneous frequency information into the cured height result, could 

also change the outcome to some extent. In the end (yellow highlight (4) in Figure 30), 

the statistics algorithm used to derive the final measurement quantity of the cured height 

from the multiple voxels height profile require careful handling of the outliers in the 

resultant dataset of estimated voxels height; otherwise the distribution of the measured 

height could be mischaracterized in case with noisy raw data. 

In addition, the raw data streaming from the camera in the ICM&M system varies 

at both spatial and temporal scales. The large amounts of data being generated and made 

available by the ICM&M system for the ECPL process continue to grow with the 

measurement region and part size. Mining the dynamic data stream which is massive and 

fast changing presents additional computation difficulty [74] and requires more 

computation power. Consequently, the ICM&M data that features mounting quantity and 

unsatisfying quality drives the need for efficient data analysis tools to enable large-scale, 

high-fidelity and real-time measurement for ECPL process and product. 
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Figure 30. Data-driven ICM&M Method for ECPL process and product measurement 

 

6.2.3 Data mining approach for realizing the ICM&M system 

This section casts the primary measurement problem of deriving online 

information of cured height from acquired interferogram video into a data mining 

problem, and presents how a data mining approach is applied in order to realize the full 

potential of the ICM&M method. The entire data analysis and algorithms study was 

conducted in an offline mode with real-time acquired videos of the ECPL curing process. 

6.2.4 Scope and overview of ICM&M data mining 

Data mining is the extraction of implicit, previously unknown, and potentially 

useful information from data. Fundamentally, data mining could be viewed as one 

essential step where intelligent methods are applied to extract data patterns in the 

knowledge discovery process. However, the term data mining has been widely used to 

refer to the entire knowledge discovery process including data preprocessing, traditional 

data mining, pattern evaluation, visualization and presentation of mined knowledge [75]. 
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Therefore, this study adopts a broad view of data mining functionality, which is the 

process of discovering interesting patterns of oscillating greyscales and mine the 

knowledge of the ECPL process in terms of cured part’s dimensions from large amounts 

of interferogram data. 

The idea of ICM&M video data mining is to develop a mature online algorithm 

that can sift through the real-time acquired data of pixels’ grayscales automatically, 

identifying the ECPL process stages - incubation, exposed curing, dark curing and resting 

- and estimating the associated instantaneous frequencies and curing heights. The 

proposed data mining approach is expected to serve the purpose, boost the procedure, and 

exert the potential of the ICM&M method as a real-time metrology for the ECPL process.  

6.3 Data preprocessing for ICM&M 

Removing objects that are noise is an important goal of data preprocessing as 

noise hinders most types of data analysis [76]. Due to the ECPL process noise and the 

ICM&M equipment noise, the acquired interferograms sometimes have unwanted 

temporal burrs and spatial speckles. Temporally, one may use a low pass filter algorithm 

of moving average to smooth the time sequence of grayscales [77]. The goal of 

smoothing is to produce slow changes in value so that it is easier to see trends in data. To 

remove the spatial salt and pepper noise, one solution is image median filtering which 

replaces the noise pixel by the median value of the neighbors [78]. When filtering the 

image spatially, one needs to specify the size of the filter. Since filters are centered on a 

particular pixel (the center of the filter) the size of the filter is uneven and often has equal 

dimensions, i.e., 3×3, 5×5, 7×7, etc. For example, 5×5 span means the pixel grayscale is 

the median value within 5×5 square centering the pixel. Please note that “pixel” in this 

study means pixel in the interferogram captured by CCD camera, not that in DMD 

bitmaps or resin chamber substrate. 
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Some interferogram pixels receive small amount of exposure and display low-

amplitude sinusoidal signal of grayscales which could be not apparent enough for the 

ICM&M algorithm to recognize as an effective cycle. Another situation is that some 

pixels have low signal-to-noise ratio (SNR) and their oscillation patterns in the curing 

process are buried by noise. In both cases, a pixel’s data sequence of grayscales is not 

informative enough and requires referring to good pixels around it. As a demonstration, 

pixels’ raw grayscale intensity data were extracted from an interferogram video captured 

in an ECPL experiment of curing a square block for 12 seconds under ultraviolet light 

exposure. Ideally, the pixels were supposed to display similar phase change. A typical 

and good pixel that presents an appealing oscillation pattern is shown at the top of Figure 

31, and it could directly provide friendly data for the ICM&M algorithm which estimated 

the total phase angle was 8.712 cycles. However, the video has some troublesome pixels, 

and one such challenging pixel is shown as the blue line at the bottom graph in Figure 31 

to have a total phase of 6.265 cycles, which is short of 2.5 cycles compared with the good 

neighboring pixel at the top of Figure 31. Obviously, the ICM&M was unable to 

recognize some suppressed waves in the bad pixel’s raw data and underestimated the 

total phase angle, indicating a need for data preprocessing. 

As shown at the bottom graph in Figure 31, the image median filter helps resolve 

the small-amplitude oscillations around 4s and 9s, respectively, and helps recover a 

buried wave around 6s in the pixel’s original time sequence of raw grayscale data. 

Among the tested three filter sizes, 3×3 and 9×9 do not enhance the data as much as 5×5 

and 7×7 filters. Besides, there is a turn point in the filter size regarding the filtered 

signal’s fidelity. If it spans too narrow, stochastic noise dominates; if it spans too wide, 

inherent spatial difference dominates. It is found that the 9×9 filter spans so wide that it 

distorts the signal and misled the algorithm to a wrong estimation of 7.218 cycles phase 

angle. The more neighbors included, the more strongly the image is filtered; and a wider 

filter will consume more computation time [78]. Conclusively speaking, for the ICM&M 



 97 

application, the 5×5 image median filter is shown to be an efficient preprocessor, and will 

be used in this study. 

It is worth to point out that occasionally the filter would do harm on the curing 

period’s signal by straightening the small amplitude alternating current (AC) signal. 

Nevertheless, most of the time, the chosen 5×5 filter will assist differentiating the process 

stages as will be discussed later. 

 

Figure 31. ICM&M data preprocessing - Top graph: a good pixel; Bottom graph: a bad 

pixel which needs filter. 

 

Secondly, preprocessing the ICM&M raw data with an image median filter can 

improve the ICM&M measurement accuracy and precision across the curing area. A 

more comprehensive way of verifying the filtering effect is to examine the entire cured 

area’s distribution of phase angle estimated by the ICM&M method. Figure 32 shows the 

result of ICM&M analysis for the same video of interferograms but with raw data and 

filtered data, respectively. The video was recorded while curing a square block on the 

ECPL machine, and the cured part was supposed to have uniform height across the 

horizontal dimensions. In Figure 32 (a), the average phase cycle over the entire curing 

area is shown to be 7.787 cycle with a standard deviation of 1.277 cycle, while in Figure 
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32 (b) the average is 8.562 cycle with deviation of 0.606 cycle. The calibrated refractive 

index difference ∆n = 0.0231, which was plugged in Equation ( 14 ) along with the total 

phase angle 7.787 and 8.562, respectively, and the cured height was computed to be 

90.84µm with the raw data and 98.46µm with the filtered data. The cured part was 

measured by a confocal microscope and the actual height was 97.00µm. Comparing the 

results, it is found that the filtered data could not only result in a more uniform (i.e., 

smaller deviation) height profile that conforms to the flat-top cured part, but also provides 

a more accurate measurement of the average height. 

(a) (b)  

Figure 32. ICM&M data preprocessing - ICM&M estimated total phase angle for the 

ECPL cured part with (a) raw data; (b) data preprocessed by a 5×5 image median filter 

 

Lastly, for the ultimate purpose of real-time process control, it is more practical 

but also risky to sample only one single or a limited number of pixels as online 

measurement feedback due to the computing power constraint. The chosen pixel(s) is 

vulnerable to noise and might provide severely biased measurement misleading the 

process control. By applying image median filter, the time sequence of measured pixel is 

actually a median of a group of neighboring pixels (25 pixels in case of 5×5 filter), thus 

the filtered data is more robust and representative enabling a more reliable measurement 

and control real time. 
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The image median filter is a double-edged sword in that it sometimes resolves 

some small-amplitude oscillations correctly and sometimes flattens some small 

magnitude supposed-to-be sinusoidal signal during the curing process Nevertheless, it is 

found that in terms of the overall ROI height profile measurement, the median filter does 

more good than harm for the ICM&M method.  

It is noted that the filter is effective often but not always. Sometimes, even filtered 

data sequence still possesses bad signals that mislead the ICM&M algorithm. Such 

problematical pixels would be handled as outliers in the data product at the end of data 

aggregation process. 

6.4 Identifying ECPL process stages 

6.4.1 Classification of the ECPL process stages 

Like a traditional stereolithography process [79], the photopolymerization based 

ECPL process involves mass and energy transport, and consists of incubation, exposed 

curing, dark curing and resting stages [17, 59]. The incubation stage is the period prior to 

start of crosslinking, and it is conventionally explained by the exposure threshold model 

where a critical amount of exposure energy is needed by the liquid monomers to get 

solidified [79]. The exposed curing stage is the primary curing period when chemicals 

and photons interact actively and a 3D object is formed. The dark curing stage is a 

continued “dark” gelation after the exposure light is turned off [80]. Theoretically, an 

ICM&M data of pixel intensity time-curve should present a leading flat line, vividly 

oscillating curve, gradual tail, and flat line again, corresponding to the incubation, 

exposed curing, dark curing and resting periods, respectively. Such a pattern is observed 

well in the top graph of Figure 31, despite some sawtooth throughout the timeline. The 

pixel grayscales oscillation started at about 1.5s, and still persisted for a while after 12s 

when the UV light was turned off. 
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It is a major task to identify different process stages and could be a daunting 

challenge especially in the real-time implementation due to the process uncertainty and 

noises. Data mining techniques are needed to learn the ECPL process from the ICM&M 

data. Correct and timely classification of the streamed ICM&M data into the ECPL 

process stages, particularly the start and the end of curing, is crucial for online estimation 

accuracy and computation efficiency. Only the curing period, including both exposed 

curing and dark curing stages, requires the ICM&M algorithm of moving horizon 

“fourier1” curve fitting to estimate the evolving instantaneous frequency thereby the 

cured height. The other two stages, pre- and post- curing, i.e., incubation and resting 

period, would not contribute to the part growth, but still are an integral part of the natural 

photopolymerization process and should be detected in order not to affect the cured 

height estimation.  

6.4.2 Rule-based classification for identifying curing window 

A statistic approach is employed to dynamically monitor the range and deviation 

of the windowed data and determine if it approximates a straight line with a reasonably 

small spread. The statistical learning algorithm adopts a rule-based classification using 

“IF-THEN” rules [81, 82] to identify the curing window by analyzing the preprocessed 

data of interferograms pixel intensity. The presence of incubation is determined by 

satisfying all three heuristic rules as below. Please note that the symbol “R” means the 

range of the interferogram grayscale data for the pixel measured, the subscript “i” means 

“incubation stage”, the subscript “r” means “resting stage”, and the subscript “c” means 

critical value. For example, 𝑅𝑖,𝑐 denotes the critical value of the range of interferogram 

grayscale data for a pixel determined being at the ECPL incubation stage. 

Rule 1: the range (𝑅𝑖) of the entire dataset available so far is smaller than an 

empirical critical value 𝑅𝑖,𝑐, i.e., 𝑅𝑖 < 𝑅𝑖,𝑐. 
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Ideally, during incubation there is no curing, no thickness change, thus no 

greyscale change, i.e., 𝑅𝑖 = 0. A tolerance of noise is needed for disclosing the constant 

pattern in the data fluctuating within 𝑅𝑖,𝑐. In this study, 𝑅𝑖,𝑐 = 20. 

Rule 2: the standard deviation (𝜎𝑖) of the latest segment of data acquired after last 

run of measurement analysis is smaller than an empirical critical value 𝜎𝑖,𝑐, i.e., 𝜎𝑖 < 𝜎𝑖,𝑐. 

No drastic variation is expected within the latest dataset; otherwise, a significant 

increase of deviation is a good indication of curing trend. The second rule helps judge 

whether curing starts or not with more confidence. 

In this study, 𝜎𝑖,𝑐 = 5. 

Rule 3: the previous iteration of analysis estimated that the process was in 

incubation. 

Enforcing the third rule is based on process continuity and helps the code bypass 

this identification algorithm if the process is not in incubation anymore. 

Breaking any one of these rules will indicate a termination of the incubation and 

trigger a “fourier1” curve fitting for the current dataset as it is supposed to be done in the 

curing stage. It usually means that the process has entered into exposed curing, however 

exceptions could occur due to data noise and will be discussed later. 

The start of dark curing could be identified easily by receiving a signal of UV 

lamp shutdown. Ideally, the curing tail will last for a while and gradually rest down, but it 

is prone to process noise and usually features spurious rippling frequencies. Hence, it is 

challenging to find the exact time when dark curing stops. A similar set of heuristic rules 

is designed to identify the end of the curing. Either satisfying Rules 1, 2 and 3 together, 

or satisfying Rule 4, will indicate that the dark curing ends and resting stage begins.  

Rule 1: the UV lamp is closed. 

Rule 2: the range (𝑅𝑟) of the windowed (window length is 𝑤𝑟) dataset is smaller 

than an empirical critical value 𝑅𝑟,𝑐, i.e., 𝑅𝑟 < 𝑅𝑟,𝑐. 
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Firstly, one needs to set the window length 𝑤𝑟 for resting period detection based 

on experimental observation. For the ECPL process typically has about 3 second dark 

curing, given 30 frames per second acquisition rate, 45 interferograms data is produced 

during a 1.5 second time window. Hence, in this study, 𝑤𝑟 = 45 is used. 𝑅𝑟,𝑐 is chosen to 

be 10 for low UV intensity curing (e.g., UV iris level is 5%) and 20 for higher UV 

intensity curing, because low UV intensity curing tend to have low SNR. 

Rule 3: the standard deviation (𝜎𝑟) of the latest segment of data acquired after last 

run of measurement analysis is smaller than an empirical critical value 𝜎𝑟,𝑐, i.e., 𝜎𝑟 <

𝜎𝑟,𝑐. 

The critical value 𝜎𝑟,𝑐 is set to be 5, same as that (𝜎𝑖,𝑐) used in incubation stage. 

Rule 4: the previous iteration of analysis estimated that the dark curing was over. 

If previous iteration decides that curing has ended, the succeeding iterations will 

just average the data and fit it into line segments with zero frequency, even though 

sometime the tailing data could present appealing oscillations which are still disregarded 

as noises by referring to knowledge from previous iteration. 

6.4.3 Effect of critical value 

Caution must be taken in setting the critical value of 𝑅𝑖,𝑐. As the spurious noises 

in incubation data may be mistaken as curing signal, it could be detected by raising the 

critical values of range 𝑅𝑖,𝑐 and standard deviation 𝜎𝑖,𝑐for incubation grayscale data. 

Increasing the critical values in the statistical learning could predict a longer than actual 

incubation period and underestimate the total phase angle. In this study, we primarily 

adjust 𝑅𝑖,𝑐 and keep 𝜎𝑖,𝑐 as constant, which might just play similar role. In an experiment 

curing a square block with a DMD pattern of 150×150 square bitmap under UV exposure 

(22% iris level) for 12 second, the critical value 𝑅𝑖,𝑐 = 10 was able to distinguish 80% of 

the 21 pixels' incubation well. Raising the critical range to 20, all the points can have a 
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reasonable incubation period by comparing with the result from manually examining the 

grayscale data curve., 

An example is presented as below to demonstrate the effect of the critical range 

value 𝑅𝑖,𝑐 in the ICM&M estimation of phase angle. For the pixel (W=310, H=220) in a 

sample video which was captured while curing a square block with a DMD pattern of 

50×50 square bitmap under UV exposure (intensity at 22% iris level) for 12 second, the 

grayscale time sequence is show in Figure 33 (a). With a critical range of 10 the 

estimated frequency, as shown in Figure 33 (b), is 6.61 cycles and is obviously wrong 

because the signal peak and valley cycles are visually less than 6. The curing started 

immediately which is untrue because the signal shows vividly a threshold period of about 

2 seconds. After increasing the critical range from 10 to 20, as shown in Figure 33 (c), the 

algorithm detects the curing time on time, and the estimated total phase angle is 5.47 

cycles which is in accordance with the visual observation by counting from the signal 

plot in Figure 33 (a). 
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(a)  

(b)  

(c) 

 

Figure 33. Effect of the critical range 𝑅𝑖,𝑐 for incubation stage identification in the 

ICM&M estimation (a) black curve: preprocessed data; red curve: fitted data with 𝑅𝑖,𝑐 =
10; (b) estimated frequency and phase angle by ICM&M method with 𝑅𝑖,𝑐 = 10; (c) 

estimated frequency and phase angle by ICM&M method with 𝑅𝑖,𝑐 = 20. 
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6.4.4 Exception handling with multiclass classification 

The statistical inference from the data magnitude establishes a base classifier for 

identifying the start of curing throughout the incubation. However, sometimes, the data 

make it very difficult to decide whether a detected wave represents a blip in incubation or 

a trend in curing. Ensemble methods can be used to increase overall accuracy by 

combining multiple classifiers, and its major advantage is high tolerance of noisy data. 

This section adds a new classifier of monitoring the AC amplitude to fix the misclassified 

data by the previous statistical classifier. 

The following example necessitates monitoring of the fitted frequency on the way 

of looking for the start of curing. It is not uncommon that the incubation stage has a 

sequence of sloping or jagging data, which sways away from the statistics range and 

triggers the curve fitting algorithm to estimate the frequency because it is mistaken as a 

signal of curing start. For example, in an experiment curing a square part under UV 

exposure for 26 seconds with the exposure intensity at 5% UV lamp iris level, as shown 

in Figure 34 (a), a pixel’s grayscale data sequence (black curve) displays an obvious dip 

after 15 seconds, which however based on the signal of its neighboring pixel as shown in 

Figure 34 (b) should be actually flat. Figure 34 (b) displays a relatively good time 

sequence which shows that the curing occurred around 16 second, and peaks and valleys 

are manually counted as roughly 2 cycles. However, in Figure 34 (a), the small wave is 

misclassified into curing period, and the estimated total phase angle is 3.387 cycles, 

which is an obvious outlier considering its proximity similarity to Figure 34 (b). Too 

early start of curing misidentified by the algorithm, defined as false alarm, leads to 

overestimation of the total phase angle.   
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(a) Pixel Coordinate  

(Width, Height) = (305, 260)  

(b) Pixel Coordinate  

(Width, Height) = (305, 270)  

Figure 34. ICM&M data of time sequence: filtered raw data (black) and curve fitted data 

(red) for (a) a pixel with spurious waves in incubation stage; (b) a neighboring pixel with 

good data shows relatively straight pattern in incubation stage. 
 

The false alarm outputs a curve fitting result with nonzero frequency, which is a 

result of fitting the spurious noises. Figure 35 (a) shows the ICM&M estimated frequency 

along the process time, all the nonzero frequencies before 16s should be false alarms for 

curing start. To gain some insight about how the false alarms could affect ICM&M 

accuracy, one could sum up the false alarms frequencies: 

0.170+0.173+0.145+0.182+0.202+0.233+0.225+0.421=1.751 Hz, 

and multiply it by the time stepsize between consecutive measurements (in this case 10 

frames per measurement / 30 frames per second = 1/3 second per measurement), coming 

up to 0.584 cycle. Please note the timestep is not constantly 1/3 due to the fluctuating 

image acquisition rate and it is just a quick estimation. Part of the overestimated phase 

angle is induced directly by false alarms as calculated to be 0.584 cycle. Besides, the 

false alarms could indirectly affect the phase angle estimation by influencing the choice 

of start point for the succeeding iterations of “fourier1” curve fitting algorithm which 

induce additional errors in the phase angle estimation. 
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(a)  

(b)  

Figure 35. Instantaneous frequency and total phase angle estimated by the ICM&M 

method (a) false alarms are triggered in incubation stage with only statistical detection in 

the classification algorithm; (b) false alarms with low amplitude oscillation are 

suppressed and curing start is correctly identified with exception handling embedded into 

the algorithm 

 

Most of the false alarms (#3 to # 10) feature lower than 10 oscillating amplitude 

(𝐼1 in Figure 30), hence, we may apply an exception handling method of screening 𝐼1 ≤

𝐼1𝑐
𝑖 , where the critical AC amplitude value for incubation stage 𝐼1𝑐

𝑖 = 10 , and artificially 
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zero out its associated frequency. After applying the outlier detection and removal, the 

start of curing was correctly identified to occur around 17s and total phase angle was 

2.336 cycles, which agree with what is seen directly with the data in Figure 35 (b) shows 

the improved result with the method of outlier detection and removal. Such scheme is 

especially useful in low intensity curing process (such as 5% UV iris level in this case) 

when the incubation period is longer and more susceptible to noise. 

The false alarm might output a high amplitude and low frequency, less than 

0.1Hz, as False Alarms #1 and #2 shown in Figure 35 (a), which are acceptable to be 

counted into the phase angle but should still be marked as incubation period to help 

continue identify the possibly remaining incubation in the succeeding data. The reason 

that we keep the small frequency is sometimes the curing period really starts with such 

small frequency and if we eliminate it wrongly, it could delay the detection of curing 

period and causes underestimation of total phase angle. 

As a second example to validate the classification algorithm, a sample video will 

be studied here, and it was captured while curing a square block with a DMD pattern of 

250×250 square bitmap under UV exposure (intensity at 22% iris level) for 15 seconds. 

The pixel (Width: 235, Height: 220) has a spurious wave around 2 s between the two 

orange lines, as shown in Figure 36 (a), raising false alarms with small oscillating 

amplitude (𝐼1 as shown in Figure 30), but high frequency as shown in Figure 36 (b). If the 

segment of spurious wave is misidentified as the curing period, the associated error in the 

estimation of total phase angle is calculated using the frequency and time numbers in 

Figure 36 (a) as below: 

1.024 Hz × (1.643 s-1.309 s) + 0.832 Hz × (1.977 s-1.643 s) + 0.983 Hz × (2.311 

s-1.977 s) = 0 .95 cycle. 

By investigating its neighboring pixels, for example, pixel (Width 240, Height 

220) as shown in Figure 36, the curing start point appears around 2 second.  The 

estimated total phase angle for the good neighboring pixel is 7.14 cycles, which should be 
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close to the actual phase angle for the pixel under investigation, hence the error due to 

misclassification of the curing stage could be estimated as 0.78/7.14 = 10.92%. By 

applying an exception handling method of screening 𝐼1 ≤ 𝐼1𝑐
𝑖 , where the critical AC 

amplitude value 𝐼1𝑐
𝑖  is set to 10, the false alarms were detected and removed, the 

algorithm is able to predict the curing stage and estimate the phase angle more 

consistently with its adjacent pixel as shown in Figure 36 (b). Note a difference of (7.74 – 

7.14) = 0.6 cycle, as shown in Figure 36 (b), between the two neighboring pixels, which 

may be attributed to the true spatial height variation or simply the process noise.  



 110 

(a)  

(b

) 

 

Figure 36. Challenge in differentiating incubation and curing stages (a) time sequence of 

grayscale in an example problematic pixel compared with its good neighboring pixel; (b) 

estimated instantaneous frequency and total phase angle for the problem pixel and 

neighboring pixel. 

 

 

6.4.5 Ensemble method based on majority voting for robust identification of the 

curing window across ROI 

An ensemble tends to be more accurate than its base classifiers [75]. To ensure 

that all pixels across ROI have consistent curing start, an ensemble that performs majority 
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voting for curing start is considered. That is, given a tuple of greyscale data sequences for 

all pixels in the ROI to classify, it collects the number of pixels that are labeled as 

incubation pixels based on the classifiers introduced in previous sections, and decides 

that all pixels are in incubation if majority pixels vote for incubation as the current 

process stage. The multiclass classification method above may make mistakes in 

predicting the end of incubation (i.e., the start of curing) due to misleading noises, but the 

ensemble will correct the misclassified pixels and yield more accurate detection of curing 

start. 

If any pixel makes an error, it can affect the vote count, and there is a better 

chance that one may still be able to predict the right curing start for the pixel because of 

the redundancy gained by having additional pixels. Error-correcting codes are used to 

force these misclassified pixels back to incubation stage thereby improving the accuracy 

of measurement, not just for each individual pixel, but for the entire ROI to attain a 

smooth and consistent cured profile.  

An example experiment that cured square block with 250×250 square DMD 

pattern under exposure intensity of 10% iris level for 12 seconds is presented to 

demonstrate the usefulness of the majority voting based ensemble method in identifying 

correctly the curing window across ROI. 

It is noted that threshold is very vulnerable to bad signals and could introduce 

severe errors into final results as shown in Figure 37. Three problematic pixels that have 

too much misleading noise at the incubation stage showed significant errors in the 

estimated phase angle and cured height in the left column of Figure 37. 
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1(a) Example Pixel #1 1(b) Example Pixel #1 

2(a) Example Pixel #2 2(b) Example Pixel #2 

3(a) Example Pixel #3 3(b) Example Pixel #3 

Figure 37. The voting mechanism helps identify the process stages correctly as 

demonstrated in three problematic pixels which have noisy data at incubation stage: 1(a), 
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2(a), 3(a) ICM&M data analysis and measurement results without voting; 1(b), 2(b), 3(b) 

ICM&M data analysis and measurement results with voting. 

 

If most pixels have entered curing period, force the other pixels to curing period. 

Contrarily, if most pixels are still in the threshold, other pixels which may suffer noisy 

and bad signals are forced to stay in threshold period no matter how fiercely the signal 

fluctuates. This strategy would mitigate the bad signal problems a lot. With the ensemble 

method based on majority voting mechanism in identification of curing period start and 

end, they were correctly measured as shown in the right column in Figure 37. This 

method could be extremely effective in multi-pixel, especially full-field, measurement as 

compared in Figure 38. Despite similar average height, the standard deviation is reduced 

significantly - 3.5 microns less deviation in Figure 38 (b) than in Figure 38 (a), with the 

estimated deviation being 3.87 µm which is closer the microscope measured deviation of 

4.98µm. Please note that Figure 37 and Figure 38 are results for the same experiment, 

with the former investigating individual pixel measurement and the latter full-field 

measurement, to demonstrate the benefit of the ensemble majority voting method. 

(a)  (b)  

Figure 38. Estimation of full-field cured height profile (a). without (b) with the ensemble 

majority voting assisted classification method. 
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6.4.6 Summary and recommendation 

Misidentification of the curing window could cause significant errors in the 

frequency estimation by introducing large noise frequencies in the incubation and resting 

periods. The identification of incubation is more vulnerable to outliers which would 

alarm falsely about the onset of the curing process. A too conservative algorithm might 

delay the detection and bring up measurement error. 

Conclusively, the classification algorithm based on statistical inference rules and 

exception handling could effectively identify the start of curing, and a similar algorithm 

is used to detect the end of dark curing after the UV lamp is closed. The critical values 

for grayscale data range (𝑅𝑖,𝑐, 𝑅𝑟,𝑐) and standard deviation (𝜎𝑖,𝑐, 𝜎𝑟,𝑐), and for the AC 

amplitude (𝐼1𝑐
𝑖 ) are all chosen based on straightforward experimental observation and 

basic statistics. The empirical experience has been shown to be representative and 

effective, but still could be a potential error source in scenarios with low-SNR image 

grayscale data. 

As the exception handling could suppress false alarms effectively, it may be 

overactive sometimes to cause missed alarms which result in a delayed identification of 

the curing start. Both false alarms and missed alarms contribute to the final ICM&M 

measurement error, and there could be more advanced algorithms to differentiate false 

alarms and missed alarms for accurate identification of the curing window. 

The statistical learning rules may perform well on most cases, but less well on 

some noisy data. In future, to compensate for this, one can prune the rules online if the 

pruned version of rules has greater quality. Various pruning strategies can be used such 

as the pessimistic pruning approach described in the reference book [83]. 

For exception handling, in addition to screening out the low AC amplitude 

frequencies, the ensemble method based on voting scheme could be used for detection of 

the curing start and stop as well as to enhance the robustness of the overall ICM&M 
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algorithm. More details about the voting scheme and effects for identifying process 

stages will be presented in Section 9.5.2.1 while dealing with a more challenge data 

streamed from real-time implementation of the process measurement and control. 

6.5 Mining curing window data’s oscillating pattern for instantaneous frequency 

6.5.1 Fit options for “fourier1” curve fit to ICM&M data 

Without sufficient constraints, multiple fittings using the same data and model 

might lead to different fitted coefficients. The MATLAB curve fitting algorithm use 

goodness of fitting such as R-square to decide the optimal fitting model result [84]. 

However, mathematically the optimal solution may not be the physically best solution in 

engineering practice. To avoid this, in the specific application of ICM&M, the curve 

fitting algorithm need tuning with some domain expertise input to the fit options. This 

section mainly provides some guidance to set tolerances, start points and bounds, which 

are critical for realizing real-time measurement with realistic fitting results. Other default 

fit options could be explored further for improving the fitting in future work. 

6.5.1.1 Tolerances 

The termination tolerances (1.0e-6 by default) on model value (“TolFun”) and 

coefficient values (“TolX”) decides directly the number of iterations used for fit to the 

desired tolerances thereby affect the computation time. Hence, the default tolerance 

values should be adjusted to a proper order. In the ICM&M method, the curve fit model 

value is the interferogram image grayscale - an integer value ranging from 1 to 256, and a 

tolerance of 1.0e-3 could be good enough. The fitted coefficient of frequency (Hz) is the 

target fit result which will be used for the cured height calculation and should be more 

accurate. 

A MATLAB code performance profiler was run to compare the computation time 

for curve fitting with different sets of tolerances. When the fitting options used the 
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default (TolFun = 1.0e-6 grayscale; TolX = 1.0e-6 Hz), each run of curve fitting took 

about 234 ms. When the tolerances decreased (TolFun = 1.0e-3 grayscale; TolX = 1.0e-5 

Hz), the fitting time was reduced to 180 ms and an error in total phase angle relative to 

previous default tolerances result was 0.79%. When the tolerances decreased further 

(TolFun = 1.0e-3 grayscale; TolX = 1.0e-4 Hz), the fitting time is about 143 ms and the 

phase error was 1.56% relative to the results with default tolerances. As a compromise 

between computation time and accuracy, this study chose an options of (TolFun = 1.0e-3 

grayscale; TolX = 1.0e-5 Hz). 

6.5.1.2 Start point 

In curve fitting, start point is a vector of initial values for the coefficients to be 

fitted. If no start points, the default value of an empty vector is passed to the fit function, 

and might lead to some impractical solution. Starting points for the model could be 

determined heuristically. In the rolling fit for ICM&M data, the fitted result from 

previous run of measurement analysis, if good enough (heuristically, R-square is larger 

than 0.75), will be used as a start point for the current run of curve fitting. The scheme of 

assigning start point by inheriting a previous decent fitting to data from the last time 

window, reflects the continuity in the curing process, and enables a consistent estimation. 

Besides, providing a start point could help reduce the computation effort and enhance the 

speed. 

It is noted that previous fitted coefficients to be used as start point for current run 

of new data measurement analysis, could sometimes mislead the algorithm to a wrong or 

unrealistic solution, because the seemingly good coefficients are actually for spurious 

patterns. This issue would be mitigated by applying coefficient bounds. 
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6.5.1.3 Coefficients bounds 

The curve fitting would run into a bad estimation despite pretty good confidence 

with high R-square, especially in situations where the algorithm finds a local solution that 

reflects the noise instead of a global solution that captures the grand pattern of data 

trends. Worse still, the subsequent curve fitting would follow this bad estimation by using 

its result of fitted coefficients values as starting points, and so on. Consequently, the 

rolling fit could bog down to a stagnation where the algorithm gets stuck in the local 

solutions. 

One solution is to apply empirical values to guide the curve fitting toward realistic 

values. Firstly, the first curve fitting at the detected beginning of curing should impose a 

constraint to the fitted frequency so as to get a good start point for the succeeding runs of 

curve fitting. From experiment observations, an empirical frequency range was derived to 

be the lower and upper bounds for fitted frequency: [0.4 Hz,1.2 Hz] for curing above a 

UV intensity iris level equal or larger than 10%, and [0.1 Hz,0.5 Hz] for curing at smaller 

than 10% UV iris level exposure intensity. Afterwards, in the succeeding curve fittings to 

the remaining exposed curing stage, [0.1 Hz, 15Hz] is set as bounds for the curing 

frequency estimation to avoid local solutions due to noise. 

For instance, in an experiment of curing a square block with 250×250 pixels 

DMD bitmap for 26 seconds under UV exposure intensity at 5% iris level, the grayscale 

time-curve of Pixel (H: 210; W: 305) is shown in the top graph in Figure 39, which 

shows raw data (cyan curve), preprocessed data (black dots), fitted data (red curve) 

without setting bounds for the fitted coefficients of frequency in the “fourier1” model, 

and fitted data (blue curve) with coefficient bounds set for frequency. It shows both curve 

fitting, without or with frequency bounds could fit the data similarly well though the 

latter fit was slightly better. However, the underlying fitted frequency values are much 

different as shown in the bottom graph in Figure 39. The red curve of estimated 

frequency shows a severe underestimation and mistake compared with the blue curve. 



 118 

The former yields a total phase of 1.464 cycles, while the latter has a much more accurate 

result of 2.462 cycles which agrees with the visible oscillations in the time sequence at 

the top graph. 

 

Figure 39. Effects of applying frequency bounds in the curve fitting for ICM&M data: 

red curve – unbounded fitting, blue curve – bounded fitting. 

 

This example demonstrates vividly the difference between unbounded fitting and 

bounded fitting in ICM&M results. The accuracy of fitted frequency could avalanche, 

resulting in a big error in the finally estimated phase angle and cured height. In this 

sample ICM&M video, there were quite many such example pixels poorly estimated 

because of blind fitting without realistic bounds for the to-be-fitted coefficients of 

frequency in the cosine function in Equation ( 17 ), and the proposed bounded curve 

fitting helped estimate them all correctly. 

6.5.2 Data window and weight 

The basic idea of rolling fit is a sliding window model that runs computations 

only on recent data rather than all of the data seen so far [74]. At every time of 

measurement, the ICM&M uses a segment of the most recent w data points, where w is 

the window size or moving horizon length (MHL). Horizon length was demonstrated to 
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have a significant effect in the moving horizon estimator [63, 64]. This section 

investigates practical horizon lengths for the ECPL process measurement. 

Accompanied with the MHL is another parameter in the rolling fit, “half life”, 

which means the width decaying weight to one half [69]. In this study, online 

measurement is run every 10 new data points acquired, to capture the most recent process 

dynamics, the half life is basically set to 10 allowing sufficient weight for new data. Its 

effect is not as significant as MHL; hence the study is focused on MHL. 

Both MHL and half life are subject to change with data trends due to process 

dynamics and or noise vivid in some cases, as will be addressed later, so that the curve 

fitting could fit into the desired global pattern of oscillation rather than getting stuck to 

local optima or spurious noise. Also, it has been found that with the same MHL, curve 

fitting with larger half life tends to output higher estimation for the instantaneous 

frequency, which is understandable because larger half life weights more historic data 

corresponding to faster curing. 

6.5.2.1 Consideration from the prediction prospect 

In an initial study with ECPL curing with the UV exposure intensity at 22% iris 

level [69], different values of window length were investigated in the rolling fit as shown 

in Table 7.  

 

Table 7. Effects of MHL in prediction accuracy 

Moving Horizon Length MSE of Rolling Prediction 

Entire Segment of data 6.54 

70 6.56 

60 6.32 

50 6.10 

40 5.95 

36 5.61 

32 5.57 

30 5.71 
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For the long-term purpose of real-time EPCL process control which requires a 

good predictive measurement model, a metric of accuracy in the fitted model’s prediction 

for the succeeding batch (five data points) of grayscales, i.e., the mean square error of the 

predicted data and actual acquired data was used to evaluate the effects of rolling fit 

MHL. It was found that a window length of “32” yields the lowest mean square error 

(MSE) in the rolling prediction as shown in Table 7. 

One possible explanation is that despite non-constant oscillation cycles, for the 

ECPL curing at 22% UV iris level, the interferograms intensity data has roughly average 

periods of about 60 sampling data points and it requires at least half cycle to estimate the 

period and frequency accurately. A window length that is too long will slow the 

algorithm and yield a poor fitting. Hence, a window length of “32” turns out to be a 

reasonable option for real-time computation, good estimation accuracy and prediction 

performance as well, especially in that the signal peaks and valleys are observed to be 

fitted much better in the rolling prediction while other window lengths result in serious 

overshoot (undershoot) at peaks (valleys). 

6.5.2.2 Adaptive estimation for process dynamics 

The initial study recommending 32 as MHL and provides a good rule of thumb 

for choosing MHL, which needs to be refined for improving algorithm accuracy. As a 

matter of fact, different curing stages (e.g., exposed curing and dark curing), and different 

UV intensities in terms of iris level (e.g., 5% to 95%, with a normal operation at 22%,) 

induces various curing velocities. Thereby, a range of instantaneous frequencies needs to 

be estimated, and MHL should be adjusted according to the process dynamics so as to 

estimate the frequency more accurately. In the following study, different MHL derived 

from empirical observation will be applied during the ICM&M implementation, realizing 

an intelligent algorithm – adaptive estimator - that fits to different process stages and 

conditions. 
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6.5.2.3 MHL for different process stages 

It was experimentally found that for the ECPL process under UV exposure with a 

medium UV intensity (e.g., UV lamp iris level between 10% to 40%), the frequency 

approximately ranges from 0.5 Hz to 1.5 Hz. The authors’ lab specifies a normal 

operating exposure intensity with UV iris level at 22%, which outputs instantaneous 

frequency in the ICM&M data up to 1 Hz. The minimal number of data points (or frames 

in the case of video processing), 𝑤𝑚, is estimated as in Equation ( 20 ), based on a 

principle that at least one half cycle of the signal should be included to identify the peak 

and valley for estimating the frequency with more confidence. Please note that 𝑤𝑚 is 

sufficient but not necessary for MHL to be estimated, because values smaller than 𝑤𝑚 

could also evaluate the frequency well though might not with that much accuracy, 

confidence or robustness. 

𝑤𝑚 ≅ (𝑇𝑝×𝑓𝑎)/2 =
𝑓𝑎
2𝑓𝑝

 
( 20 ) 

where, 𝑤𝑚 is the minimal window length, 𝑇𝑝 and 𝑓𝑝 are the ECPL curing process 

signal’s period and frequency, 𝑓𝑎 is the ICM&M camera’s acquisition frequency (unit: 

frames per second). 

Given an acquisition rate of 30 frames per second (fps), one full cycle of the 

ICM&M data would consist of approximately 20 (30 fps/1.5 Hz) to 60 (30 fps/0.5 Hz) 

data points depending on the process curing rate. By Equation ( 20 ) the MHL should be 

at least 30, which is the greater of 10 and 30 to detect the entire segment signal for 

various UV intensities. Combined with the result from Section 6.5.2.1, MHL is chosen to 

be 32 as a bootstrapping window length.  

While measuring online, the data window for the first run of curve fitting at the 

detected beginning of curing would inevitably involve some incubation samples which 

are usually flat and might drag down the estimated curing frequency. The MHL of 32 has 

been found in experiments to be able to provide a decent sample size with appropriate 
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proportion of data from both incubation and curing stages for the initial “fourier1” curve 

fitting. Besides, the exponential weights in rolling fit also helps up-weight the most 

recent data in curing stage and down-weight the incubation data in incubation, so as to 

estimate the initial frequency better. 

As the curing goes on, the process slows down gradually and the process signal’s 

period increases (e.g., to about 3 seconds), by Equation ( 20 ), MHL should be extended 

accordingly. A wider window of data, e.g., 48 data points corresponding to about 1.5 

seconds time window, could aid the estimation of frequency towards the end of exposed 

curing. For real-time data analysis, it is hard to tell exactly when the process is slowing 

down or when the MHL should be increased, because the estimated frequency usually 

jumps up and down due to the process variations and noises. Therefore, throughout the 

exposed curing, an ensemble [85] of several curve fittings with different sets of MHL and 

half life is adopted to decide which MHL is better for the specific data set by comparing 

the goodness of fitting (GOF) using R-square metric [84]. For computation efficiency, the 

algorithm will start curve fitting with MHL of 32 and half life of 10 first; if the GOF R-

square is above 0.95, it will determine that the fitting is successful and no need for a 

second fitting with longer MHL. If the R-square is lower than 0.95, a second run of curve 

fitting with MHL of 48 and half life of 10 would be performed, then the R-square values 

for the two runs are compared and the result with greater R-square value is used. The 

adaptive approach gives the algorithm flexibility and intelligence in choosing a better 

window length for more accurate estimation. 

For the dark curing period, it is observed that usually half cycle takes about 5 

seconds, i.e., the frequency is about 0.1 Hz, the previous moving horizon of 32 or 48 

cannot estimate such low frequency, and MHL needs be increased further, by Equation ( 

20 ), to 150. However, in practice 150 frames span a too long time window which might 

be even longer than the duration of dark curing itself. The estimated MHL of 150 could 

just provide a guidance and in practice MHL of 96 could estimate low frequency around 
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0.1 Hz as well for normal UV exposure curing. After the UV lamp shuts down, the curing 

process transitions to the resting stage, and the curing frequency drops gradually and 

there is no clear dividing line when to extend the MHL. Hence, a similar approach was 

used for comparing several fittings with different sets of (MHL, half life), e.g., (64,20) 

and (96, 30) in this study. The fitting that yields the highest R-square value will be 

adopted. It is found that the extended window length and half life could predict well the 

flattening tendency of decreasing frequency at dark curing period.  

6.5.2.4 MHL for low intensity ECPL process 

In this study, low exposure intensity means the UV lamp iris level is smaller than 

10%, e.g., 5%. The reason such low intensity ECPL process stands alone is that it 

features lower curing frequency about 0.2 Hz and the normal MHL of 32 and 48 could 

not estimate the frequency correctly. By Equation ( 20 ), the low intensity curing requires 

75 data points, hence MHL values of 64 and 96 will be used in the adaptive curve fitting 

to exposed curing window. The dark curing period will adopt some value around 150 

(e.g., 128 and 192 in this study) to estimate frequencies around 0.1Hz.  Below is an 

example illustrating the need for applying a different set of MHL values for low intensity 

ECPL processes. 

An ICM&M video was captured while curing a square block with a DMD pattern 

of 250×250 square bitmap under UV exposure (intensity at 5% iris level) for 26 seconds. 

In Figure 40 (a), about 2.5 cycles could be seen with a naked eye. Two sets of MHL were 

applied for rolling fit, and both could fit the raw data well as shown in the red curve. 

However, the ICM&M using MHL of 32 or 48 adaptively as previously presented would 

estimate the total phase angle to be 4.02 cycles as shown in Figure 40 (b), and the 

insufficient window wrongly estimated the frequency around 0.35 Hz, which is higher 

than the naked-eye observation of about 0.2 Hz. Therefore, a longer MHL is proposed as 

a solution to provide an accurate estimation of curing frequency. Figure 40 (c) shows the 
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result of applying a set of (MHL, half life): (64,10) or (96, 20) adaptively for the curing 

window and (128,20) or (192,30) adaptively for dark curing, and the estimated frequency 

was correctly around 0.2 Hz totaling to 2.3 cycle which agrees with the visible counts in 

the grayscale plot. 

6.5.3 Outlier frequency detection and treatment 

The instantaneous frequency is the most critical key in height computation, 

however it is not uncommon to encounter some computation limitations due to process 

noise and algorithm inefficiency, which may cause failed and/or unrealistic values.  

Throughout the process, an outlier detection scheme was used to filter out the 

small-amplitude oscillations which are most likely stochastic noise rather than curing 

frequency. A critical oscillation amplitude for the curing window, 𝐼1𝐶
𝐶, is used as a gauge 

to aid the frequency outlier detection in the curing window. A criterion of 𝐼1 < 𝐼1𝐶
𝐶 is 

used to determine and remove outlier frequency. In this study, 𝐼1𝐶
𝐶 is chosen as 5, smaller 

than the critical AC amplitude in the incubation stage 𝐼1𝑐
𝑖 = 10, because unlike the 

incubation stage, the curing window sometimes does feature small amplitude (around 10) 

oscillation and too bold removal of false outliers risks a big loss of measurement 

accuracy. 

As a recommendation for future work, instead of simply zeroing out the detected 

meaningless frequency, one may replace it with a prediction inferred from previous 

reference data using outlier treatment methods such as nearest neighbor classification and 

moving average [82]. 
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(a)  

(b) 

(c) 

 

Figure 40. MHL effect in ICM&M estimation for low intensity ECPL process (a) a 

typical pixel’s time sequence of grayscale in the ECPL process with UV iris level at 5%, 

black curve is the preprocessed raw data and red curve is the fitted data; (b) estimated 

frequency and phase angle using MHL (32 or 48 adaptively) as in ECPL process with 10-

40% UV iris level; (c) estimated frequency and phase angle using double MHL (64 or 96 

adaptively). 
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6.5.4 Summary and recommendation 

Herein, with the adaptive curve fitting and outlier removal for the curing window 

data on a rolling basis, frequencies have been obtained. 

It is noted that the adaptive curve fitting scheme using R-square as criterion can 

not necessarily guarantee the true frequency to be fitted. The issue is evident in Figure 39 

(bottom graph), where the estimated frequency, rather than falling continuously, 

abnormally hikes up to about 0.2 Hz, at the tailing period. It was because the initial curve 

fitting used 128 as MHL for fitting to the dark cuing data and it automatically stopped 

after the first trial due to a satisfied R-square (above 0.95) achieved. However, it was 

found that had the algorithm proceeded with a longer MHL of 192, the frequency could 

be fitted to be lower, about 0.1 Hz, which matches the resting period data better. Hence, 

the adaptive mechanism for judging a good fitting should be improved further not to just 

considering about the R-square value, but also the true nature underlying the data. It is 

recommended to use a distance-based algorithm to sift the good fitting by comparing the 

currently fitted frequency with a reference, which could be derived with another data 

mining task of exploring the secondary dataset of online fitted frequencies. As a 

complement with the R-square criterion, the computationally learned reference frequency 

from previous data could enable a more powerful adaptive estimator for current 

frequency. The advanced algorithms could be more computationally expensive; hence the 

study would stick to the current pragmatic and effective algorithms for ICM&M. 

6.6 Evaluating the total phase change 

With the instantaneous frequency estimated by the ICM&M data mining, 

numerical integration is adopted to evaluate the total phase changed during the EPCL 

process as the cumulative term ∑ 𝑇𝑖𝑓𝑖𝑖  in Equation ( 14 ). 
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6.6.1 Integration timestep 

In the ICM&M data collection, the nominal acquisition rate is set at 30 fps. 

However, the image acquisition is not a guaranteed equally spaced sampling process. One 

reason is that the camera could capture faster or slower depending on the system 

operation, hence it adjusts frequently to meet the preset timer. Another reason is that the 

high acquisition throughput could force the system to drop some frames occasionally due 

to the data transmission and memory buffer constraints. Furthermore, in real-time 

implementation, the acquisition rate could be varying more easily due to potential 

interrupts by online data analysis. Consequently, it would be inaccurate to apply a 

constant integration time step by simply assuming evenly spaced acquisition and 

inverting it. 

The actual time interval between consecutive frames should be calculated using 

timestamp of the acquired frame.  By recording the time when each frame is captured by 

camera, i.e., the image’s timestamp, the integration time interval for the term 𝑇𝑖 in sensor 

model Equation ( 14 ) could be calculated. This practice ensures that the analysis is 

immune to the unevenly sampled data or missing frames during acquisition. 

In MATLAB, there are two methods to time the image acquisition. The real time 

measurement uses a timer of "tic toc" to calculate the elapsed time from the first frame to 

each new frame. MATLAB also provides a function of "getdata" to get the exact 

timestamp of each image acquired, which function however takes significant long time of 

about 27ms compared with “tic toc” that takes only a few milliseconds. For the sake of 

computation speed, the study used the timer function of “tic toc”, which was found to 

output time intervals very close to the values from the “getdata” function, but still could 

be an error source reside in the software application. 
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6.6.2 Integration method 

The phase angle is time integral of the frequency. Algorithms for one-step 

techniques such as Euler’s method are extremely simple to program. Both specified 

rectangle (also Backward Euler’s method) and trapezoidal methods have the general 

form: New value = old value + slop × step size. The only way in which the methods 

differ is the calculation of the slope [86]. 

To demonstrate, the section presented an example ICM&M video that was 

recorded while a square block was curing under 22% UV iris level exposure for 12 

seconds with a DMD mask of 200×200 pixels. bitmap. A representative pixel (height 

220, width 310) was analyzed, and its grayscale data is shown in Figure 41. 

 

Figure 41. Integration methods: ICM&M data of a representative pixel 

 

The estimated instantaneous frequencies from the pixel’s time sequence of 

grayscale are shown in Figure 42 (black cicles). It is noted that the time intervals between 

consecutive estimations, which were run every 10 frames, are not necessarily constant, 

especially at 12 second when the hardware operation of shutting down UV lamp 

interrupted the acquisition. 
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Figure 42. Phase evaluation: time integral of the frequencies which are estimated by the 

ICM&M data mining 

 

Geometrically, the phase is the area under the frequency time curve. Integration 

with rectangle rule is straightforward, for it directly adds up the product of the fitted 

frequency from the current window of data and the time duration of the window, as 

shown with the blue lines in Figure 42. The rectangle method for ICM&M frequency-

time curve approximates the area by drawing rectangles using the right corner of the 

divided strips, and could be pretty accurate within small time step. Integration with 

trapezoidal rule approximates the region under the frequency graph with the average of 

current frequency and previous frequency, as shown with the red lines in  Figure 42. The 

trapezoidal rule utilizes frequencies derived from data points in both current and previous 

time windows, that is, involves more history data, hence, it might not reflect the current 

window’s dynamics as much as the rectangle rule could. However, trapezoidal rule could 

provide robustness in case that outlier occurs in the current estimation and previous 

estimation could mitigate the error. In Figure 42, the two methods resulted in very similar 

phase values. 

A broader comparison was made by measuring a horizontal profile line. Figure 43 

shows the last interferogram of the video. The pixels located at height 220 and width 
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from 245 to 365 at an interval of 5 pixels, totally 25 pixels, were measured by the 

ICM&M method with the two different integration methods. In Figure 44 all the pixels’ 

phases are plotted comparing the two integration methods, and it is clear that the resulted 

phase from rectangle rule and trapezoidal rule are very close to each other. As shown in 

Table 8, the two integration methods have very similar output of average phase and thus 

similar final measured height by Equation ( 14 ), and the rectangle slightly outperformed 

the trapezoidal in terms of the error relative to microscope measurement.  

 

Figure 43. Selected ROI pixels in the interferogram - profile line to measure 

 

Table 8. Comparing integration methods for profile line measurement 
Integration 

Method 

ICM&M Phase 

(cycle) 

ICM&M 

Measured 

Height (µm) 

Microscope 

Measured Height 

(µm) 

Relative Error 

Trapezoidal 6.156 73.756 74.643 -1.19% 

Rectangle 6.162 73.834 74.643 -1.08% 

 

As a conclusion, the example analysis has demonstrated that, between the 

rectangle and trapezoidal rules, each method’s strength seemed to offset its weakness, 

and one is not particularly preferable than the other in current ICM&M practice. 

However, in future, with more computation power available and more advanced 

estimation algorithms, the rectangle rule might dominate as it could fulfill better the 

concept of instantaneous frequency which is the core of the ICM&M sensor model.  



 131 

 

Figure 44. Phase evaluated at individual pixel in ROI by two integration methods 

 

6.6.3 Error analysis of ICM&M numerical integration 

The ICM&M estimated instantaneous frequency time curve, which embodies the 

first derivative of the curing height, is varying, indicating that there could be some 

measurement errors due to the Euler’s method. Please note that there is no explicit curing 

height function available for the continuous ECPL process and the derivative is only 

estimated discretely. Since there is no true value available as a priori for the curing 

velocity and height, the true value of second order derivative of the curing rate �̇�′′(𝜉) is 

unknown but needed to estimate the global error associated with the Euler’s method. One 

must apply techniques such as average second derivative of the curing velocity function 

Ż′′̅̅̅̅ (𝑡) to obtain an indirect estimate of the errors involved [86].  

Hence, the approximate error 𝐸𝑎 in cured height estimation with the first-order 

Euler’s method is calculated as below Equation ( 31 ) [86]. 

𝑬𝒂 ≅ −
𝑻

𝟏𝟐
∙ �̇�′′(𝝃) ∙ (𝑻𝒊)

𝟐 ≅ −
𝑻

𝟏𝟐
∙ �̇�′′̅̅̅̅ (𝒕) ∙ (𝑻𝒊)

𝟐 ≅ −
𝑻

𝟏𝟐
∙

𝒇′′̅̅̅̅ 𝝀

𝟐(𝒏𝒎 − 𝒏𝒍)
∙ (𝑻𝒊)

𝟐 
( 21 ) 
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where 𝑇 is the total curing time, 𝑇𝑖 is the average time interval, Z is the cured height, 𝑓 

is the instantaneous frequency, 𝑓′′̅̅̅̅  is the average second derivative of instantaneous 

frequency, 𝜉 and 𝑡 are time variables, 𝜆 is the laser wavelength, 𝑛𝑚 and 𝑛𝑙 are mean 

solid and liquid refractive index, respectively. 

Centered finite divided differences are used to estimate the derivative for each 

interval between the data points of estimated instantaneous frequency. The first and 

second derivatives of instantaneous frequency, 𝑓′ and  𝑓′′ are approximated by divided 

differences of the ICM&M estimated instantaneous frequencies as shown in Equations ( 

22 ) and ( 23 ). Thereby, the average second derivative of instantaneous frequency 𝑓′′̅̅̅̅  

required by Equation ( 21 ) is estimated as shown in Equation ( 24 ). 

𝒇′(𝒕𝒊) ≅
𝒇(𝒕𝒊+𝟏) − 𝒇(𝒕𝒊)

𝒕𝒊+𝟏 − 𝒕𝒊
 

( 22 ) 

𝒇′′(𝒕𝒊) ≅
𝒇′(𝒕𝒊+𝟏) − 𝒇′(𝒕𝒊)

𝒕𝒊+𝟏 − 𝒕𝒊
 

( 23 ) 

𝒇′′̅̅̅̅ ≅
∑ 𝒇′′(𝒕𝒊)
𝒏
𝒊=𝟏

𝒏
 

( 24 ) 

 

Taking the same pixel analyzed in Figure 41 and Figure 42 as an example, the 

error caused by the first-order integration method is estimated with the aid of Equations ( 

21 ) - ( 24 ) as below. 

𝑓′′̅̅̅̅ ≅
∑ 𝑓′′(𝑡𝑖)
𝑛
𝑖=1

𝑛
= −0.011374 𝐻𝑧/𝑠2, plugged into the following, 

Ea ≅ −
T

12
∙

f′′̅̅̅̅ λ

2(nm−nl)
∙ (Ti)

2 ≅ −
(12 s)

12
∙
(−0.011374

Hz

s2
)(0.532 μm)

2(0.0222)
∙ (0.3419 s)2 =  0.016 μm. 

The resultant error of only 0.016 µm, compared to the microscope measurement 

of 74.643 µm, is negligible. The entire line of pixels analyzed in Figure 44 is also 

investigated with the same error analysis, and the result is shown in Figure 45. It shows 

that the approximate error caused by first-order integration is within 0.05 µm, not quite 

notable. 
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Figure 45. Error analysis of integration method 

 

6.6.4 Summary and recommendation 

The Euler method will provide error-free predictions if the underlying function is 

linear, because for a straight line the second derivative would be zero [86]. Although the 

curing process is known to be nonlinear, the curing velocity reflected by the 

instantaneous frequency shows some downslope trend. The zig-zag in estimated 

instantaneous frequency time curve is primarily caused by the process noise, and the 

fluctuations could be statistically fit into an almost linear curve, which lead to a near-zero 

average second derivative 𝑓′′̅̅̅̅  in Equation ( 24 ). That is why the error analysis result 

above is very small. 

The small integration error could imply that in the curing process the part grows 

upward with an asymptotically uniform retarded motion, which could be observed from 

the instantaneous frequency as shown in Figure 33 and Figure 36. In theory [79], the 

curing process should be slowing down strictly, that is, the instantaneous frequency curve 

is expected to be a strictly decreasing function. However, the curve fitting sometimes 

might be fooled by the noise to fit into an irrational frequency, and the ICM&M 

estimated frequency curve could provide confusing up-and-downs as shown in Figure 42. 
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Nevertheless, the fluctuations could still be neutralized in statistical sense, as is resulted 

in the near-zero average second derivative 𝑓′′̅̅̅̅  in Equation ( 24 ). Furthermore, during 

ICM&M practice, there are a good many pixels which present quality signal and are 

estimated properly by the algorithms to output a frequency curve nicely reducing along 

the time. These positive results help greatly verify the inference about the curing velocity 

pattern and the conclusion about the insignificant integration error. 

Besides, a fundamental source of error in Euler’s method is that the derivative at 

one end of the interval is assumed to apply across the entire interval. With the ICM&M 

approach, the instantaneous frequency is not estimated specifically at the endpoint of the 

interval, but evaluated using the entire segment of new data within that interval. Hence 

the estimated interval-wise frequency could be more representative than a point-specific 

derivative as used in the conventional Euler’s method. Therefore, the numerical 

algorithm used in the ICM&M method would not expect as much error as one could think 

for traditional Euler’s method. 

The error may be reduced by decreasing the step size. However, too-small step 

size may lead to overfitting of the noise. Current measurement period of 0.333 second has 

shown proven accuracy, and experiments showed that half of it could improve a little bit, 

but no need to reduce further because it would not improve accuracy significantly 

anymore. 

The Euler’s method is a first-order technique, but works very well. Higher-order 

Runger-Kutta methods could be explored if necessary, however more computational 

effort will be needed. 

6.7 Validating the ICM&M data mining algorithms for estimating the phase 

angle in sensor model 

To demonstrate how the overall data mining scheme of various data analysis 

algorithms presented above works behind the scene for ICM&M, this section presents 
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analysis result of three ICM&M videos which were captured while curing a square block 

with a DMD pattern of 250×250 square bitmap under UV exposure, with intensity at 

20%, 10% and 5% iris level, respectively. The first two samples were exposed by UV for 

12 seconds, the third 26 seconds due to a low intensity. 

A representative pixel was chosen in each sample video for the analysis. Figure 

46 shows for each sample, in the upper-left graph the ICM&M data (raw data, 

preprocessed data and fitted data), in the bottom-left graph the estimated frequency 

evolution and total phase angle, in the upper-right graph the varying MHL and half life in 

the adaptive rolling fit, and in the bottom-right graph the R-square value as an indication 

for goodness of fitting. 

 

(a)  

Figure 46. ICM&M data mining for online estimation of frequency and phase angle with 

adaptive rolling fit in ECPL experiments (a) UV iris level: 20%, Exposure time: 12s; (b) 

UV iris level: 10%, Exposure time: 12s; (c) UV iris level: 5%, Exposure time: 26s. 
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(b)  

(c)  

Figure 45 (continued). ICM&M data mining for online estimation of frequency and phase 

angle with adaptive rolling fit in ECPL experiments (a) UV iris level: 20%, Exposure 

time: 12s; (b) UV iris level: 10%, Exposure time: 12s; (c) UV iris level: 5%, Exposure 

time: 26s. 

 

Firstly, in the plot of ICM&M data, generally speaking, the preprocessed data are 

smoother than raw data, and straighten out the incubation and resting stages. In Figure 46 

(a), the preprocessed data enhances the pattern of oscillation at 10 seconds; while in 

Figure 46 (b), the preprocessed data do not model the signal well at 7.5 seconds by 
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creating a tiny bump. It confirms that the image median filter could bring in some 

undesired noise and affect the accuracy, and a more advanced filter could be used in 

future to solve this problem. Herein, the benefits outweigh the harm by using the 

presented preprocessing method in the dissertation. 

Secondly, the data mining results of evolving frequency (magenta curves) in 

Figure 46, show that the statistics based classification algorithm could detect the curing 

window that is consistent with the grayscale plots. Please note that the “fourier1” curve 

fitting is only employed for the curing process, hence in the MHL and R-square plots, the 

identified incubation and resting stages are blank. 

Thirdly, the moving horizon exponentially weighted “fourier1” curve fitting, 

equipped with the adaptive scheme of changing MHL (blue lines in Figure 46) with 

thoughtful values works in all the three examples to maintain high R-square (mostly 

above 0.95 and almost all above 0.9 as shown in green curves in Figure 46), ensuring 

good fitting throughout the process. Identifying when the MHL requires adjustment 

completely depends on the data and the process. It mainly works at the transition time 

from exposed curing to dark curing, e.g., when the UV lamp was turned off at 12 seconds 

for the first two experiments and 26 seconds for the third, as one could see from blue 

curves in Figure 46, respectively. The half life is also adjusted based on the MHL as 

shown in the yellow curve. 

The extended MHL and half life in dark curing are especially useful when the 

resting period is not present or could not be identified. A near zero frequency estimated in 

the tailing region would help mitigate the issue. In Figure 46 (b) and (c), the resting stage 

was not identified out due to the sloping tail, but low frequency was fitted at the end of 

curing thus the noise in the supposed-to-be flat resting period would not introduce 

significant frequencies in the phase calculation. 
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Lastly, the numerically integrated phase angle, geometrically the area under the 

magenta curve in the frequency plot, agrees well with the counts of visible cycles in the 

grayscale plot. 

6.8 Measurement intervals 

From the point of view of studying the potential accuracy of measurements, it is 

important to emphasize that all physical systems accuracy studied have a finite extent 

both in space and time, and all measurands are averaged with respect to these space 

volume and time interval [87]. Applying the ICM&M method for measuring part height, 

also needs considering about issues from measurement intervals, both spatially and 

temporally, particularly in order to strike a compromise between measurement accuracy 

and speed for the ultimate goal of real-time process measurement under realistic 

constraints of hardware speed and computation power. This section discusses about 

choosing appropriate spatial interval and adequate temporal interval to increase 

measurement efficiency without affecting accuracy significantly. 

6.8.1 Spatial size reduction: adjacent pixels group together 

Spatial interval could be determined by the filter span (e.g., 5×5) used in the 

preprocessing, and it was experimentally found that measuring every five pixels would 

not affect the accuracy significantly due to proximity similarity especially in the studied 

case of curing flat top parts. Neighboring pixels are similar and would provide too much 

redundant information. It is acceptable to skip the redundant measurements by selectively 

measuring at an interval of every several pixels. 

6.8.2 Measurement period 

First of all, in the ICM&M method, measurement period could be estimated by 

camera acquisition rate (e.g. 30 fps) and number of frames per run of measurement as 

shown in Equation ( 25 ). Both determine the signal quality and the measurement 
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accuracy. The base frequency less than 1 Hz means that measuring several times per 

second could be sufficient to capture the process dynamics. In this study, with 

approximately 30 fps acquisition, we measured the cured height by evaluating the 

instantaneous frequency after acquiring every 10 frames, i.e., measurement period is 10 

frames per measurement / 30 fps = 0.333 second which could sufficiently detect a change 

in instantaneous frequency of the curing process. 

𝑇𝑚𝑒𝑎𝑠 ≅ 𝑁𝑚/𝑓𝑎 ( 25 ) 

where, 𝑇𝑚𝑒𝑎𝑠 is the measurement period, 𝑁𝑚 is the number of frames newly acquired 

in each run of measuring the current cured height with latest estimated frequency, 𝑓𝑎 

is the ICM&M camera’s acquisition frequency (unit: frames per second). 

Meanwhile, the basic scheme of rolling fit for instantaneous frequency requires 

sufficient sampling data points to evaluate the frequency for a brief time window. A 

higher than minimum sampling frequency would help greatly signaling the process 

dynamics, reduce the chance of aliasing frequency, and enables a more accurate 

estimation of the instantaneous frequency in the sensor model. We did try lower 

acquisition rate under 10 fps (about 1s per run of measurement based on Equation ( 25 )), 

and the signal of oscillating grayscales was skewed resulting in extensive measurement 

error. Even acquisition at 15 fps (about 0.667s per run of measurement based on Equation 

( 25 )), performed better and under 10 fps, but still not as well as 30fps. Besides, in reality 

missing frames may happen due to hardware and software limitations, a slower 

acquisition would suffer more from the loss of frames and tend to distort the signal. 

The ICM&M sensor model assumptions will hold better for smaller time steps. In 

mathematic theory, the smaller the measurement period is, the more precise the 

measurement is. In reality, a smaller sampling window in a single run of estimation could 

be more vulnerable to noise and could not represent a larger-scale trend. Besides, 

frequent measurement in real time would demand for fast computation so as not to hinder 

the simultaneous data acquisition. A compromise is made between principle and practice 
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by setting the measurement period to be 10 samples of data points (i.e. frames) per run of 

measurement for the study with a nominal image acquisition rate at 30 frames per second. 

Please note that the measurement period in this study is in terms of the number of 

samples per measurement, rather than conventionally time interval per measurement. 

Since the image acquisition rate is subject to change, the sampling space is therefore not 

uniform, and the measurement period has a fixed number of samples but non-constant 

time step. In the offline ICM&M experiments as presented in Chapter 8, a rough 

estimation of measurement period in terms of time is 10/30 = 0.333 second per 

measurement. 

6.9 Aggregating data for final height estimation 

Aggregate data are commonly used for measuring practice improvement. In 

statistics, when data are aggregated, groups of observations are replaced with summary 

statistics based on those observations. In this study, aggregate data are defined as 

ICM&M resultant data of cured heights not limited to one single voxel, but all the voxels 

that are tracked across the region of interest (ROI). Without aggregate data, outcomes 

from mining multiple pixels’ ICM&M data cannot be compared to a standard 

measurement of a cured part’s height profile from a confocal microscope. There are 

several issues that complicate the gathering of aggregate data, including outlier data and 

the process of comparison to microscope images. 

In this study, the average height of the ROI is of the greatest interest and is the 

easiest to be compared with the microscope measured height profile. In future, if a close-

up profile for each voxel is needed, outlier detection and treatment algorithms such as 

proximity-based approaches [83] are recommended for a robust estimation of individual 

voxel height. 
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Given a dataset of estimated voxel heights derived from the abovementioned 

ICM&M method, this section aims to retrieve the attribute of the cured part height by 

computing an aggregate numeric representation. 

6.9.1 Outliers in cured height  

There are several definitions for outliers. One of the more widely accepted 

interpretations on outliers is “an observation (or subset of observations) which appears to 

be inconsistent with the remainder of that set of data [88]”. However, the identification of 

outliers in data sets is far from clear given that suspicious observations may arise from 

low probability values from the same distribution or perfectly valid extreme values (tails) 

for example. 

Figure 47 illustrates the causes and classification of outliers in cured height. In the 

real world, non-outliers in the ECPL output of cured part height are from the normal 

process variations that are present as real surface roughness. Outliers in the ECPL process 

output are produced from abnormal process failures (e.g. DMD mask defection and 

optical setup misalignment) that induce physical defects in cured parts. With the ICM&M 

estimated height data, suspicious outliers could be either positive outliers or negative 

outliers but prone to be falsely identified. The false positive and negative outliers stem 

from bad signal data from interferograms, and or wrong estimation for example 

obviously wrong counts of the phase cycles. 
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Figure 47. Causes and classification of outliers in cured height 

 

The root cause of discrepancies in ICM&M estimated heights is the acquired low-

quality interferograms, which might be disguised with speckles due to multiple scattering 

within the glass substrate and resin material leading to extra peaks that can skew the 

fitted result [89]. Noise could be caused by micro particles reaction and interaction that 

influences the optical behavior in the ECPL process. Another cause is the hardware 

camera which fails to record high-quality interferograms, due to for example heating that 

affects the electronics. Regardless of the noise source, artificial data techniques can only 

remedy to a certain extent but cannot completely remove the bad signal issues. 

Another significant source of outliers is the ICM&M sensor model, which is 

subject to some physical principle limits. The natural limitations are due to the fluctuation 

phenomena connected with molecular-kinetic substance structure and probably a more 

fundamental character connected with nano-scale material properties in the ECPL 

photopolymerization process. 

Besides, the presented algorithms employed in the ICM&M system also produce 

some outliers. Like any concrete measurement needs some priori information [87], the 

ICM&M method needs a definite value of the refractive index in the sensor model, as 

well as empirical critical or bounding values for guiding the algorithms towards realistic 

solutions. The uncertainty in the pre-defined parameters for the ICM&M model and 
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algorithms can propagate into the measurement errors of final cured height resulting in 

outliers. 

Outliers could be examined by comparing the ICM&M result against microscope 

measurement of the cured part, however it is impractical to compare voxel by voxel. 

Especially, for real-time ICM&M, there is neither time nor in-situ standard reference 

such as microscope for checking outliers. Therefore, a statistics based outlier detection 

method is needed to determine outliers in the ICM&M resultant data of cured heights. 

This study proposes a solution to reduce the effect of outliers in final average height 

estimation using robust statistics, which would mitigate the dilemma of 

removing/modifying observations that appear to be suspicious outliers. 

6.9.2 Robust statistics used to estimate the average height 

While implementing ICM&M for the height of a cured part, to use multi-pixel 

average height is more representative and reliable than to use single pixel height because 

sometimes single pixel measurement may not be accurate due to low data quality or 

algorithm deficiency. Groups of pixels working in ensembles can create better predictions 

than one pixel alone. Therefore, robust multi-pixel measurement is applied for the 

ensemble average to infer the height of the cured block. To capture the grand average in 

the data, robust regression is an elegant candidate solution which up-weights the well-

predicted cases and down-weights the poorly predicted cases [90]. 

Depending on the time and computing power constraints, it is often possible to 

make an informal assessment of the impact of the outliers by carrying out the analysis 

with and without the suspicious outliers [83]. As this study adopted offline analysis 

which was exempt from the computation constraints, regular statistics with equal weight 

to all data and robust statistics with discretion to outliers were both used to estimate the 

measurement distribution of cured height. Specifically, provided an ICM&M resultant 

dataset of estimated heights for ROI voxels, the regular statistics adopts traditional least 
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squares fitting by calculating the normal average and deviations with “mean” and “std” 

functions in MATLAB. The robust statistics is performed in MATLAB by a robust 

regression algorithm -“robustfit” [91], which also estimates the standard deviation () 

with the larger of robust estimate of  and a weighted average of the root mean square 

errors (RMSE) from least square fitting and robust estimated . 

To illustrate the usefulness of the robust statistics method, results from a series of 

experiments, which cured a square block with a DMD pattern of 250×250 square bitmap 

under various settings of UV exposure intensity and time, are presented in Figure 48. The 

experiment was designed to study exposure time and exposure intensity effects, and each 

experiment setting was repeated once to test the repeatability also. Please note that all 

cured parts were expected to be flat-top square blocks. More research results about the 

experiment were reported in Chapter 8 [92], and this dissertation reports only the result of 

robust regression for postprocessing the ICM&M resulted multiple voxel heights. The 

ICM&M video for each curing experiment was analyzed with a 145×145 pixels square 

ROI that approximated the cured shape in the interferogram. The ROI was measured with 

a measurement period at 10 frames per run and a spatial interval of five pixels. Hence, 

totally 900 pixels were measured for each cured part, and each pixel’s time series of 

grayscale were analyzed by the same ICM&M data mining procedure presented in the 

dissertation. All the cured part heights were also measured by an ex-situ confocal 

microscope, which did not directly provide variation in the height profile but only 

average values as shown in  Figure 48 (green cross). 
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Figure 48. Regular statistics vs. Robust statistics: ICM&M estimated height for 22 cured 

samples – average with error bar (standard deviation across the cured part) 

 

As shown in Figure 48, only in four out of the twenty-two experiments did the 

regular statistics give more accurate average height (bold black line) than the robust 

statistics did (bold red line). Although regular statistics could predict average height well 

sometimes, it is still inferior to robust statistics which is far more likely to provide less 

biased estimation of the average height. 

Furthermore, by examining the exported microscope measurement data for some 

ECPL cured samples’ representative profile lines, it was found that the sample standard 

deviation was around 8 µm. Though the study lacks comprehensive microscope data to 

get exact variation over the entire cured area for each sample, the statistics of variation of 

sampled line profiles measured for ECPL cured parts with the same setting and similar 

surface could offer a fairly good reference for the population standard deviation values. 
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In Figure 48, in each of the experiments, the regular statistics yielded a larger standard 

deviation (black error bar) than the robust statistics did (red error bar), confirming that 

the outliers could induce unnecessarily drastic variations in the heights. The robust 

statistics method estimated that all the samples have less than 8µm deviation, which 

allows some room for the variations introduced by post-curing operations such as 

washing and cleaning, thus reaching the generally observed surface variation of 8 µm 

under microscope. For instance, the six experiments of 35%, 30% and 20% iris level 

curing had about 14 µm deviations by regular statistics and about 6.6 µm by robust 

statistics. Therefore, the robust statistics provide a more reasonable and realistic 

evaluation of the variations in cured height profile. 

Since the robust regression estimation has proven accurately compared to the 

microscope measurement as demonstrated in Figure 48, the method of robust regression 

has been chosen to estimate the average and standard deviation of ICM&M measured 

height profile. Figure 49 shows, for each experiment presented as in Figure 48, the 

ICM&M resultant measurement dispersion, which reveals in some sense the 

measurement capability and uncertainty of the ICM&M method. The 1-sigma percentage 

means the portion of the total number of measured pixels (900 in this set of experiments) 

that has an ICM&M estimated height within one standard deviation away from the 

average height. In all the experiments, the 1,2 and 3 sigma distributions display quite 

consistent values around 68.7%, 89.8% and 94.2%, respectively as shown in Figure 49. 

The heights within one standard deviation have been found to agree with the cured part’s 

actual height profile average and variations under the microscope. Hence, in the ICM&M 

estimation, data within one standard deviation are supposed to be true negative outliers, 

data off one standard deviation are assumed to be outliers that could be most likely true 

positive outliers. Improved hardware and software could help reduce the chance of false 

positive outliers which could be estimated better by the ICM&M data mining algorithms, 

and thereby increase its measurement capability. 
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The one-sigma percentage disclosed in Figure 49 has an important implication. 

From the perspective of measurement capability, for entire part measurement, it could 

mean that about 70% of the cured area could be measured accurately by the ICM&M 

method. In terms of measurement uncertainty, for individual voxel measurement; 70% 

chance is that its height could be measured accurately by the ICM&M method. 

 

Figure 49. Measurement dispersion using ICM&M method 

 

6.9.3 Summary and recommendation 

It is important to investigate the causes of the possible outliers, removing only the 

data points clearly identified as outliers. Situations where the outliers’ causes are only 

partially identified require sound judgment and a realistic assessment of the practical 

implications of retaining outliers. Given that their causes are not clearly determined, they 

should still be used in the data analysis. There are different techniques to identify 

suspicious observations that would require further analysis and also tests to determine if 

some observations are outliers. Nevertheless, it would be dangerous to blindly accept the 

result of a test or technique without the judgment of an expert given the underlying 

assumptions of the methods that may be violated by the real data [83]. 
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In this study, for overall height profile measurement of a flat top square block, 

robust statistics is used to aggregate the data for average height measurement without 

examining every pixel’s height. In the future, for individual voxel height measurement, 

one might apply outlier detection and treatment by the nearest neighbor method to enable 

a robust estimation of close-up height profiles. Investigation and implementation of such 

an outlier detection and correction for individual voxel measurement is presented in 

Section 9.5.2.2 while dealing with a more challenge data streamed from real-time 

implementation of the process measurement and control. 

6.10 Summary of the data analysis algorithms for ICM&M 

The study successfully developed a feasible framework of ICM&M data mining 

algorithms, which was experimentally validated as being accurate enough to extract 

useful information as well as being robust enough to cope with imperfect data. The 

dissertation presents the detailed techniques and analysis about the ICM&M data mining 

algorithms, in order to provide insights into how the ICM&M method arrives at a 

measurement result and to provide greater confidence in the upcoming use of the 

ICM&M method for ECPL process measurement and control. 

The entire chain of data mining that drives the methodology of ICM&M for the 

ECPL process and product measurement, as shown in Figure 50, consists of data filtering 

in preprocessing, classification methods to identify the process stages, adaptive curve 

fitting to estimate the instantaneous frequency of the curing window data, numerical 

integration to evaluate the total phase angle, conversion of the total phase angle with the 

sensor model to the desired result of cured height, and robust regression with outlier 

detection and treatment to estimate the average height profile in final aggregation of 

multiple voxels measurement. In Figure 50, green boxes represent the data flow, yellow 

boxes mark the algorithms, and gold boxes provide empirical input of some algorithm 

parameters. 
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Figure 50. ICM&M data mining approach: data flow and algorithms 

 

For the ICM&M data mining algorithms, there could be multiple fitting solutions 

to the same data if not enough constraints given. In order to improve the performance in 

data mining problems, one should build in as much prior knowledge as possible [81]. The 

techniques of specifying some empirical critical values for the statistical learning of the 

non-curing process stages, and applying empirical values for the adaptive curve fitting to 

the data in curing stages, contribute positively and significantly to force these algorithms 

to search for a more realistic analysis other than stopping at an arbitrary seemingly good 

result. It requires domain knowledge as well as explorative experiment to set practical 

guidance for the ICM&M data mining [81], which is critical in fulfilling the ICM&M 

method as both real-time and offline measurement system for the ECPL process. The 

system configurations and process parameters could affect the process dynamics, 

therefore, the empirical values might require tuning accordingly. Nevertheless, the 

fundamental principle and scheme of ICM&M algorithms are expected to be valid. Please 

note that all the empirical values used in this study were effective for the current ECPL 
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and ICM&M systems setup, and it is recommended that users conduct test experiments as 

necessary for identifying the specific system under investigation. 

For the data-enabled ICM&M method, this study employed a modest number of 

basic data mining techniques and demonstrated the effectiveness and potential of the data 

mining approach in real-time monitoring and measurement for the ECPL process. The 

essential nature of our data analysis approach underlying the ICM&M method also 

subjects its real-time implementation to computation power limits. In future work, to 

enhance the accuracy and robustness and to realize real-time applications of the ICM&M 

method, more advanced data mining technologies including high performance computing 

could be utilized. 

6.11 Chapter summary 

Both manufacturing and measurement are among the myriad of application fields 

where data mining applies. In this chapter, challenged by the size and noise of data, we 

explored the data analysis underpinning of the ICM&M method for ECPL process 

measurement. 

A data mining approach for evaluating the interferometric curing monitoring and 

measuring (ICM&M) sensor model was developed, to enable a real-time measurement 

method of a photopolymer additive manufacturing process. The ICM&M algorithms 

were designed and verified to be intelligent, accurate, robust and efficient for handling 

large volume of stream data with process dynamics and noises. Algorithm parameter 

effects were studied, and empirical values obtained from experimental observations were 

incorporated to guarantee realistic solutions. The measurement characteristics of ICM&M 

accuracy, precision, capability and uncertainty were revealed by experiment data 

analysis. 

Examples were provided to illustrate how each algorithm works for the specific 

goal at different ECPL process stages. Effectiveness and limitations were presented at the 
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end of each section to provide more insights about the algorithms. Data from a batch of 

twenty-two experiments were analyzed at the end, demonstrating that the overall data 

mining scheme could succeed in measuring the total cured height with good accuracy 

(mostly less than 5% relative errors) and more details about the measurement 

characteristics of the ICM&M method would be reported in Chapter 8. The reported 

algorithms, working together, enable about 70% of 900 voxels in each of the 22 cured 

parts being measured within reasonable deviation, and the 30% outliers turned out to not 

affect the accuracy of average height estimation due to the virtue of the robust 

algorithms. Improvements in hardware and software can definitely enhance the ICM&M 

performance. Besides, it was found that the computing time with all the algorithms for 

each run of frequency estimation is below 200 milliseconds depending on the data 

quality. Compared to the measurement period of around 330ms, the running time 

indicates that the developed algorithms can provide a feasible real-time measurement 

solution. 

The ICM&M system combines information from raw camera data, insight from 

the sensor model and intelligence from data mining algorithms to reveal the ECPL 

process dynamics of evolving cured part dimensions, especially the vertical height 

profile. It benefits from the established sensor model with well-trained algorithms for the 

ICM&M data analysis. The developed ICM&M method visualizes the process dynamics, 

which is useful for modeling of photopolymerization based additive manufacturing 

processes. The real-time accessible sensor technology with the thoughtful ICM&M 

algorithms can enable deployment of advanced control technologies into the ECPL 

process, and can enhance the quality of fabricated parts. 

Given the rather large number of data analysis algorithms that are currently 

available, there may not be a single best algorithm that produces the most accurate result 

with ICM&M. We selected these algorithms which are easy to understand, fast and 

interpretable, balancing the computation accuracy and computation expense. 
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Recommendations are made constantly during the presentation in hope to motivate 

further investigation for alternative algorithms given enhanced computation power and 

hardware performance is available in the future. 

To conclude, this chapter develops a paradigm of merging the advances in data 

mining technologies with the urgent need for improvement of AM processes with real-

time measurement and control. It is aimed to elaborate on how the time series of data is 

processed for addressing Research Question 1, specifically, the online parameter 

estimation algorithms that underpins the Research Hypothesis 1. 
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CHAPTER 7 COMPUTER IMPLEMENTATION FOR THE ECPL 

PROCESS MEASUREMENT & CONTROL 

 

The task of this chapter is to introduce an integral part for ECPL process 

measurement and control (M&C) – the software, denoted as “ECPL-M&C software” in 

this study. Both general and specific design requirements for metrology software are 

presented in Section 7.1and 7.2, respectively. Taking into account the considerable effort 

required on creating, developing, debugging, studying and applying the code, the thesis 

presents detailed design and development of the ECPL-M&C software in Section 7.3. 

Motivation and visions for the software is revisited and conclusions are made in Section 

7.4. 

7.1 General design of software used in metrology 

For solving problems in metrology, software has been increasingly used for data 

acquisition and processing, transmitting, storing and presenting measurement results, 

along with auxiliary infrastructural device and information [87]. Requirements for 

measurement software include compatibility with hardware, adequacy of computation 

resource, integrity of code and configuration parameters. In real time scale, the 

permissible latency time for getting a measurement result is another important 

consideration. Errors of the software itself should be insignificant as compared to the 

transformed errors of input data and to the methodical errors of the algorithm. 

7.2 Design a software for the integrated system of ECPL and ICM&M 

For ECPL process measurement and control, a software is needed to interface the 

ECPL system’s hardware equipment including the UV lamp, DMD and CCD camera for 

process operation, measurement and control. In Figure 51, the brown dashed lines 

indicate the communication between the software and hardware. The double arrows 
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between the app and the camera mean that the software could both send instructional 

signals to the camera and receive image data from the it. The one-way arrow to UV light 

source and to DMD, respectively, means that it only write into the lamp and DMD 

without data feedback. As a console for transmitting commands and data, the software is 

also intended for all numerical computing needed for the process control. 

 

Figure 51. The integrated ECPL system: ECPL process, ICM&M module, and MATLAB 

software for ECPL M&C 

The MATLAB application is referred to as “ECPL-M&C software” in the study, 

and designed with the specific functions as below. 

1. Provides a human machine interface (HMI) to operate the whole system. 

(1) For the ECPL process 

a) Turns on / off the ECPL UV lamp (OmniCure® S2000) to start / 

stop the curing process. 

b) Sets the UV iris level to manipulate the irradiation intensity for 

ECPL curing. 

c) Generates cross-section bitmaps for the target 3D object. 

d) Projects the time sequence of bitmaps onto DMD to obtain the 

specified thickness for each part cross-section. 
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(2) For the ICM&M module 

a) Starts / Stops the ICM&M camera. 

b) Selects a region of interest (ROI) to analyze and measure. 

c) Starts / stops image acquisition and analysis. 

d) Writes the acquired images into a video file for recording the 

ECPL process dynamics. 

e) Reports and saves process data and measurement results. 

2. Performs all the computation for the ECPL process measurement and control.  

(1) For measurement 

a) Implement the ICM&M sensor model and algorithms to measure 

the ROI pixels cured height 

b) Complement the ICM&M algorithms with data analysis of the 

estimated parameters and the resultant measurements to evaluate 

the cured height more accurately. 

(2) For control 

a) Implement the time control algorithm to derive the control input of 

exposure time for each bitmap. 

b) Implement the intensity control algorithm to derive the control 

input of exposure intensity (i.e., UV iris level) for each bitmap. 

This task is out of the work scope of the research and will be 

incorporated in the future work. 
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7.3 Development of the ECPL-M&C software 

7.3.1 Software tasks 

A graphical user interface using the graphical user interface development 

environment (GUIDE) of MATLAB was created to implement the ICM&M method for 

the ECPL process. The application was designed to perform the following tasks. 

 Visualization 

Build a graphical user interface to visualize the process interferograms and online 

measurement results. 

Provide user control components such as pushbuttons and edit boxes to operate 

the ECPL process and to streamline the process with the ICM&M acquisition and 

measurement analysis. 

 Hardware connectivity 

Connect and communicate between the software application and hardware 

equipment including the ultraviolet (UV) lamp and DMD in the ECPL system as well as 

the CCD camera in the ICM&M system. 

 Data management  

Create a MATLAB memory map file to log the acquired interferograms data and 

timestamps, process parameters such as the UV lamp iris level and exposure duration, 

and measurement parameters such as measurement period and calibrated refractive 

indices. 

 Numerical computation 

Implement the ICM&M algorithms, and perform data analysis required for best 

estimation of the cured height profile of the ECPL cured part. 

 Report generation 

Document and save into MAT-files all the data, curve fitting estimated parameters 

for the sensor model, along with the measurement results of the cured heights. Display 

and save the results of time-height curve and ROI height profile in figures. 
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7.3.2 Modularity and scalability 

As shown in Figure 52, the application can be functionally modularized into two 

main parts – process measurement with ICM&M (green parts in the figure) and process 

control of ECPL (blue parts in the figure). The ICM&M part is further divided, based on 

usage, into offline ICM&M (brown in the figure) and real-time ICM&M (purple in the 

figure), both of which employs the same algorithms to analyze the interferograms data 

extracted from offline replay and real-time acquisition, respectively. The ECPL process 

part can be broken down into lateral control and vertical control sections. Each module is 

designed with considerable scalability to extend the software capability in future for full-

field measurement and comprehensive control in fabricating complex 3D objects for real-

world applications. 

 

Figure 52. MATLAB application for the ECPL process measurement & control: 

functional modules 
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7.3.2.1 Software module for the ICM&M 

The offline ICM&M utilizes a video record of interferograms captured when the 

ECPL process was curing a part to measure that cured part. The three brown blocks on 

the upper-right corner of Figure 52 states that the three main uses of the offline 

measurement result: 1) to calibrate the refractive index as explained in the ICM&M 

sensor model and calibration process; 2) to serve as a simulation analysis tool for the 

ICM&M algorithms development as shown in the “Algorithms research & test”; 3) to 

provide a benchmark unveiling the full measurement capability and accuracy without 

computation power limits effects that would make the real-time ICM&M underperform. 

The real-time ICM&M features in-situ interferograms acquisition. In MATLAB, 

the “Image Acquisition Tool” provides an efficient workflow to solve the challenging 

imaging acquisition problem using the ICM&M system’s GigE vision camera. To use the 

specific ICM&M camera in MATLAB, the right hardware support packages for both “IP 

Camera” and “Gige Camera” must be installed so that the software can recognize the 

camera correctly and access to its attributes settings properly. It is worthy to point out 

that we initially used the "OS Generic Camera" hardware package which assumes 

wrongly the camera as "winvideo" and could not access fully or correctly to its attributes; 

and consequently we couldn't capture the whole curing area with a reasonable resolution. 

Another issue with the camera misidentification was that it was not stable in the camera 

output formats which cause trouble in our experiment of ICM&M. Appropriate handling 

of the ICM&M camera as a Gige IP camera helps integrate the ICM&M hardware with 

the ECPL system neatly in the software app. The application was ultimately programmed 

to be able to configure the camera attributes and acquire images with triggers. For the 

image acquisition, a timer function is used to regulate the acquisition speed in MATLAB. 

The “ICM&M algorithms & Data analysis” section is coded to execute the 

ICM&M algorithms of moving horizon exponentially weighted Fourier curve fitting and 

numerical integration, along with some necessary data processing and analysis to better 
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estimate the cured height. It can analyze the intensity data for all pixels within the preset 

region of interest (ROI), which could be selected interactively by mouse dragging a 

rectangle on the interferogram or specified programmable by defining a matrix of 

interesting pixels’ coordinates. For instances, after an interactive placement of a rectangle 

on the current axes, the analysis module can automate the data processing and 

measurement analysis for the rectangle’s center pixel or corner pixels or horizontal 

centerline or vertical centerline or all of them at the same time. Alternatively, if an area of 

pixels is specified as the ROI in the code, the analysis module can output the area height 

profile correspondingly. It is worth to note that specifying ROI pixels in the code before-

hand instead of in the GUI platform in real-time can facilitate continuous acquisition and 

logging. Conclusively, the application features wide measurement types including single 

point, discrete multi-point, line profile and area profile vertical height. It is scalable to 

full-field measurement as long as the computer has sufficiently fast processor and large 

memory. 

7.3.2.2 Software module for the ECPL: principle and practice 

As stated, the ECPL process control consists of two general dimensions’ control: 

the lateral control and the vertical control. This research focuses mainly on the vertical 

control and would address the lateral control only to some extent as necessary, because 

the vertical control is not as straightforward as the lateral control and presents more 

research interest and challenges. Besides, in cases of curing a 3D parts which can be 

discretized into vertical voxels, controlling the vertical height profile would have 

virtually rendered the lateral shape and surface profile. 

The lateral control module aims to manipulate the size and shape of bitmap 

displayed on DMD which determines the cross-section of the cured part. It can provide a 

sequence of bitmaps with different sizes and/or shapes required to form a complex 3D 

object. In this study, experiment of curing rectangle blocks is used to test and validate the 
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process, but please be noted that a wide range of geometrical shapes bitmaps (e.g., 

circles) could be generated and employed in real applications and the software can easily 

be adapted and extended for more complex 3D objects curing. 

The vertical control module, which is the primary research objective, controls the 

cured height of a voxel. A voxel is defined as a block growing on the resin substrate 

which is divided into pixels that are mapped to the interferogram pixels, so that the lateral 

size of the cured part corresponding to one interferogram pixel determines the lateral area 

resolution for a voxel.  

In the study, a lateral control session with rectangle bitmap specification and 

generation, and a simple on-off control with the real-time ICM&M feedback intended for 

the vertical height control are included in the software application. 

7.3.3 Graphical user interface 

Figure 53 shows the application’s graphical user interface (GUI). To start with the 

application, one should select from the left-bottom dropdown menu “Real-time 

Measurement” or “Offline Measurement”, for the former involves with real-time 

interferograms acquisition and simultaneous online measurement while the later replays 

off line an already acquired video of interferograms and performs ex-situ measurement. 

“Measurement Parameters” as shown in the upper-right panel are always 

required beforehand and one can use the “Default” parameters which may provide a good 

set of starting values but may still need modifications, especially for the refractive indices 

values which are subject to change with materials and disturbances (e.g. oxygen diffusion 

and inhibition). 
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Figure 53. MATLAB application for the ECPL process measurement & control: 

Graphical User Interface 

 

In the “Real-time Measurement” practice, one firstly presses the button “Start 

Camera” to set up the video input object in MATLAB and to configure the ICM&M 

camera setting, and can immediately preview images in the GUI axes. Secondly, click 

“Set ROI” to notify the application the pixels of interest for measurement analysis. 

Herein the ICM&M part is ready and the ECPL process part should be started with 

inputting the bitmap size and grayscales into the “Rectangle Width” and “Rectangle 

Height” boxes followed by pushing buttons of “Generate DMD Bitmap”. Please note that 

the application provides a rectangle bitmap of user-specified width, height and grayscale, 

for the sake of experiment simplification and validation efficiency, and can be easily 

extended to a series of various shape bitmaps in future. Two methods of exposure time 

control are provided for deciding when to turn off the UV lamp. One is simply a 

stopwatch control with preset target exposure time, the other a basic negative feedback 

control - “On/Off” control decided by whether or not the measured cured height has 

reached the setpoint of cured height. The user must select one of them in the experiment. 

Also, the UV iris level should be specified, otherwise “22” is used by default. Thirdly, 
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press “Acquire & Analyze” to get ready the image acquisition and measurement 

computation. Lastly, user needs to click “Open UV” to turn on the UV lamp, the UV light 

beam will be shaped by the DMD displaying the previously generated rectangle bitmap, 

and a rectangle block will be cured in the resin chamber. Meanwhile, the entire ECPL 

process should have been captured by the ICM&M module. 

If the ROI is empty, only real-time acquisition without online measurement will 

be performed. In the validation of ICM&M method, due to the computer limitation, we 

did not set ROI for online ICM&M which would cause severe loss of frames during 

image acquisition and impair the performance evaluation of the ICM&M method. 

However, we later improved the software code with parallel computing and presented the 

real-time ICM&M results in the thesis. 

In case of “Offline Measurement”, instead of starting camera, one firstly should 

load an acquired video of interferograms and associated timestamp file by pressing the 

button “Load ICM Video”. A toolbar of replaying video is provided for user to play or 

stop, and to play the first frame, the previous frame, next frame and last frame as shown 

at the bottom of GUI. Click “Play” and stop at the desired starting frame for measurement 

analysis, click “Set ROI” and “Play” again. Then the application will perform 

measurement analysis while playing the frames, which could be taken as a simulation of 

the “Real-time ICM&M” doing acquisition and analysis simultaneously. 

7.3.4 Data structure 

In MATLAB, “struct” and “cell” arrays are the most commonly used containers 

for storing heterogeneous data of different types and sizes. One most important data 

structure – the resultant data structure in the software program is introduced as below.   

The measurement result, as stored in the variable “MeasureRet”, returns all the 

rolling fit coefficients, processed coefficients and online estimated heights. It is an nPOI-
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by-1 structure array of all points measurement. Specifically, the result variable 

"MeasureRet" is a structure array including the following data:   

1) nPOI: number of points of interest 

2) RunNo: number of runs of online parameter estimation 

3) "PixelHeightWidth": pixel's coordinate vector [height; width] 

4) "PixelGrayscalesData": point data, i.e., time-series of pixel grayscale 

"PixelGrayscalesData_Smooth": smooth data using a moving average filter. 

5) "FittedCoeffs": coefficients returned by each run of rolling fit for each POI 

"fourier1" returns 4 coefficients y=a0+a1*cos(px)+b1*sin(px) 

Note: first set of coefficients is the initial values 

The length of coefficients = 4*(RunNo + 1) due to the initial value 

FittedCoeffs = [a0; a1; b1; p]. 

6) "ProcessedCoeffs": Processed coefficients, will grow to be a 3-by-RunNo 

matrix 

“ProcessedCoeffs” = [I0; I1; p], where I0 is the estimated baseline amplitude 

(DC), I1 is the estimated fringe amplitude (AC), and p is the estimated frequency.  

Note: y=I0+I1*cos(px+phi), the phase angle phi is not of interest here, hence not 

stored in the data. 

7) "CureFlags":  Flag the curing window, i.e., mark the beginning of curing 

8) "Times": RunNo-by-1 matrix, array of run time for each POI  

9) "Heights": RunNo-by-1 matrix, estimated height at each run for each POI 

10) "Freq_w": RunNo-by-1 matrix, the real frequency "𝜔" of Im = I0 + 

I1*cos(wt+phi) at each run for each POI 

7.3.5 Parallel computing 

An easy and effieicient data-parallel programming is essential and desired to 

fulfill the performance of real-time ICM&M and ECPL process control. MATLAB® 
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provides two main ways to take advantage of multicore and multiprocessor computers.  

By using the full computational power of your machine, one can run the MATLAB 

applications faster and more efficiently. One can run multiple MATLAB workers 

(MATLAB computational engines) on a single machine to execute applications in 

parallel, with “Parallel Computing Toolbox™” [93]. This approach allows one more 

control over the parallelism than with built-in multithreading, and is often used for 

coarser grained problems such as running parameter sweeps in parallel. 

7.3.5.1 Some key variables 

(1) “status” 

“status” is a global variable which conveys three important statuses – 

“measurement status”, “lastWriteFrameIdx” and “workerReady”. 

 “measurement status”. 1: running, 0 stopped.  

1. Used in the timer function “processMeasureTimer”: if measurement is 

stopped, stop acquisition and writing frames and just preview. 

2. Used in "icm_main_worker.m" while loop, if measurement is running, 

keep the loop of measurement analysis. 

3. In "pb_AcquireAVI_Callback.m", set to be "0" when push button "Stop 

Acquisition"  

4.  In "pb_AcquireAVI_Callback.m", set to be "1" when push button 

"Acquire & Analyze" and calls the function "icm_init_mem_file.m" which 

actually initialize the status to be "1" 

 “lastWriteFrameIdx”:  

Used to mark the index number of previous frame for continue numbering 

the subsequently acquired frame. 

 “workerReady” 
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In "pb_AcquireAVI_Callback.m", set to be "0" when push button 

"Acquire & Analyze" and calls the function "icm_init_mem_file.m" which 

actually initialize the status to be "0". 

Then still in "pb_AcquireAVI_Callback.m", it creates the batch job 

"icm_main_worker.m" which gets started and when ready tells GUI that worker is 

ready by setting the status to be "1".  

In "pb_AcquireAVI_Callback.m", it waits until the status is set to be "1" 

and continues to proceed to notify the timer function for image acquisition by 

initializing the frame index, uvStatus and acquiring status, and image data matrix, 

and by enabling the UV Lamp Switch Button. Only when UV lamp is turned on, 

the acquisition would really start in the video timer function so that it can acquire 

the entire process from UV curing start till after curing stop. 

(2) “handles.mmf” 

Memory-mapping is a mechanism that maps a portion of a file, or an entire file, 

on disk to a range of memory addresses within the MATLAB® address space. Then, 

MATLAB can access files on disk in the same way it accesses dynamic memory, 

accelerating file reading and writing. Memory-mapping allows you to work with data in a 

file as if it were a MATLAB array. In the real-time ICM&M app, the memory map file 

"icm_comm.dat" plays a role of cache. The cache file is used for temporary storage of 

data and can be accessed more quickly than the main memory. 

The global accessible variable "handles.mmf" stores the acquired images data and 

can be retrieved immediately by parallel thread for measurement analysis. It is initialized 

in the pushbutton "Acquire & Analyze" callback function, and written in the video timer 

function, and read in the batch job for measurement analysis. 
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7.3.5.2 Flow chart 

Below presents a flowchart of the software to achieve real-time acquisition and 

measurement analysis of the interferograms from the ICM&M system for the ECPL 

process. 

1. Before acquiring images using the Image Acquisition Toolbox, create a video 

input object. 

2. Firstly, start camera and initialize acquisition parameters, region of interest 

(ROI) to measure, UV Lamp Status. 

3. To generate timer events, we specify two things: what happens when it occurs, 

and how often it should occur. The TimerFcn property specifies the callback 

function to execute when a timer event occurs. A timer event occurs when the 

time period specified by the TimerPeriod property expires. 

The callback function is responsible for triggering the acquisition and storing the 

frame into the AVI file. More details on how to use this callback can be found in 

the documentation.  

4. The Timer Callback Function 

The following is a description of the callback function executed for each timer 

event. 

o Snapshot a single frame 

o Determine whether to keep the frame for analysis. If user has not pushed 

the button to start analyze and to open UV light yet, just preview without 

saving the frame for measurement analysis. 

o In the timer function, when GUI pushbutton of "Acquire and Analyze" is 

pressed, the acquisition is officially started, and the GUI data " 

handles.dp.acquiring" is set true notifying the timer function to start 

acquisition rather than preview only. The timer function acquires latest 

frame by snapshot and display it on GUI axes, meanwhile it writes the 
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memory map file "handles.mmf" which data include image frame data, 

frame index, frame time stamp (time elapsed from the 1st frame), UV iris 

level (a metric for UV light intensity), UV lamp status of "On" or "Off", 

"snapTic" which starts a stopwatch timer to measure the delay between 

writing and reading the frame. 

5. The pushbutton "Set ROI" will allow user to specify the region of interest 

(ROI) which include all the pixels to be measured for height profile. The ROI is a 

matrix of pixels coordinates [Height; Width]. The app will extract the time series 

of grayscales of the ROI pixels and measured the corresponding voxels height. 

6. The pushbutton "Acquire & Analyze" will perform the following tasks. 

o Initialize memory map file for GUI: "handles.mmf" 

o Start a batch processing job as a main worker for data analysis and 

measurement calculation : "handles.job", which runs MATLAB script 

"icm_main_worker.m"  with the curve fitting function "icmFit2.m" on the 

main worker.  

o To expedite the measurement related analysis and computation, more 

workers may be needed to make into a parallel pool for the job in addition 

to the main worker running the batch job itself. The script 

"icm_main_worker.m" uses this pool for execution of statements "parfor" 

that is inside the batch code. The "parfor" loop iterates online parameter 

estimation for each pixel calling the core function of curve fitting 

"icmFit2.m" which is the most time-consuming.  

Because the pool requires N (e.g., N=2 in this study) workers in addition 

to the worker running the batch, there must be at least N+1 workers 

available on the cluster. One does not need a parallel pool already 

running to execute batch; and the new pool that batch creates is not 

related to a pool one might already have open. The default value is 0, 

http://www.mathworks.com/help/distcomp/parfor.html
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which causes the script or function to run on only a single worker without 

a parallel pool [94].  

Therefore, a number of workers are assigned in the batch job as fitters to 

do the online parameter estimation by curve fitting for pixels in parallel 

loops. The fitters number is recommended to be the number of computer 

cores in local cluster to optimize the computer resource without causing 

adverse effect of overhead cost such as communication time. In this 

study, two fitters are assigned for "parfor" loop in MATLAB to calculate 

two pixels' cured height simultaneously. If multi-core computer with 

more computation power is provided, more workers might be available to 

accelerate the computation for more pixels in ICM&M analysis. 

o Initialize the acquired frame index, UV status to be "0" which means the 

UV is not on yet, and acquiring status to "1" which will notify the video 

timer function to start acquisition.  

The main worker function measures the height of each ROI pixel in a 

timely fashion per measurement period (e.g., 10 frames per run of 

measurement) and reports the time delay from writing to reading each 

frame, i.e., from acquiring to analyzing each frame, so as to provide 

insight about how the measurement is keeping in pace with the data 

acquisition. It also saves the metadata of ICM&M constant parameters, 

dynamic data including all frame data - time sequence of grayscales and 

frame index, measurement results including all curve fitting parameters 

and results, and matrix of time delays.  

7. The pushbutton "Stop Acquisition" will perform the following tasks. 

o If the real-time measurement is running, notify the video timer function to 

stop acquisition and meanwhile notify the main worker to stop 

measurement 
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o Stop the camera and write the acquired images into a video file 

o Save the constant parameters 

o Wait for the batch job to be completed and display the result diary 

o Denounce the mask of selected region of interest for measurement 

8. When user stops the camera, all the frames are written into a viedo file by the 

writeVideo function. 

 

The flowchart diagram is illustrated in Figure 54. The blue shape represents 

MATLAB graphical user interface (GUI) controls such as push buttons, edit boxes, and 

plot axes. The blue arrows depict the typical user manual operation that implements the 

ICM&M for an ECPL curing process which is shown in the brown block. The purple 

arrows direct toward the associated key functions. There are two main computing threads 

(shaded green boxes in the figure) running in the MATLAB: one is the video timer 

function for image acquisition at specified frequency, the other the batch process job 

which off-loads the execution of long-running computations of scripts and functions for 

online measurement analysis and controller computation in the background. The red fonts 

and arrows denote the key data of a memory map file that enables the communication 

between the parallel computing blocks. As shown in the brown shaded box related 

directly to the ECPL process, the user turns on the UV lamp by pushbutton “Open UV”, 

the ECPL process gets started, the image acquisition is also triggered, the memory map 

file is written and immediately read by the batch job for measurement. The online 

measurement is feedback into the controller which would calculate the input for the 

actuation. After the UV lamp is closed, dark curing occurs in place of exposed curing in 

the ECPL process, and the user could wait for a few seconds before stopping the 

acquisition to capture the entire process including the dark curing.  
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Figure 54. Flow Chart: Parallel Computing of Real-time measurement and control for the 

ECPL process 

 

7.3.6 Computation environment 

The application is executable in MATLAB R2015b for 64-bit Operating System 

and can be used in both experiment and post analysis. The real-time acquisition of the 

ECPL process was done in-situ on the lab desktop computer with a processor of Intel® 

Core(7M) i7 CPU 870 @2.93GHz 2.94GHz and an installed memory (RAM) of 16.0 GB 

(8.00 GB usable). All the offline ICM&M analysis was done on an ex-situ Lenovo laptop 

with Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz 2.6 GHz and an installed memory 

(RAM) of 8.00 GB.  Provided a more powerful multi-core processor and a high-speed 

camera, the ICM&M is expected to be able to run faster and more accurate measurement 

online with a full-field measurement capability if necessary. 

7.4 Chapter summary 

To implement ICM&M method, an application program – ECPL M&C software - 

was designed and created in MATLAB Graphical User Interface Development 

Environment (GUIDE). The app can be deployed onto the physical system integrating the 

ECPL and ICM&M automating the ECPL process by controlling the ultraviolet lamp and 
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DMD mask display as well as synchronizing the ICM&M which acquires and analyzes 

interferograms online. The parallel computing toolbox was employed in MATLAB to 

accelerate the computation. 

This chapter documents the development of a comprehensive MATLAB-based 

software platform for measurement and control of the ECPL process. Importantly, the 

display of interferogram frames is temporally precise and is achieved without a 

substantial sacrifice in temporal performance of other key functions such as data 

acquisition and ICM&M analysis. 

The implementation of the software in MATLAB is a significant advantage 

because of the wide adoption of MATLAB as a tool for data analysis in engineering field. 

Similar systems that are implemented using a low-level programming language (e.g., C 

or C++) require nontrivial computer programming skills, which can be discouraging or 

even prohibitive for researchers that do not have a strong programming background [95]. 

The ECPL process measurement and control benefits from the developed 

MATLAB application, a comprehensive and automatic platform for effortless operation 

of the AM process and online monitoring and measurement in just a few clicks. It is 

hoped that this software will enable physical experiments and testing for the research 

hypothesis. Additional information about the software can be found at the Appendix C. 
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CHAPTER 8 EXPERIMENTAL VALIDATION AND 

CHARACTERIZATION, OF THE ICM&M SYSTEM FOR ECPL 

PROCESS MEASUREMENT 

 

The previous chapters have reported an ICM&M method which consists of a 

sensor model (Chapter 5) for the ICM&M system and online parameter estimation 

algorithms based on instantaneous frequency (Chapter 6). In Chapter 7, an application 

program was created in MATLAB to integrate the ECPL and ICM&M systems and to 

acquire and analyze interferograms online. This chapter details our initial efforts to 

validate the ICM&M model and algorithms developed in Chapter 5 and Chapter 6. Given 

the limited equipment configurations, to validate and characterize the ICM&M system 

better, the implementation of real-time ICM&M is mainly performed in a mimic form by 

playing a real-time acquired interferogram video and simultaneously performing 

estimation of cured height, which simulated real-time ICM&M practice is called in this 

research “offline ICM&M”, essentially a post-analysis of acquired video. Please note that 

the real-time ICM&M and offline ICM&M share exactly the same sensor model and 

algorithms.  

Given the limited computing power, the ECPL process interferograms were 

acquired real time and analyzed off line. A series of experiments was performed curing 

square samples by varying exposure time and intensity. Results show that the ICM&M 

can provide a cost-effective measurement for cured heights with excellent accuracy and 

reliability, and possess decent capability of estimating lateral dimensions. The offline 

ICM&M is a convincing demonstration and benchmark for the real-time ICM&M 

metrology, providing a comprehensive evaluation of the ICM&M system’s measurement 

characteristics as well as its utilities in modeling and control of the additive 

manufacturing process dynamics. 
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8.1 Experiment design 

The MATLAB application, equipped with the ICM&M method, provides a user-

friendly platform for streamlining the ECPL process and the ICM&M implementation as 

well as a powerful tool for testing the ICM&M method. According to the ICM&M sensor 

model and calibration process [68], the experiment design incorporates a calibration 

experiment and a set of validation experiment. 

8.1.1 Design philosophy and experiment plan 

As presented in Chapter 5 [68], a calibration procedure is required to determine 

the uncertain material property of refractive index in the ICM&M method. The design of 

ICM&M method possesses measurement traceability by relating its measurements to a 

known standard – an existing well-characterized measurement system. In this study, the 

Olympus LEXT OLS4000 3D material confocal microscope [62] is used as a 

scientifically sound measurement apparatus to transfer the primary standard value of 

sample heights profile to the ICM&M measured object – ECPL cured part heights profile. 

For each new batch of material, calibration is performed once at the beginning and more 

times later if necessary, for instance, the material has been exposed in air too long and is 

likely to change in properties with oxygen diffusion etc. The derived refractive index 

value from calibration is assumed to be constant under the normal ECPL operating 

conditions so that the ICM&M measurement results are within engineering tolerance over 

some reasonable period of time. In this study, a bottle of material resin was prepared and 

used in all the experiments which were done over a period about two weeks. 

To validate the feasibility and explore the capability of the developed ICM&M 

method, two series of validation experiments were designed to cure 3D square blocks for 

various exposure time and under different UV intensities, respectively. Each experiment 

category above has its own particular purpose; meanwhile together they serve to provide 

a thorough investigation with one common theme - to demonstrate that the ICM&M 
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method is reproducible and robust in measuring cured parts with precision and accuracy. 

Table 9 presents the overall scheme of the designed experiment that consists of one 

calibration experiment and two validation groups. The varying process conditions for 

each validation group are highlighted in red. 

 

Table 9. Experimental design matrix for validating ICM&M in offline mode 

 

 

For each individual experiment that cures a square block within certain conditions 

(i.e., DMD bitmap size, UV intensity, and exposure time), the curing process was 

captured by the ICM&M camera in real-time with an acquisition speed of 30 frames per 

second, and saved into a video file along with the process data including the UV lamp 

close time. Thereafter, in the “Offline Measurement” module in the MATLAB 

application, the video of interferograms and all process data were loaded ex-situ at a 

laptop computer, and analyzed to obtain the cured height profile for a selected Region of 

Interest (ROI). The cured part was also measured by the confocal microscope, of which 

the measurement result was used as the actual height to compare with the offline 

ICM&M measurement result for error analysis. 
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8.1.2 ICM&M implementation 

In the implementation and investigation of the ICM&M method, there are a few 

practical thoughts to address in the experiment design. 

First of all, choosing square blocks as target 3D objects in the experiments is 

because the resultant cured part with lateral aspect ratio close to if not equal 1:1 from the 

square bitmap projection could vividly demonstrate that ECPL process is isotropic and 

homogeneous and that the ICM&M method is omnidirectional. Besides, square blocks 

provide a simple and efficient way of testing the accuracy of ICM&M by presenting 

obviously flat height profiles. In principle, one can always use various DMD bitmaps to 

cure customized parts and utilize the same ICM&M method which should be universally 

applicable for measuring cured heights profile regardless of the part shape. 

To apply the ICM&M method in an off line mode, we replayed the curing process 

video, and in the last frame of the interferogram that presents a better shape of the cured 

part we selected a line or an area of pixels as the region of interest (ROI) to measure. 

Since the cured parts analyzed in this study are cuboid, theoretically it should not matter 

much which line to choose for measuring the height. However, considering the not-

perfectly-uniform UV irradiation and stochastic process variations in the ECPL system 

along with some possible defects due to post-curing operation, as well as for easy visual 

match with the microscope measurement in later comparison of results, it is 

recommended to choose some features such as center lines or entire area with edge lines. 

The larger the ROI is chosen to be measured, the more computational time the ICM&M 

method needs. In the calibration, the entire area would be selected as ROI for a 

comprehensive analysis because its result forms the critical foundation for subsequent 

measurement. In the validation experiment, to speed up the analysis without influencing 

the results significantly, a representative profile line would be chosen as the ROI to be 

measured by ICM&M. 
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Ideally, measuring a height profile with ICM&M means measuring the cured 

heights of all voxels based on all the pixels in the ROI, which would be computationally 

tedious and costly especially in real-time ICM&M. The cured part is supposed to have a 

uniform heights profile due to ideally uniform UV light intensity and material properties 

across the curing area; hence the adjacent pixels are supposed to have very similar if not 

identical changed phase angles during the curing process. Pixels’ time sequences of 

grayscale in interferograms were compared, confirming the assumption of the proximity 

similarity in neighboring pixels’ profile. It has been found that to evaluate the height 

profile, measuring heights for pixels in the ROI at an interval of five pixels would not 

affect the accuracy significantly but requires much less computation expense than 

measuring every pixel for the whole area. Specifically, we measured every 5 pixels 

because: (1) a 5-by-5 image median filter was used to denoise the raw data, hence 

measuring every five pixels does not omit or overlap any raw data; (2) it turns out that 

measuring every one pixel does not improve the accuracy significantly but requires far 

more computation. According to the recommended practice, the pixels in measured area’s 

lines profile is denoted in the form of Pixels (starting pixel width coordinate: interval: 

ending pixel width coordinate, starting pixel height coordinate: interval: ending pixel 

height coordinate). For example, Pixels (245:5:365, 220) denotes a horizontal line of 25 

pixels starting from Pixel (245, 220) to Pixel (365, 220) with 5 pixels between each two 

neighboring measured pixels. 

Since the non-uniform acquisition is averagely 30 frames per second, this study 

performed measurement every 10 frames of interferogram, correspondingly at a temporal 

measurement period of approximately 1/3 second. 

Lastly, because the UV lamp in the ECPL system is designed for users to adjust 

its intensity in percentage scale of the “iris level”; for example, 100% means a fully open 

iris and maximum intensity, and 0% means completely closed and no irradiation at all. 
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Hence, we used the iris level as a nominal indication of the exposure intensity applied in 

the ECPL process. 

8.1.3 Microscope measurement practice 

In both calibration and validation experiments, we need measure the cured part 

using a microscope, specifically the Olympus LEXT OLS4000 3D material confocal 

microscope [62], which displays directly the profile of a selected line with height 

measurement result. Since the cured part is designed to be a flat-top block, a profile line 

is supposed to be able to reveal the sample’s height regardless of the its position. In 

practice, however, cured samples are sometimes impacted by the post ECPL operations 

(e.g. removing and washing) and cannot present a perfectly smooth surface as will be 

seen in the experiment results. Hence, one should locate the to-be-measured line in a 

proper position where the surface is as intact as possible to obtain the actual height of the 

cured part. Preferably, profile lines in X and Y directions (i.e. length and width 

dimensions), respectively, are measured and the average result is used as a better 

estimation of the actual height. 

It is recommended to use higher magnification microscope for better image 

quality and measurement accuracy, which higher magnification scanning however could 

take much longer time (dozens of minutes to scan about 90µm high sample in the 

confocal microscope). Nevertheless, it has been found that, while measuring ECPL 

samples in confocal microscope measurement, using low magnification lens (5X) or 

higher magnification (20X) lens yield the quantitative value of measured height in only a 

couple of microns’ deviation, hence no significant affect in heights measurement. In this 

study the major benefit of higher magnification microscope measurement is that it can 

output higher quality sample image, shedding light into the features such as the edging 

area and rendering clear and more smooth. 
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Besides, the confocal microscope can export abundant measurement data for all 

profile lines in a spreadsheet file, which could provide overall height profile for the entire 

sample. Of course one can choose to export merely part of the measurement data, for 

example, one exports the data for the line selected in the software user interface to 

measure just one profile line. Some postprocessing of the exported data, i.e. analysis of 

the average and deviation, is required to attain the final measurement area. This 

measurement approach dealing with data is also more objective than manually selecting a 

measurement line by cursor on the software bench, though it requires more time and 

effort.  

As a well-characterized scientific metrology equipment, the confocal microscope 

provides a standard reference but could also present some measurement uncertainty due 

to equipment operation and sample properties. In this study, to get as accurate result as 

possible, we tried to use higher magnification for all the sample measurement, and used 

multiple lines average as microscope measurement result. 

8.2 Results and discussion 

8.2.1 Material formulation 

As specified in earlier research [17], a trifunctional acrylate monomer - 

trimethylolpropane triacrylate (TMPTA, SR-351) obtained from Sartomer was used as 

obtained, with the photoinitiator 2, 2-dimethoxy-1, 2-diphenylethan-1-one (DMPA, 

IRGACURE-651) obtained from Ciba Specialty Chemicals, as the resin composition for 

the ECPL process. The DMPA photointiator concentration in the TMPTA monomer was 

recommended to be 20% by weight to ensure a homogenous solution. This specific 

formulation required less than 30 seconds to cure a thick (hundreds of microns) layer of 

resin. In principle, a resin formulation with higher sensitivity could have been appropriate 
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for ECPL. However, a fast curing resin system would impose a higher demand on faster 

and more accurate measurement and control; hence, the 20% resin formulation mentioned 

above was used. All the experiments done in this chapter used the same bottle of material 

which consists of a 4:1 ratio by weight of TMPTA monomer (16 gram) and DMPA 

initiator (4 grams). The mixture was stirred for approximately 4 hours to form a 

homogeneous solution. 

8.2.2 Calibration experiment 

According to the experiment design presented above, for the calibration, a 

moderate UV intensity corresponding to the UV lamp (OmniCure® S2000) iris level at 

22% was chosen so that the ECPL process cured height would not grow too fast or too 

slow. A 250×250 pixels square as shown in Figure 55 was displayed on DMD for 12 

seconds. 

 

Figure 55. DMD pattern: 1024×768 pixels binary bitmap displaying a black square of 

250×250 pixels in the center 

 

The ICM&M camera captured the video of interferograms when the square block 

part was cured by the ECPL system. To start offline ICM&M analysis, firstly the 
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interferograms video was replayed in the MATLAB application, and the last frame of 

interferograms which shows the final cured part shape was extracted. In the video’s last 

interferogram as shown in Figure 56, the ROI was selected by human eyes recognition of 

the cured part outline, approximated by an area of 150×150 pixels denoted as Pixels (235: 

385, 140: 290) which is formed by the four corner pixels along with the outline (red 

dashed line). 

 

Figure 56. Calibration: outline of the cured part in the last interferogram – ROI of Pixels 

(235:5:385, 140:5:290) to be measured 

 

The ICM&M method was applied to the square area of 31×31 (961) pixels 

designated as Pixels (235:5:385, 140:5:290), with 5 pixels between each two neighboring 

measured pixels in both width and height directions. The ICM&M model and algorithm 

estimated the total phase angle, ∑ (𝑇𝑖𝑓𝑖)𝑖  in Equation ( 14 ), for each measured pixel; and 

the average total phase angle is 6.150 cycles (i.e., 6.150×2π rad) as shown in Figure 57. 
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Figure 57. Calibration: estimated individual and average total phase angles for 31×31 

pixels in the ROI of Pixels (235:5:385, 140:5:290) 

 

The cured sample was measured by the laser confocal microscope, as shown in 

Figure 58, and the average height of two profile lines in X direction and Y direction is 

73.492 μm, which substitutes Z in the calibration model in Equation ( 15 ). The 

calibration process is completed by solving the equation: 

∆𝑛 =  𝑛𝑚 − 𝑛𝑙 =
𝜆∑ (𝑇𝑖𝑓𝑖)𝑖

2𝑍
=

(0.532)(6.150)

2(73.492)
= 0.02226. The corresponding mean solid part 

refractive index 𝑛𝑚 is derived to be 1.4946. 
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Figure 58. Calibration: measured typical profile lines in two lateral dimensions (X and Y) 

to estimate the height of the cured sample 

 

To assess the calibration result, the experiment above was repeated, and a second 

sample was measured with the ICM&M method and the microscope as the first sample 

was done previously. Figure 59 depicts the results of the second calibration experiment. 

The cured area in the interferograms consist of roughly 145×145 pixels enclosed by the 

pixels as shown in Figure 59, and a total of 30×30 (900) pixels were measured with the 

offline ICM&M module, which estimated that the average total phase angle is 6.181 

cycles. The microscope measurement is 74.927µm and 73.650µm for the selected lines in 

X and Y directions, respectively; hence the average measurement result is 74.289µm. 

Applying the calibration model in Equation ( 15 ) [68], we got ∆𝑛 =  𝑛𝑚 − 𝑛𝑙 =

𝜆∑ (𝑇𝑖𝑓𝑖)𝑖

2𝑍
=

(0.532)(6.181)

2(74.289)
= 0.0221 , and 𝑛𝑚 = 1.4944.  
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(a). 

 

(b). 

 
(c). 

 

(d). 

 
Figure 59. A 2nd calibration sample: (a) outline of the cured part in the last interferogram 

– ROI of Pixels to be measured; (b) estimated individual and average total phase angles 

for 30×30 pixels in the ROI; (c) and (d): measured typical profile lines in two lateral 

dimensions (X and Y) to estimate the height of the cured sample. 

 

Please note that experiments are prone to operation errors and process noises. As 

one can see from the experiment above, there are some obvious defections in the cured 

part surface which might influence the microscope measurement results thereby induce 

calibration errors. The ICM&M measured heights profile present fluctuations are caused 

mainly by pixel grayscales signals noise. 
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The two calibration experiments are summarized in Table 10. The two samples 

demonstrate great reproducibility of the ECPL process and good consistency in ICM&M. 

The nuance in the phase angle and microscope measurement lead to a difference at the 

fourth decimal place of ∆𝑛. It is expected that there would be a dispersion of ∆𝑛 (𝑛𝑚 as 

well) if one conducts more calibration experiments, because there are always some 

inevitable process variances and the calibration output of the refractive index is very 

sensitive to the inputs. The microscope can measure to the 3rd decimal, and ICM&M 

could estimate the phase angle to the 3rd decimal. Hence, it could be reasonable to assume 

that the calibrated refractive index (by the calibration model in Equation ( 15 )) could be 

also accurate to the 3rd decimal. Moreover, repeated calibrations show a subtle change 

starting at the 4th decimal of the refractive index value. Since the calibrated refractive 

index is to be used in subsequent measurements for height, a tailing 4th decimal is kept in 

the calibration of refractive index to provide a better estimation of the height at the 3rd 

decimal. Averaging the two calibration results and rounding it to the fourth decimal, we 

obtained ∆𝑛 = 0.0222  , correspondingly 𝑛𝑚 = 1.4945, which value will be used in the 

category of validation experiments to calculate the example parts heights to validate the 

ICM&M measurement capability and accuracy. 

 

Table 10. Calibration Experiment Results 

Exp. 

No. 

Number 

of ROI 

Pixels 

Average of  

Total Phase 

Angle Estimated 

by ICM&M (rad) 

Average  

Cured Height 

Measured by 

Microscope (µm) 

Refractive index 

difference 

(∆𝑛 =  𝑛𝑚 − 𝑛𝑙)  

Cured 

part 

refractive 

index 𝑛𝑚 

1 150×150 6.150×2π 73.492 0.0223 1.4946 

2 145×145 6.181×2π 74.289 0.0221 1.4944 

 

As a summary, in the calibration experiments, two sample parts were cured under 

the same conditions and measured with the offline ICM&M module in the MATLAB 

app. A large-scale calculation of most of (if not all yet) the voxels heights in the entire 
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cured area was performed for each sample to achieve as representative and robust as 

possible estimation of the refractive index value. Meanwhile, the between-sample 

similarity in total phase angle and microscope measured height thus in the estimated 

refractive index difference provides more confidence in the calibration result and critical 

guarantee for the measurement performance in subsequent experiments. As a byproduct, 

the calibration experiments has already demonstrated evidently that the ICM&M method 

has full-field measurement capability with good consistency and repeatability. 

8.2.3 Validation experiment group #1: varying exposure time 

We used the same batch of resin material to further validate the ICM&M model 

and algorithms reported in a previous paper [68]. In the first set of validation 

experiments, we cured square blocks by displaying the same size (i.e., 250×250 pixels) 

DMD bitmap under the same UV lamp iris level of 22% as in the calibration process, but 

for different length of exposure time – 9 seconds (Experiment #1), 12 seconds 

(Experiment #2) and 15 seconds (Experiment #3), respectively. 

Two samples were cured and measured in each subgroup of exposure time 

experiment. We will present one sample in each subgroup as an illustration of 

implementing the ECPL process and ICM&M measurement, and later introduce the other 

sample in each subgroup to demonstrate one important characteristics of process 

measurement – repeatability in both the ECPL process output and ICM&M measurement 

result with expected deviations. 

The first sample in each subgroup of experiment with various exposure time was 

introduced in this section. The offline ICM&M measurement procedure was illustrated 

via this set of samples and microscope measurement results were shown to verify the 

ICM&M results. 

Figure 60 displays the ROI for measurement in the experiments, and the datatips 

provide the pixels coordinates (width and height) for the end pixels of the selected line 
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(cyan solid line in the figure) and the corner pixels of the approximated cured shape (red 

dashed line in the figure). As noted in Figure 60, the ending interferogram of each 

experiment shows a clear square shape of about 145 pixels, demonstrating that the ECPL 

process could preserve the cross-section shape and output a consistent size, which shape 

and size both can be well captured by the ICM&M system. As in the calibration process, 

for each ROI only these pixels at an interval of every five pixels are measured to save 

computation time at little expense of accuracy. The measured pixels are shown as the 

selected horizontal lines in Figure 60. 

(a) Exp.#1: 9s exposure 

 



 187 

(b) Exp.#2:12s exposure 

 
(c) Exp. #3: 15s exposure 

 
Figure 60. Selected ROI pixels (red dashed lines: estimated entire cured area; cyan line: 

an example profile line) to measure with ICM&M in the 1st sample 

 

With the chosen ROI pixels corresponding to the to-be-measured voxels, we 

simulated the real-time ICM&M method by replaying the video and simultaneously 

extracting the time series of grayscales for all the measured pixels, followed immediately 

by estimating the instantaneous frequency and totaling the changed phase angle which 

leads to the final computing of the cured heights as per the algorithms presented in 

literature [68]. To illustrate the details of ICM&M algorithms implementation, the 

sequence of figures in Figure 61 depicts the time sequence of grayscale intensities, 

estimated instantaneous frequency along the time, and time curve of cured height for a 

typical pixel in each experiment, specifically, Pixel (220, 325), Pixel (230, 260) and Pixel 

(220, 280) in Experiments 1, 2 and #3, respectively. 
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In Figure 61 (a), the grayscale has a range of [0, 255] expressing the intensity of 

the pixel in the interferograms captured by the CCD camera. It is not exactly sinusoidal 

due to the nonlinear curing process and stochastic noises including the nonlinear response 

of camera electronics [37]. The blue dots in the figure depict the signal data and the red 

line is the fitted curve by the online parameter estimation algorithm. The fitted curve 

agrees very well with the data, demonstrating the effectiveness of the moving horizon 

curve fitting and capability of real-time measuring. 

In Figure 61 (b), we estimated the instantaneous frequency consecutively every 10 

frames which provided a new batch of 10 raw grayscale data points. The measurement 

period, e.g. 10 samples (frames) per run of measurement in this study, could be adjusted 

based on the computation power; and a sufficiently fast measurement is preferred to 

capture the process dynamic better so as to measure the process output more accurately. 

Figure 61 (b) also shows the cumulative sum of total phase angle during the 

ECPL process. As the curing process proceeds, the running phase angle change is 

computed using the expression ∑ 𝑇𝑖𝑓𝑖𝑖  in the ICM&M sensor model Equation ( 14 ) to 

calculate the voxel’s cured height as shown in Figure 61 (c). The total phase angle is 

estimated to be 5.206 cycles producing the cured height of 62.38 µm for the voxel on 

Pixel (220, 325) in Experiment #1. Similarly, in Experiment #2, the total phase angle is 

6.060 cycles resulting an estimated height of 72.61 µm. In Experiment #3, the total phase 

angle is 7.028 cycles and the estimated height is 84.21µm. These typical voxel heights 

estimated by the ICM&M are reasonably close to the microscope measurement as will be 

depicted in Figure 62. 

Exp. #1: 9s exposure 

(a) 

Exp. #2: 12s exposure 

(a) 
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(b) 

 

(b) 

 

(c) 

 

(c) 

 

Figure 61. Illustration of implementing the ICM&M algorithms using the 1st samples in 

the experiments varying exposure time: (a) typical time sequence of grayscale; (b) 

estimated instantaneous frequency along timeline; (c) evolving cured height of the voxel 

on the selected the pixel. 

Exp. #3: 15s exposure 

(a) 



 190 

 

(b) 

 

(c) 

 

Figure 61 (continued). Illustration of implementing the ICM&M algorithms using the 1st 

samples in the experiments varying exposure time: (a) typical time sequence of grayscale; 

(b) estimated instantaneous frequency along timeline; (c) evolving cured height of the 

voxel on the selected the pixel. 

 

In Figure 61 (b), another thing worthy to be pointed out is that the estimated 

instantaneous frequencies in the three experiments are shown to be alike in the first nine 

seconds, which makes sense because the 12-second and 15-second exposed curing 

experiments are actually a temporal extension of the 9-second curing under the same 

process conditions. 

The stereolithographic cure process involves mass and energy transport during the 

curing process, incorporating exposure and dark reaction [59, 96], as it is vividly shown 

in Figure 61 (a) that the pixel grayscales oscillation still persisted for a while after the UV 

light was turned off at 9, 12 and 15seconds, respectively. As continued “dark” gelation is 
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expected in photopolymerization [66], the cured height by the ECPL process can also be 

classified into exposed and dark cured height. Figure 61 (c) marks the UV lamp 

shutdown time and displays the exposed cured height. The ECPL process is continuous 

while the ICM&M measurement is discrete with the digital signal measured every 10 

frames – 0.333 second with the camera acquisition speed being 30 frames per second. 

Hence, there is an error up to 0.333 second in the approximated UV close time. 

As explained in the design of experiment, a single pixel measurement could not 

be sufficient or conclusive. More pixels need to be measured for final height estimation 

with less bias. We carried out the same procedure illustrated above to calculate the cured 

height for all the other voxels on the selected line of pixels (cyan solid line) in Figure 60, 

evaluated the average height as the final result. As a result, the line height profile 

measured by ICM&M is represented by 30 pixels in all three experiments with an 

estimated average as detailed in Table 11. 

To get a more comprehensive assessment of the ICM&M measurement capability, 

the entire cured area (enclosed by the red dashed line in Figure 60, approximated by 

145×145 pixels, was also measured at an interval of 5 pixels, thus the 31×31 (961) voxels 

heights constitute the full field height measurement as shown in Figure 62 (a). The cured 

area height profile is evaluated with both average and deviation as presented in Figure 62 

(a). 
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Experiment 1: 9s Experiment 2: 12s Experiment 3: 15s 

1(a) 

 
 

2(a) 

 
 

3(a) 

 
 

1(b) 

 
 

2(b) 

 
 

3(b) 

 
 

Figure 62. ICM&M result VS. microscope measurement for the 1st set of samples in 

exposure time experiment. Each sample’s (a) entire cured area height profile estimated by 

ICM&M; (b) horizontal profile line in the confocal microscope. 

 

The cured parts in the experiments were measured with the Olympus 3D confocal 

microscope as shown in Figure 62 (b). The “Height” value displayed at the right-bottom 

box of the confocal microscope screenshot in Figure 62 (b) indicates the measured height 

for the selected profile line. As pointed out in the experiment design, the average of 

measured heights for two lines in X-direction (horizontal) and Y-direction (vertical) is 

used as the final microscope measured height result to reduce the sample measurement 

bias. The same ECPL process and ICM&M method was repeated once to cure and 

measure a second square part in each experiment subgroup to investigate the ICM&M 

system’s reproducibility and reliability. Sometimes the process signals might be too noisy 
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due to the camera hardware heating issue or sometimes the cured part suffered severe 

defects during washing. All the numerical results will be summarized in Table 11. 

In Figure 62, some tiny holes and uneven surface with bumps and pits are seen in 

the microscope images of cured samples, which imply strongly that careful handling and 

postprocessing of the samples is needed. It is worth to point out that the observed sample 

defects would not affect the height measurement significantly as long as an intact profile 

line is chosen to measure under the microscope. 

As noted in the ICM&M estimated cured heights profile in Figure 62 and Table 

11, there is a deviation around 5µm in each sample. The deviation was mainly caused by 

the process and signal noise which led to some deficiency in the ICM&M algorithm. 

Nevertheless, the average value demonstrates good accordance with the microscope 

measurement average and good agreement between the same-condition samples. 

Table 11 compares quantitatively the measurement results in terms of absolute 

error and relative error. For each sample, the two rows in the table represent two different 

methods of estimating part height.  The first row utilizes a method that averages two 

profile lines, while the second row averages heights across the entire cured area. The 

brown entries report these cured area height estimates and errors. Results show up to 2 

microns’ absolute deviation and less than 3% relative error. The agreement between the 

ICM&M estimation result (green column) and the confocal laser microscope 

measurements (gray column) demonstrates that the ICM&M method is capable of 

measuring the vertical height for ECPL cured parts with discernment for micron order 

difference and measurement range of about one hundred microns. 

Furthermore, in Table 11, comparing the between-sample differences within the 

same subgroups, we obtained internal consistency for samples cured under the same 

conditions in ICM&M measurement results despite of microns’ difference, which is also 

present in the microscope measurement results. The results show that ICM&M is capable 
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of measuring the height of parts cured for likely exposure durations with both accuracy 

and precision. 

 

Table 11. Measurement results of validation experiments varying exposure time 

 

 

As shown in Figure 63, Experiment #2 with 12 seconds exposure had the smallest 

errors between ICM&M and microscope, which makes sense because of the identical 

process conditions as adopted in the calibration experiments. In Experiment #1 and #3 

with 9 seconds and 15 seconds exposure, respectively, the ICM&M was still able to 

estimate the cured height with great accuracy, despite relatively larger errors. Reasons for 

the errors will be discussed later in Section 8.3.1. 

Total Phase

(cycle, i.e. 

2π rad)

Cured 

Height

(µm)

St.Deviation - 

Cured Height σ

(µm)

X-

direction

Y-

direction

Average

Profile Line

(240:380, 220)
5.175 62.01 -1.69 -2.66%

Cured Area

(240:380, 150:290)
5.211 62.43 -1.27 -1.99%

Profile Line

(225:370, 220)
5.037 60.35 -2.83 -4.48%

Cured Area

(225:370, 145:290)
5.144 61.63 -1.55 -2.45%

Profile Line

(235:380, 230)
6.065 72.67 -0.40 -0.54%

Cured Area

(235:380, 155:300)
6.106 73.16 0.10 0.13%

Profile Line

(235:380, 200)
6.102 73.11 0.58 0.80%

Cured Area

(235:380, 135:280)
6.062 72.63 0.10 0.14%

Profile Line

(250:395, 220)
7.086 84.91 -0.34 -0.40%

Cured Area

(250:395, 140:285)
7.276 87.19 1.94 2.28%

Profile Line

(225:370, 245)
7.066 84.67 0.63 0.75%

Cured Area

(230:375, 150:295)
7.129 85.42 1.38 1.64%

Experiment

Subgroup

NO.

Exposure

Time

(s)

Sample 

NO.

ROI

Pixels (Width, 

Height)

ICM&M Results Microscope Measured

Profile Line Height (µm)

Absolute

Deviation

(µm)

Relative 

Error

Experiment 

#1

64.192 63.211

63.031 63.335

Experiment 

#2

74.349 71.775

72.760 72.299

Experiment 

#3

84.160 86.329

84.305 83.772Sample 2

9

9

12

12

15

15

Sample 1

Sample 2

Sample 1

Sample 2

Sample 1

84.04

4.19

4.37

5.44

4.95

5.21

5.45

63.70

63.18

73.06

72.53

85.24
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Figure 63. Measurement results for experiments varying exposure time 

 

8.2.4 Validation experiment group #2: varying exposure intensity 

In the second set of validation experiments, we cured square blocks by displaying 

the same size (i.e., 250×250 pixels) DMD bitmap for the same length of exposure time 

(12 seconds), but under eight different UV intensities corresponding to the UV lamp iris 

levels at 40%, 35%, 30%, 25%, 20%, 15%, 10% and 5%, respectively. The procedure of 

ICM&M implementation and microscope measurement was the same as presented in the 

previous section about the experiments varying exposure time. 

For each intensity level, we cured two samples and measured each sample with 

the offline ICM&M module in the developed MATLAB application and the confocal 

microscope. For validation purpose, we compared each individual ICM&M measurement 

with the microscope measurement result which is the average of two profile line 

measurement results for each sample. 
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To demonstrate the ECPL process difference under different intensities and how 

the ICM&M method responds to the process changes, we presented a representative 

pixel’s interferogram grayscale signal and the ICM&M method’s evolutionary estimation 

of the instantaneous frequency and cured height, as shown in Figure 64. 

In Figure 64 (left column:1a-8a), the grayscale signals vividly reflect the process 

dynamics difference due to the UV intensity variations. Conforming to the 

photopolymerization mechanism, the higher UV light intensity is provided, the more 

photo initiators are in the process, and the quicker the curing is. Within the same 

exposure time of 12 second, there was almost one more cycle in 40%-iris-level UV 

curing than in the 35%-iris-level curing, which had a about half cycle more than the 30%-

iris-level UV curing did, and so on and so forth down to the 5%-iris-level curing. 

The process dynamics change caused by varying intensity is further confirmed in 

Figure 64 (center column:1b-8b), which shows that the estimated instantaneous 

frequencies is larger for higher UV intensity induced ECPL process. The time curves of 

cured height measured by the ICM&M are displayed in Figure 64 (right column:1c-8c) 

with both exposed and dark cured height values determined by when the UV lamp was 

closed during the ECPL process. Examining into the curing start time in Figure 64 (b and 

c), one could see that the ICM&M estimated time curves of frequency and height have 

correctly reflected the trend of increasing threshold period in photopolymerization based 

AM process with decreasing exposure intensity [79]. As obviously shown in Figure 64 (b 

and c), the threshold period for 40%-iris UV curing is less than 2 seconds, while that for 

5%-iris UV curing is about 14 seconds.  
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Exp. # 1: UV Iris 40% 

(a) 

 

Exp. #2: UV Iris 35% 

(a) 

 

(b) 

 

(b) 

 

(c) 

 

(c) 

 

Figure 64. ICM&M implementation and process dynamics in the experiments varying 

exposure intensity: (a) representative pixel’s time sequence of grayscale; (b) estimated 

instantaneous frequency; (c) evolving cured height of the voxel on the selected the pixel. 
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Exp. # 3: UV Iris 30% 

(a) 

 

Exp. #4: UV Iris 25% 

(a) 

 
(b) 

 

(b) 

 
(c)

 

(c) 

 
Figure 64 (continued). ICM&M implementation and process dynamics in the experiments 

varying exposure intensity: (a) representative pixel’s time sequence of grayscale; (b) 

estimated instantaneous frequency; (c) evolving cured height of the voxel on the selected 

the pixel. 



 199 

Exp. # 5: UV Iris 20% 

(a) 

 

Exp. #6: UV Iris 15% 

(a) 

 
(b) 

 

(b) 

 
(c) 

 

(c) 

 

Figure 64 (continued). ICM&M implementation and process dynamics in the experiments 

varying exposure intensity: (a) representative pixel’s time sequence of grayscale; (b) 

estimated instantaneous frequency; (c) evolving cured height of the voxel on the selected 

the pixel. 
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Exp. # 7: UV Iris 10% 

(a) 

 

Exp. #8: UV Iris 5% 

(a) 

 
(b) 

 

(b) 

 

(c) 

 

(c) 

 

Figure 64 (continued). ICM&M implementation and process dynamics in the experiments 

varying exposure intensity: (a) representative pixel’s time sequence of grayscale; (b) 

estimated instantaneous frequency; (c) evolving cured height of the voxel on the selected 

the pixel.  
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Exp. # 3:  UV Iris 30% Exp. # 4: UV Iris Level 25% Exp. # 6: UV Iris Level 15% 

1(a) 

 
 

2(a) 

 
 

3(a) 

 
 

1(b) 

 
 

2(b) 

 
 

3(b) 

 
 

1(c) 

 
 

2(c) 

 
 

3(c) 

 
 

Figure 65. Selected ICM&M result VS. microscope measurement for the 1st set of 

samples in exposure intensity experiment: (a) Selected in the last interferogram the 

approximated cured area (enclosed within the red dashed lines) to measure with ICM&M; 

(b) ICM&M measured heights profile for voxels on the pixels within the cured area; (c) 

Microscope measured horizontal line profile. 

 

Figure 65 depicts three experiments’ heights profile measurement results for 

Experiment #3, #4 and #6 with UV iris level being 30%, 25% and 15%, respectively. The 

other subgroups of experiment were performed in a similar way and all the results will be 
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summarized at the end of this section. In Figure 65 (a), the selected ROI of approximated 

cured shape is shown in the ending interferogram of the sample in each experiment. 

Figure 65 (b) displays the ICM&M estimated heights for the pixels in the ROI at an 

interval of five pixels, and similar variations present in the heights profile as seen and 

explained in the previous validation experiment group. Figure 65 (c) shows the measured 

profile lines in X-direction, which demonstrate some variation of a few microns in the 

profile line; hence the average of two profile lines height values was used as an 

estimation of the actual cured height to assess the ICM&M results as shown in Table 12. 

As a quantitative summary, Table 12 reports in details all the measurement results 

for the two sets of experiments varying exposure intensity. The experiments with 

exposure intensity at iris level of 20%, 25%, 30% and 35% had under 3 microns’ 

deviation and less than 5% relative error, while the other experiments at high (40%) 

intensity and lower intensity (5%, 10% and 15%) had larger relative error virtually within 

10%. 

 

Table 12. Measurement results of validation experiments varying exposure intensity 

 

 

Total Phase

(cycle, i.e. 

2π rad)

Cured 

Height

(µm)

St.Deviation - 

Cured Height σ

(µm)

X-

direction

Y-

direction

Average

Sample 1 (220:365, 155:300) 8.453 101.29 4.86 95.939 94.620 95.28 6.01 6.30%

Sample 2 (220:365, 170:315) 8.562 102.59 7.26 97.043 96.964 97.00 5.59 5.76%

Sample 1 (225:370, 165:310) 7.639 91.54 6.48 92.001 93.153 92.58 -1.04 -1.13%

Sample 2 (220:365, 160:305) 7.500 89.87 7.20 88.997 90.060 89.53 0.34 0.38%

Sample 1 (225:370, 145:290) 7.083 84.87 7.04 84.469 82.695 83.58 1.29 1.54%

Sample 2 (225:370, 150:295) 7.122 85.34 6.54 83.884 84.793 84.34 1.00 1.18%

Sample 1 (220:365, 130:275) 6.549 78.47 6.40 78.499 77.905 78.20 0.27 0.34%

Sample 2 (225:370, 135:280) 6.611 79.22 5.91 77.958 77.368 77.66 1.55 2.00%

Sample 1 (235:380, 130:275) 5.665 67.87 5.59 69.762 70.258 70.01 -2.14 -3.05%

Sample 2 (235:380, 135:380) 5.502 65.92 5.74 70.277 66.826 68.55 -2.63 -3.84%

Sample 1 (230:375, 135:280) 4.577 54.84 4.73 60.006 58.985 59.50 -4.66 -7.83%

Sample 2 (230:375, 135:280) 4.923 58.98 4.83 62.812 64.431 63.62 -4.64 -7.29%

Sample 1 (230:375, 135:280) 3.409 40.84 4.50 45.653 45.658 45.66 -4.81 -10.54%

Sample 2 (225:370, 135:280) 3.456 41.42 4.47 45.646 45.342 45.49 -4.08 -8.96%

Sample 1 (225:370, 140:285) 2.307 27.64 5.40 30.895 28.620 29.76 -2.12 -7.12%

Sample 2 (235:380, 140:285) 2.312 27.70 5.20 30.019 28.666 29.34 -1.64 -5.61%

Exposure 

Intensity

(iris level)

Sample 

NO.

ROI

Cured Area Pixels

(Width, Height)

ICM&M ResultsExperiment

Subgroup

NO.

10%

5%

15%
Experiment 

#6

Experiment 

#7

Experiment 

#8

25%

20%

Experiment 

#1

Experiment 

#2

Experiment 

#3

Experiment 

#4

Experiment 

#5

40%

35%

30%

Microscope Measured

Profile Line Height (µm)

Absolute

Deviation

(µm)

Relative 

Error



 203 

Figure 66 depicts the measurement results for visualized comparisons of the 

within-subgroup samples repeatability, between-subgroup trends of heights versus 

intensity levels, and ICM&M estimation accuracy against microscope measurements. As 

shown in Figure 66, in each subgroup of experiment, the ICM&M results are close within 

the two samples, and the microscope results are similar, but there seems to be a persistent 

gap between ICM&M and microscope results. The alarming relative errors might be an 

indication for the need of using modified refractive index rather than constant refractive 

index in the ICM&M sensor model, which will be investigated in more details in 

upcoming discussion about traceability in Section 8.3.1. 

 

 

Figure 66. Comparing the ICM&M measurement results with the microscope 

measurement in experiments varying exposure intensity 

 

The worst group which had the highest relative error is Experiment #7 at iris level 

10%, but the absolute deviation is only about 4µm that could be partially attributed to the 

microscope error. It is not unusual for the microscope cursor measurement to have a ± 

3µm or sometimes even up to 7µm deviation from the average analysis of the microscope 

exported spreadsheet of data. The smoother sample we have, the less error the 
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microscope cursor measurement would have. The microscope error is more notable in the 

case of curing lower samples such as in Experiment #8 with iris level of 5%, only a 2-µm 

deviation would induce 7% relative error. 

8.3 Measurement characteristics of ICM&M 

8.3.1 Traceability 

Metrological traceability is the property of a measurement result whereby the 

result can be related to a reference through a documented unbroken chain of calibrations, 

each contributing to the measurement uncertainty [97]. 

In the ICM&M practice, traceability is attained by careful calibration of 

measurement system using the ICM&M sensor model to estimate the effective solid part 

refractive index as the calibrated transfer basis and using the microscope as standard. 

With the experiment results above, the ICM&M traceability is reviewed and revised in 

this section to improve the overall measurement accuracy. 

8.3.1.1 Best traceability achieved for same-condition samples 

In the first set of validation experiment presented in Section 4.3, the 12-second 

experiment had the best result with minimal errors (0.1 µm and less than 0.15%) in the 

full field cured height profile, in which the outcome is within the expectation because it 

adopted exactly the same process conditions as the calibration did. The experiment 

concludes that the ICM&M method could measure accurately for the ECPL process that 

is conducted with the same process conditions as the calibration experiment used. 
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8.3.1.2 To maintain traceability for different-conditions samples needs adjust the 

effective refractive index in the ICM&M sensor model 

Except for the 12-second exposure experiment in the first validation experiment 

group, all the other experiments were conducted with settings different from these in the 

calibration experiments. It is notable that the ICM&M estimation errors in these 

different-conditions samples display an interesting pattern – near-zero deviation for 

samples cured around the calibration experiment setting, smaller-than-actual 

(microscope) measurement result for samples cured with less time or less intensity, and 

larger-than-actual result for samples cured with more time or more intensity. 

Specifically, in the first set of experiment varying exposure time (Table 11), the 9 

second exposure experiment had negative absolute deviation while the 15 second 

exposure experiments had positive value of absolute deviation. In the second set of 

experiment varying exposure intensity (Table 12) on one hand, the ICM&M tends to 

overestimate the cured height in experiments with iris level from 40% to 25%, which are 

all larger than the 22% iris level intensity as was used in the calibration. On the other 

hand, the ICM&M tends to underestimate the cured heights in the less than 22% (i.e., 

20%, 15%, 10% and 5%) experiments. 

The observed pattern of deviations could imply that the effective refractive index 

for higher cured parts should be larger and that for lower cured parts should be smaller 

than the calibrated value of 1.4945 in the calibration experiments above, so that the 

ICM&M results could be brought closer to the microscope results. 

Upon reflection on the definition of the mean (i.e. effective) refractive index 𝑛𝑚 

in the sensor model [68], we found that it was the intermediate value between the fully 

cured solid part’s refractive index and the thin curing front’s refractive index based on 

the mean value theorem of integration. Intuitively, the effective (i.e. mean) refractive 
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index of the higher cured part could be larger as the cured part constitutes of more solid 

part - the previously cured part with larger curing degree and denser crosslinked 

polymers. As the part grows, the fresh cured thin layer occupies a less and less portion to 

the entire cured height, hence the mean refractive index defined in the sensor model is 

expected to become larger. 

The mean refractive index 𝑛𝑚 is actually correlated with the cured height, hence 

theoretically it is subject to change during the curing process. The higher the cured part 

is, the larger the mean refractive index 𝑛𝑚 is. However, in the previous analysis as 

preliminary validation, for simplicity, we assumed that the mean refractive index was 

constant and modeled a linear relationship between the cured height and phase angle. The 

linear relationship due to the assumption of a constant refractive index sometimes does 

not hold well as one can see some nonlinearity present in the curing process from the 

dynamics curves in Figure 61 and Figure 64. 

8.3.1.3 Literature research in dynamic change in refractive index during 

photopolymerization 

Photopolymerization processes are accompanied by photoinitiator absorption, 

density changes and volumetric shrinkage, which alter optical properties and affects 

curing efficiency through depth. Spectral domain low coherence interferometry (LCI) 

was used to measure time-resolved changes in group refractive index and physical 

thickness throughout the photocure of a commercial dental composite [89], and the study 

revealed a linear relationship between the optical and physical density. Another reported 

investigation using LCI technique has found the change in optical characteristics through 

the bulk of curing photopolymers [98]. It has also demonstrated simultaneous evolution 

of optical (refractive index) and physical (shrinkage) properties throughout curing of 

photoactive monomers, and concluded that the extent and rate of refractive index change 

is dependent upon monomer formulation such as concentrations [98]. The mean 
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refractive index for resins with various resin composition ratios demonstrate a change at 

the magnitude order of 10-2 between uncured and cured resin, and a change at the 

magnitude order of 10-3 for the curing resin during the photopolymerization process with 

uncertainty of 10-4 by two methods – LCI and a conventional Abbe refractometer. 

Furthermore, a digital holographic microscopy based quantitative phase imaging 

system was used to measure the light-induced refractive index changes [96]. The most 

important advantage of quantitative phase imaging is the capability to measure the spatial 

distribution of the induced refractive index change. Further investigation is still needed 

concerning the spatial and temporal dynamics of the refractive index change in 

photopolymer. Nevertheless, experiments clarified that a rapid and steep change occurred 

in the refractive index at early stage of the reaction, and the total refractive index change 

during dark curing ranges from 0.5×10-3 to 2.8×10-3 for low to very high exposure 

intensity in that study. 

All the reported research suggest that the effective refractive index is indeed 

changing as the resin cures and one should take it into account while implementing the 

ICM&M method. 

8.3.1.4 Improve the ICM&M method by incorporating simultaneous changes in both 

cured height and refractive index 

For this specific ECPL material and process, to investigate quantitatively how the 

effective refractive index could be slightly changing as the photopolymerization curing 

goes on, we calculate the mean solid refractive index using the calibration model for all 

the samples and plots out the true effective refractive index against the ICM&M 

estimated phase angle as shown in Figure 67. The model of effective refractive index of 

the in-process curing part and solid cured part is shown as in Equation ( 26 ) and Figure 

67. Both the trend and magnitude order (0.001) of the refractive index change found by 

the ICM&M analysis for the ECPL process conforms well with the literature reported 
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finding of a gradual increase in refractive index as the photopolymer resin cures [98], 

though different materials are used. 

 

 

Figure 67. Model of the evolving effective refractive index 𝑛𝑚 

 

The reason we built the refractive index evolution curve against phase angle 

instead of cured height is because one would not have the height information available 

while implementing the ICM&M for heights measurement, whereas the temporal phase 

shifts conveyed by the interferogram signals are accessible to provide an alternative 

indication for cured part growth. 

There are a few outliers, for example, the data point of phase angle 4.75 with a 

refractive index of 1.4928 is from the exposure intensity experiment with UV iris level at 

15%, for which refractive index estimation we used the average of the two samples 

because it showed unusual discrepancy. The main reason for the outliers lies in the 

microscope measurement uncertainty to which the subtle changing calibrated refractive 

index is very sensitive. Nevertheless, the R-square of the linear curve fitting is 0.95866, 

indicating a fairly good fitting. The coefficients in Equation ( 30 ) show that the effective 

refractive index varies at the third decimal place, hence in the ICM&M method one 
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should use refractive index value accurate to at least the fourth digit after the decimal 

point. 

 𝒏𝒎 =  𝟎. 𝟎𝟎𝟎𝟒 ∙ ∅ + 𝟏. 𝟒𝟗𝟏𝟗 ( 26 ) 

where 𝑛𝑚 is the mean or effective refractive index of the cured part, and ∅ is the total 

shifted phase angle. It is noted that the ICM&M method can support an accuracy to three 

decimal places and the 4th decimal point in this model only helps to round the estimation 

to that accuracy. 

The initial ICM&M may be flawed in assuming constant effective refractive 

index, and we will recalculate the ICM&M estimation using evolving refractive index in 

this section. Firstly, we can obtain a modified refractive index value by plugging the 

ICM&M estimated phase value into Equation ( 26 ). In Table 13 and Table 14, the 

rightmost green columns show the modified refractive index and corresponding ICM&M 

results, which yield apparently better accuracy than previous results based on constant 

refractive index. 

 

Table 13. ICM&M measurement results using growth-dependent refractive index for the 

validation group varying exposure time 

 
 

The overall ICM&M accuracy improvement with the evolving effective refractive 

index is shown in Figure 68. The previously most-errored (10% error) group of 10% UV 

iris level experiment is now able to measure with under 5% error. After applying the 

improved model, the highest ICM&M errors present in the 15% UV iris level experiment 
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instead, which is understandable because its microscope measurements are the most 

inconsistent probably due to human error in the microscope practice. 

 

Table 14. ICM&M measurement results using growth-dependent refractive index for the 

validation group varying exposure intensity 

 
 

Considering the likely microscope errors, we just relax the curve fitting goodness 

and use a linear model to predict the varying effective refractive index as the part gets 

cured. Despite that roughly linear model of refractive index used, the problematic errors 

in lower and higher samples in Figure 63 and Figure 66 can still be well addressed as 

shown in Figure 68. 

 

Total Phase

(cycle, i.e. 

2π rad)

Cured 

Height

(µm)

St.Deviation - 

Cured Height σ

(µm)

X-

direction

Y-

direction

Average

40% Sample 1
(220:365, 155:300) 8.453 101.29 4.86

95.939 94.620 95.28
6.01 6.30% 1.49543 97.21 1.93 2.02%

40% Sample 2
(220:365, 170:315) 8.562 102.59 7.26

97.043 96.964 97.00
5.59 5.76% 1.49543 98.46 1.46 1.50%

35% Sample 1
(225:370, 165:310) 7.639 91.54 6.48

92.001 93.153 92.58
-1.04 -1.13% 1.49504 89.35 -3.23 -3.48%

35% Sample 2
(220:365, 160:305) 7.500 89.87 7.20

88.997 90.060 89.53
0.34 0.38% 1.49504 87.73 -1.80 -2.01%

30% Sample 1
(225:370, 145:290) 7.083 84.87 7.04

84.469 82.695 83.58
1.29 1.54% 1.49485 83.56 -0.02 -0.03%

30% Sample 2
(225:370, 150:295) 7.122 85.34 6.54

83.884 84.793 84.34
1.00 1.18% 1.49485 84.02 -0.32 -0.38%

25% Sample 1
(220:365, 130:275) 6.549 78.47 6.40

78.499 77.905 78.20
0.27 0.34% 1.49463 78.00 -0.20 -0.25%

25% Sample 2
(225:370, 135:280) 6.611 79.22 5.91

77.958 77.368 77.66
1.55 2.00% 1.49463 78.74 1.08 1.39%

20% Sample 1
(235:380, 130:275) 5.665 67.87 5.59

69.762 70.258 70.01
-2.14 -3.05% 1.49422 68.74 -1.27 -1.81%

20% Sample 2
(235:380, 135:380) 5.502 65.92 5.74

70.277 66.826 68.55
-2.63 -3.84% 1.49422 66.77 -1.78 -2.60%

15% Sample 1
(230:375, 135:280) 4.577 54.84 4.73

60.006 58.985 59.50
-4.66 -7.83% 1.49388 56.42 -3.07 -5.16%

15% Sample 2
(230:375, 135:280) 4.923 58.98 4.83

62.812 64.431 63.62
-4.64 -7.29% 1.49388 60.69 -2.93 -4.61%

10% Sample 1
(230:375, 135:280) 3.409 40.84 4.50

45.653 45.658 45.66
-4.81 -10.54% 1.49318 43.43 -2.23 -4.88%

10% Sample 2
(225:370, 135:280) 3.456 41.42 4.47

45.646 45.342 45.49
-4.08 -8.96% 1.49318 44.03 -1.46 -3.21%

5% Sample 1
(225:370, 140:285) 2.307 27.64 5.40

30.895 28.620 29.76
-2.12 -7.12% 1.49287 29.84 0.08 0.26%

5% Sample 2
(235:380, 140:285) 2.312 27.70 5.20

30.019 28.666 29.34
-1.64 -5.61% 1.49287 29.90 0.56 1.90%
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(a) 

 
(b) 

 
Figure 68. Improved ICM&M accuracy by using growth-dependent (previously constant) 

effective refractive index in the sensor model (a) validation experiments varying 

exposure time; (b) validation experiments varying exposure intensity. 

 

8.3.2 Comparability and accuracy 

External comparisons between the in-house ICM&M and a commercial 

microscope are an essential way to ensure commensurate measurements for evaluating 

the reliability of the developed ICM&M method. The experiments compare the ICM&M 

estimated height with the average of the microscope measured profile lines heights, 

resulting in absolute deviations and relative errors. The absolute errors of only a few 
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microns and the relative errors under 5%, prove that the ICM&M method has sufficient 

accuracy with a standard uncertainty of several microns for ECPL process measurement. 

The external comparison of ICM&M and microscope for each sample shows convincing 

accuracy of the ICM&M method. 

Internal comparison results among the ICM&M measurements for various 

samples heights are also critical in the ICM&M validation to gain more confidence in its 

measurement capability. The samples in the calibration and validation experiments 

present consistency in the ECPL process output and ICM&M measurement results, which 

are shown to be good enough compared with the confocal microscope measurements. 

All of the experiments including the ECPL process, ICM&M implementation and 

microscope measurement, taken together, have established reproducible results, and show 

comparability and consistency over space and time.  

8.3.3 Repeatability 

As shown in Table 11 and Table 12, the internal comparison of Sample 1 and 

Sample 2 in each subset of experiment shows quite identical ICM&M results of both 

phase angles and cured heights, which demonstrates the repeatability of the ICM&M 

method. In this study, the repeatability is computed as the square root of mean squared 

errors of the two samples in each experiment as shown in Equation ( 27 ). Table 15 shows 

the repeatability of the two groups of validation experiments, and we could conclude that 

the ICM&M measurement repeatability is 2µm, which means that one could expect a 

deviation of 2µm in measurements for repeatedly cured samples’ heights. 

 

𝑹𝒆𝒑𝒆𝒂𝒕𝒂𝒃𝒊𝒍𝒊𝒕𝒚 =  √
∑ (𝒁𝒊𝟏 − 𝒁𝒊𝟐)

𝟐𝒏
𝒊=𝟏

𝒏

𝟐

 

( 27 ) 

where 𝑛 is the total number of experiment subsets, 𝑍𝑖1 and 𝑍𝑖2 are Sample 1 and Sample 

2 heights, respectively. 
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Table 15. Measurement repeatability 

Validation Experiment Group Repeatability (µm) 

ICM&M Microscope 

#1: varying exposure time 1.16 0.82 

#2: varying exposure intensity 1.82 2.01 

 

8.3.4 Sensitivity, resolution and range 

Based on the ICM&M sensor model [68], the sensitivity of the measured height Z 

to a unit phase change ∅ (rad) which is 1/(2π) of 1 cycle Φ (unit: cycle, i.e., 2π rad), is 

shown in Equation ( 28 ) and evaluated as below. It indicates that an error of ±0.5 cycle 

in the phase estimation could induce an absolute deviation of ±6 µm in the height 

measurement. Due to the signal noise, the ICM&M algorithm sometimes could not 

identify the half cycle correctly, hence it happens that there could be a half cycle 

variation in the phase estimation which explains partial reason for the observed variations 

of about 5 µm as shown in the ICM&M measurement results above (Figure 62 and Figure 

65). 

𝒅𝒁

𝒅𝜱
=

𝝀

𝟐(𝒏𝒎 − 𝒏𝒍)
≅

𝟎. 𝟓𝟑𝟐𝝁𝒎

𝟐(𝟎. 𝟎𝟐𝟐𝟐)𝒄𝒚𝒄𝒍𝒆
= 𝟏𝟏. 𝟗𝟖𝟐

𝝁𝒎

𝒄𝒚𝒄𝒍𝒆
 

hence, 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑑𝑍

𝑑∅
=

𝑑𝑍

(2𝜋)𝑑𝛷
= 1.907 𝜇𝑚/𝑟𝑎𝑑  

𝒁𝒄𝒚𝒄𝒍𝒆 = 𝟏 (𝒄𝒚𝒄𝒍𝒆)×
𝒅𝒁

𝒅𝜱
≅ 𝟏𝟏. 𝟗𝟖𝟐𝝁𝒎 

( 28 ) 

 

The ICM&M resolution is dependent on both the ECPL process speed and the 

ICM&M measurement speed, and the smallest cured height ICM&M can resolve could 

be estimated by Equation ( 29 ). 

𝑹𝒆𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 =
𝒅𝒁

𝒅𝜱
∙ (𝑴𝑻𝑰 ∙ 𝑰𝑭) ≅ 𝟏𝟏. 𝟗𝟖𝟐 ∙ (𝑴𝑻𝑰 ∙ 𝑰𝑭)𝝁𝒎 

( 29 ) 

where 𝑀𝑇𝐼 is measurement time interval (s), and IF is the instantaneous frequency (Hz). 
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In this study, the measurement time interval is about 1/3 second, and the ICM&M 

estimated instantaneous frequency vary with the exposure time and intensity. As is shown 

Figure 61 and Figure 64, IF decreases as the curing goes on and as the intensity drops. In 

this study, the fastest curing occurs at the beginning of UV iris level 40% curing resulting 

in IF 1.4 Hz and the resolution is 11.982 ∙ (
1

3
∙ 1.4) = 5.59𝜇𝑚. The curing rate will slow 

down to zero at the end of the curing process with the resolution being gradually reduced 

to a couple of microns to ultimately less than 1 µm. For a mild exposure intensity such as 

20%-25% UV iris level, the curing process has the instantaneous frequency averaging at 

0.5 Hz corresponding to a resolution of 11.982 ∙ (
1

3
∙ 0.5) = 2.00 𝜇𝑚. 

Generally speaking, the ICM&M method could discern vertical dimension 

measurement at a magnitude order of micron and has ability to dive into submicron 

discrimination given faster measurement speed. 

The range characteristic of the ICM&M method is determined by the laser 

coherent length and the ECPL material property especially refractive index. In this study, 

it is obvious that the ICM&M method could measure part heights of up to at least 100 

µm. 

8.3.5 Summary of the ICM&M characteristics 

Table 16 summarizes the characteristics of the ICM&M method from the previous 

experiment analysis and results.  
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Table 16. ICM&M characteristics 
 Traceability 

 Full-field global 

 Real-time fashion 

 Discernibility for Photo-

polymerization Processes 

(Incubation, Exposure / Dark 

Curing) 
 

 Time-resolved refractive index 

(Resolution: 0.001): 

𝒏𝒎 =  𝟎. 𝟎𝟎𝟎𝟒 ∙ ∅ + 𝟏. 𝟒𝟗𝟏𝟗 

 Repeatability: 2 µm 

 Resolution: 𝟏𝟏. 𝟗𝟖𝟐 ∙ (𝑴𝑻𝑰 ∙ 𝑰𝑭)𝝁𝒎 

Note: 𝑀𝑇𝐼 is measurement time 

interval (s), and IF is the 

instantaneous frequency (Hz).  
(e.g., MTI=1/3s, IF=0.2Hz, Resolution ~1 

µm) 
 

 Range: 0 to ≥ 100 µm 

 Sensitivity: 𝟏. 𝟗𝟎𝟕 𝝁𝒎/𝒓𝒂𝒅 (i.e., ±6 

µm / half cycle) 
 

 Accuracy 

 Precision 

 Stability 

 

 

8.4 Utility of the ICM&M system 

8.4.1 Local vs. global measurement for the ECPL process 

In Table 11, the line height, the area height average and the microscope results are 

in good accordance for each sample, demonstrating two things (1) a line could be 

representative to measure the average height of the entire cured area’s average height; (2) 

the ICM&M is capable of both local and full-field measurement for the average height of 

the cured part. However, the line profile results are shown to be sometimes worse than 

the area profile results in terms of accuracy, indicating the potential bias in sampling lines 

for estimating the average height of the cured part and the potential peril in controlling 

the cured part height with only a handful pixels’ measurement average. 
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8.4.2 Lateral measurement potentiality 

Though we focused on measuring the cured height in this study, a byproduct of 

lateral dimensions measurement is also available. In all the experiments above, the 

resultant interferograms show similar size of cured shape, which have approximately 145 

pixels in the line corresponding to the flat top part’s width in the microscope. Please note 

that the black outer frames around the samples as shown in Figure 62 and Figure 65 are 

sloping edges and are not taken into account for the width measurement by ICM&M, but 

might have been included in the microscope profile line. It is found that the width of the 

flat top part in all samples is pretty close to 1250 µm, which could be directly seen in 

Figure 62 Exp #1 and Exp #2. 

All the experiments used the same size bitmap as DMD pattern (250-by-250 

pixels), and the ICM&M method could retain that information of size similarity. Other 

than being able to qualitatively measure the lateral shape, the ICM&M is found to be able 

to measure quantitatively lateral dimensions according to the following calculations, 

which estimated successfully the width of the cured squares. 

In an interferogram, one pixel is actually a binning of four original pixels captured 

by the ICM&M camera. The camera pixel size is 2.2µm×2.2µm, hence a pixel in the 

interferogram is 8.8µm×8.8µm. Because the ICM&M optics adopts a vertical beam path 

reflected upward from the sample to the camera, in principal, it is 1:1 mapping. The 

ICM&M measured lateral size could be estimated by multiplying the value of 8.8 µm 

with the number of pixels in the width dimension of the cured part shown in the 

interferogram. Hence, the estimated width of the cured square part is calculated as 

145×8.8 = 1276𝜇𝑚, which is in good accordance with the microscope measurement 

results of width: 1247.5 µm on average for the width of the flat top part in all the 

samples. The ICM&M width estimation result has 2.4% relative error with a deviation of 
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30 µm, which corresponds to ±4 interferogram pixels, which is acceptable for an initial 

study. 

Conclusively, the ICM&M system has great potentiality in measuring the lateral 

dimensions of width and length as well as the vertical heights. We recommend in future 

work utilizing image analysis with image edge detection algorithms to measure the pixels 

length of cured shape for lateral dimensions information. This approach of measuring 

lateral dimensions for cured part is actually an alternative to the current plan of 

measuring the shape by measuring the heights profile across the curing area, which 

comes back to our research scope and priority in this study. 

8.4.3 ICM&M for ECPL process dynamics, modeling, and control 

Foremost, the two sets of experiment varying exposure time and intensity aim to 

verify the sensitivity of ICM&M method to the process input. The series of ICM&M 

detected grayscale signal and ICM&M estimated evolution of the instantaneous 

frequency and cured height in Figure 61 and Figure 64 exemplified that the ICM&M 

method could rapidly and accurately identify different ECPL process stages – threshold 

period, curing period and dark period, and meanwhile could capture in a real-time fashion 

the process dynamics in terms of the curing speed (instantaneous frequency) and cured 

height. Hence, the ICM&M can provide a powerful tool for visualizing the process 

dynamics, and help in future develop an insightful process model and thereby an effective 

process control system in the future. 

In the validation experiments varying exposure time, the finding that the 

processes under all same conditions but different exposure time share similar 

instantaneous frequency in the grayscale signal confirms that exposure time adjustment 

cannot manipulate the process dynamics such as curing rate. Hence, the conventional 
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exposure time control of stereolithography-like additive manufacturing process is, strictly 

speaking, not a process dynamics control, but just a simple process on-off switch. 

In the validation experiments varying exposure intensity, the evidence of the 

relationship between UV intensity and photo curing process dynamics can be utilized for 

photopolymerization-based additive manufacturing process modeling and control. The 

new thinking of exposure intensity control could be a ground-breaking complement to the 

traditional exposure time control, in order to realize an ultimate control of the ECPL 

process for better accuracy. 

8.5 Chapter summary 

The lack of real-time sensors critical to process monitoring and control has been 

identified as one of the major challenges that are currently impeding large-scale 

deployment of AM processes and equipment. The interferometric curing monitoring and 

measuring (ICM&M) method, for the specific photopolymer based micro 

stereolithography machine is validated and characterized in this study.  

In this dissertation, to validate and fulfill the developed ICM&M method, an 

application program was designed and created in MATLAB. The application was 

deployed onto the physical system integrating the ECPL and ICM&M to automate the 

ECPL process. In this study, given the limited equipment configurations and computation 

resource, the data analysis and measurement computation in ICM&M was performed off 

line. A coherent series of experiments were performed curing square samples by varying 

the factors of exposure time and intensity, and a representative full-field height profile 

was measured for each cured sample by both the in-house ICM&M and a commercial 

confocal microscope, to evaluate the measurement characteristics including traceability, 

comparability, accuracy, repeatability, sensitivity, resolution and range.  

The experimental results demonstrate that the ICM&M method can measure 

multiple voxel heights consistently and simultaneously, and features the capability of 
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full-field measurement which is desired in global measurement and control of ECPL. The 

ICM&M provides a cost-effective metrology for cured heights with excellent accuracy 

and repeatability, and meanwhile features decent capability of estimating lateral 

dimensions. This offline ICM&M experimental report is a convincing demonstration and 

advocacy for real-time ICM&M, and can be used to benchmark the real-time ICM&M 

metrology. Once provided with real-time operating system and multi-thread parallel 

computation power, the real-time process measurement and control for ECPL can be 

achieved with the aid of ICM&M method. 

The experiment results also suggested for the development of an enhanced 

ICM&M sensor model with growth-dependent effective refractive index to improve its 

measurement accuracy. 

In addition, utility of the ICM&M in process dynamics modeling and control was 

discussed. The ICM&M method successfully illustrated the ECPL curing process 

dynamics in terms of instantaneous frequency which is associated with the curing 

velocity, i.e., growing rate in units of µm per second. It is responsive to the curing start / 

stop, curing speed, and curing area as shown in the designed experiment series varying 

exposure time, intensity and pattern size. The implementation with the well-developed 

MATLAB application demonstrates that the ICM&M is feasible and deployable in the 

physical system, and is well fit for the purpose for real-time ECPL process measurement, 

modeling and control. Additionally, the ICM&M system is efficient compared with 

potentially available commercial measurement tools, which however could be costly and 

need retrofit to become a qualified real-time metrology for monitoring online 

photopolymer AM processes. 

This chapter answers Research Question 1 using a simulation approach by 

replaying an interferogram video and estimating cured heights simultaneously to mimic a 

real-time process measurement. A series of coherent experiments and in-depth evaluation 

of the developed ICM&M characteristics validate further Research Hypothesis 1.  
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CHAPTER 9 REAL-TIME ECPL PROCESS MEASUREMENT AND 

CONTROL 

 

The previous chapter provides a verification for Research Hypothesis 1 (Section 

4.5.1) with the offline prototype of ICM&M method being validated and characterized. 

this chapter demonstrates a real-time implementation of the ICM&M method for 

measuring and controlling the ECPL process in order to evaluate further Research 

Hypothesis 1 and to validate preliminarily Research Hypothesis 2 as outlined in Chapter 

4 (Section 4.5.2). In Section 9.2, the essential ECPL-M&C software is highlighted as an 

enabling tool and a potential error source for the subsequent real-time implementation 

experiment. Section 9.3 introduces the real-time implementation of the ICM&M system. 

A basic feedforward-feedback On-Off control scheme is developed in Section 9.4 for the 

real-time process control. Design of the real-time experiment is introduced in Section 9.6, 

followed by experiment results and discussions in Section 9.7. More discussion and 

recommendations about the preliminary and future real-time feedback control of ECPL 

process is presented in Section 9.8. Section 9.9 concludes the chapter with the benefits 

and challenges of applying real-time measurement for ECPL process control. 

9.1 Background and introduction 

9.1.1 Research in process modeling, measurement and control for AM 

Currently, a gap exists between high-fidelity modeling research and real-time 

process measurement and online control efforts. The challenges involved in the sensing 

of AM processes include a lack of accessible metrology system and the need for intensive 

computing power. Generally speaking, the sensing of AM processes may require fast in 

situ measurements of the temperature, cooling rate, and residual stress; the calibration of 

fast optical sensors for high-accuracy measurements; and in-process monitoring of 
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geometric dimensions and the surface quality of finished layers [1].Even if this is 

achieved, it is very challenging to use this information for the online process control of 

material composition and phase transformation, and for the repair of defects such as 

pinholes/porosity, micro cracks, and segregation. For commercial AM machines, 

integrating control algorithms with existing AM equipment through the machines’ 

proprietary controllers creates another significant barrier to the cost-effective 

implementation of real-time AM process control. 

A majority of current research on additive manufacturing has focused on metal 

AM process modeling and simulation for understanding the relationships between a 

material’s process conditions and final properties [2-4], which are characterized into two 

main groups - mechanical properties (geometry, strength, hardness and residual stress) 

and microstructure properties (morphology, grain size, phase precipitation, etc.). A 

closed-loop control system based on infrared image sensing was built for control of the 

heat input and size of the molten pool in the laser based additive manufacturing process 

[4]. The closed loop control results showed a great improvement in the geometrical 

accuracy of the built features. The mechanical properties are dependent on microstructure 

properties that are controlled by thermal conditions at the onset of solidification and the 

cooling rate post solidification. Due to the high melt pool temperature and the rapid 

solidification process, there are currently no sensors available to monitor the 

microstructure in situ and in real-time. Thus, one needs to control the microstructure 

indirectly through other affecting parameters that can be monitored and controlled more 

easily. Assuming a correlation between the temperatures and cooling rate and deposition 

microstructure, in laser additive manufacturing (LAM), a real-time PID controller was 

designed to generate a consistent microstructure by manipulating the laser beam travel 

speed for maintaining certain cooling rate with feedback signals of surface temperatures 

monitored by an in-situ infrared imaging system [5]. 
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Most studies present either a theoretical approach with little to no verification 

compared to that of real-life results [2], or semi-empirical approaches that may correlate 

well with specific experiments, but their results are not directly transferrable and 

expandable to other machines, requiring further experimentation. The AM processes 

could significantly benefit from accurate measurement systems, aided by process models 

in order to be able to back up the real measured data with model prediction.  

Given the research progress in metal AM, the modeling, metrology and controls 

of polymer and soft materials AM are emerging as new research priorities for the 

monitored dimensional accuracy and materials and mechanics properties significantly 

affect the quality and performance of the final product [6]. The physics of polymers such 

as photopolymerization in additive lithography process and melting and recrystallization 

in plastic filament extrusion process are not adequately understood to develop robust 

mathematical models. Supercomputing can greatly impact such modeling efforts. Multi-

physics complex process models need to be reduced to lower-order models for real-time 

parameter identification and control of AM processes [1]. For metal AM, only a few 

research groups have implemented closed-loop controllers to control the melt pool 

temperature, and even fewer literature report on closed-loop control rate or the 

microstructure [5]. As to the closed-loop control for non-metal additive manufacturing, to 

the authors’ best knowledge, there is a scarcity of literature in real-time measurement and 

control for polymer and soft materials AM processes.  

9.1.2 Real-time control in commercial AM systems 

From a commercial manufacturing standpoint, in-process sensing technology for 

additive manufacturing is still in its infancy [14]. Process monitoring and controls for 

additive manufacturing are still in research and development phase [15], with metal 

additive manufacturing predominating the specific research area of measurement science 

and feedback control [8, 9] and the counterpart research for non-metal such as polymer 
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and soft materials AM processes has just set out recently [6]. Status of real-time control 

in commercial metal additive manufacturing systems is summarized in a most recent 

review literature [15], which found that continuous feedback control in commercial 

systems is more easily realized in directed energy deposition systems than in laser powder bed 

fusion (LPBF) systems due to the much lower processing speeds and larger melt pool 

size. The Optomec LENS (Laser Engineered Net Shaping) MR-7 offers the option of 

closed loop control, which is being tested and optimized by university collaborators [16]. 

In commercial LPBF systems, high-speed closed-loop control based on melt pool 

monitoring is not yet realized, however, layer-wise monitoring and control have been 

demonstrated. For example, Concept Laser’s QM coating module images newly formed 

powder layer surfaces, and actively detects and compensates for powder layer thickness 

variation [15]. 

9.1.3 Objective of this chapter 

The main objective of this chapter is to implement and validate the developed 

ICM&M system in real time, as well as to develop and demonstrate a real-time system 

for controlling the ECPL process output of cured part’s vertical dimension. 

9.2 Parallel computing software for real-time process measurement and control 

In the ECPL process, high-speed interferogram can be used to obtain imaging and 

optics data for dimensions prediction by determining the cured height resulting from 

grayscales signal analysis. In order to use such information for ECPL process control, 

images from the AM processes have to be processed at a speed sufficient to capture the 

process dynamics. 

One prerequisite for implementing the ICM&M method in real time fashion to 

measure and control the cured height of part made by ECPL process is a high-
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performance software that handles data acquisition and analysis for measurement and 

performs decision making and actuation for control. 

A parallel computing software was developed in MATLAB with real-time 

acquisition in the foreground and online measurement running in the background. Details 

about the programming of the MATLAB software are presented in Chapter 7. This 

chapter validates the real-time metrology and control with the software whose 

functionality and limitation have been acknowledged in Chapter 7. 

It is worth to point out upfront that the developed ECPL-M&C software could 

inevitably induce some error in the ECPL process output of cured sample’s height, and 

on the other hand presents possible room for improvement in the future work. 

9.3 Implementation of the ICM&M in real time 

The ICM&M method has proven capability of measuring the ECPL process cured 

part off line, and provided a benchmark for real-time measurement performance. For real-

time execution, the sensor model and all the algorithms remain the same as in the 

previous offline implementation (Chapter 8). except for the integration method (rectangle 

method is used in Chapter 8). However, the integration methods are shown to be similar 

in estimation accuracy. The reason for using trapezoidal integral rather than rectangle 

integral in this chapter is that the real-time implementation encounters a longer 

measurement interval (0.55 s Vs. 0.33 s in Chapter 8 experiments), for which trapezoidal 

integral method might be more accurate. Particularly, the real-time ICM&M continues to 

use the following setting as the offline ICM&M does: (1) 5×5 filter in preprocessing; (2) 

trapezoidal integral; (3) evolving refractive index model in Equation ( 26 ) [92].  

One significant difference between the real-time ICM&M and previous offline 

ICM&M is the acquisition rate. In real time, the interferogram data acquisition can be 

affected by the online measurement and control in the parallel computing; hence, the 

fidelity and quality of real-time data is not as high as that of the data acquired without 
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any online analysis as in the previous offline implementation of ICM&M. The average 

image data acquisition rate is 0.033 s per frame (i.e., 30 frames per second) for purely 

collecting process data that is later analyzed off line, while the average image acquisition 

rate is 0.055 s per frame (i.e., 18 frames per second) in real time along with online 

measurement analysis. 

Furthermore, latency time between real time acquisition and measurement 

analysis is notable and critical in the overall process accuracy. In this study, it is 

estimated as the elapsed time between the instant when the image is written into the 

memory file and the instant when the image is read by the thread for measurement 

analysis. Ideally, each frame should be read immediately once it is acquired; however, if 

the analysis of previous frames takes excessive time, the latest frame cannot be analyzed 

until after the previous frame is analyzed thus the analysis is lagging behind the 

acquisition. The latency time could be reduced to minimum given high performance 

hardware and software. The effect of measurement latency will be discussed further with 

the experiment results. 

9.4 Design of a closed-loop controller 

This section designs a negative feedback on-off scheme for controlling the 

photopolymer part growth in real-time during the ECPL process. 

9.4.1 The control scope 

The ECPL process is a complex nonlinear system and there could be multiple 

control actions including manipulating the resin composition, temperature, UV exposure 

time, exposure intensity and exposure pattern for curing a target 3D object. In this 

preliminary study of real-time measurement feedback control, to simplify the multi-input 

control problem, a basic exposure time controller is designed to understand the real-time 

controllability of the vertical dimension, i.e., cured height in the ECPL process. 
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Manipulating other process factors, especially the chemical components (e.g. initiators, 

and oxygen inhibitors), exposure intensity and pattern, could be conceived in future work 

to complement the outcomes of these exposure time control for multiple output of desired 

properties such as lateral dimensions and mechanical properties.  

9.4.2 The control mode 

As a preliminary controller with ICM&M feedback, the ECPL exposure time 

controller under investigation involves some discrete switching concept which is a 

fundamental control method of On-Off control [99]. In control theory, an On–Off 

controller, is a discontinuous feedback controller that switches abruptly between two 

states [46]. These controllers may be realized in terms of any element that provides 

hysteresis. They are often used to control a plant that accepts a binary input. Such a 

control mode is easier to implement but expects some process tolerance or deviation. A 

typical example of On-Off controller is a thermostat which senses the temperature and 

maintains it near a desired set point by switching on / off the heater. 

Similarly, with the ICM&M system available online, an On-Off control mode is 

designed to determine when to shut down the UV lamp for controlling the height of 

ECPL cured part. The On-Off controller employs a negative feedback to correct errors 

between the measured height and target height; thereby, when the cured height 

approaches the reference value, the UV lamp is switched off in order to terminate the 

curing. 

9.4.3 The actuator 

For controlling the ECPL process, the exposure source UV lamp that allows for 

control of overall exposure intensity across the chamber, and the pattern generator DMD 

that comprises an array of micromirrors to deliver spatial control of exposure intensity, 

could both be adopted as actuators. In this basic controller design, only UV lamp is used 



 227 

to control the exposure for curing blocks in the upcoming validation experiments. The 

UV lamp could be either completely on or completely off. Please note that the UV lamp 

is equipped with an iris which could provide discrete percentage levels from 0% to 100% 

in an increment of 1% that fine tunes the exposure intensity. In this study of On-Off 

controller, only the two extreme limits of UV lamp shutter – fully on and fully off- are 

employed; and in the future design for more advanced control methods, the full range of 

UV source intensities along with the DMD could be utilized for more control flexibility 

and capability. In the on-off control for ECPL process, given a constant UV iris level and 

a fixed DMD bitmap, the input of UV light is a step function as shown in Figure 69. 

 

 

Figure 69. On-Off control input in the ECPL process 

 

9.4.4 System delays 

As is common for real-time measurement and control systems [100], there exist in 

the ECPL On-Off feedback control system considerable delays in measurement 𝜏𝑚𝑒𝑎𝑠, in 

feedback control 𝜏𝑐𝑡𝑟𝑙 and in actuation 𝜏𝑎𝑐𝑡, primarily due to the racing of multithreads in 

the parallel computing and in an real-time-unguaranteed operating system. The 

measurement latency 𝜏𝑚𝑒𝑎𝑠 resides between real-time acquisition and online analysis in 

the ICM&M system. The feedback control delay 𝜏𝑐𝑡𝑟𝑙 refers to various delays in the 

controller, including (1) 𝜏𝑠 - the missed sensing of the target trigger point due to discrete 
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measurement, especially a significantly long measurement interval; (2) the sensor-to-

controller time lapse 𝜏𝑠𝑐 for transmitting measurement result; and (3) the controller time 

𝜏𝑐 for implementing control algorithms. The actuation delay 𝜏𝑎𝑐𝑡 includes (1) the 

controller-to-actuator time delay 𝜏𝑐𝑎 for transferring the control signal; and (2) the 

actuator delay 𝜏𝑎 in mechanically operating the UV lamp.  

To obtain information about the measurement latency 𝜏𝑚𝑒𝑎𝑠, feedback control 

delays 𝜏𝑐𝑡𝑟𝑙 and actuation delay 𝜏𝑎𝑐𝑡, the ECPL-M&C software is equipped with two 

stopwatch timers – one for recording each interferogram’s timestamp when it is acquired 

and written into a file, the other for recording the timestamp when it is read from the file 

for analysis. The measurement latency of each frame can be estimated by calculating the 

time lapse between the image’s acquisition 𝑡𝑎𝑐𝑞𝑢𝑖𝑟𝑒 and analysis 𝑡𝑎𝑛𝑎𝑙𝑦𝑧𝑒 as shown in 

Equation ( 30 ). The timestamps are also used for tracing the measurement and control 

events, thus to capture the evolution of cured height. Investigating the timestamps of 

measurement and control footprints off line could also help identify the control delay 

𝜏𝑐𝑡𝑟𝑙 which is estimated as a difference between the target point’s and trigger point’s 

timestamps. Meanwhile, the UV lamp status (on/off) is recorded every time when a new 

frame is acquired; thereby, the actuation delay could be derived by comparing the 

actuator status and corresponding timestamp.  

Due to the limited computation resource in the parallel computing and execution 

for both measurement and control, the execution of controller and actuator can be 

impacted by an intensive measurement. It is expected that the feedback control delay 

𝜏𝑐𝑡𝑟𝑙 would increase as the measurement interval is extended to allow sufficient time for 

measuring more pixels on line. The first part of control delay 𝜏𝑠 which is referred as 

“measurement interval effect” could be estimated (denoted as 𝜏𝑠_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑) by a linear 

interpolation between the two consecutive discrete measurements that include the target 

point. The remaining part of control delay 𝜏𝑠𝑐 and 𝜏𝑐, which is referred as “transmission 
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delay” and “computation delay”, together, could be calculated as the difference between 

the time 𝑡𝑠𝑒𝑛𝑠 when measurement hits the trigger point and the actual trigger time 𝑡𝑡𝑟𝑔 

when the controller receives the sensor’s signal after a possible delay due to some 

random disturbances in the computing environment. Therefore, the feedback control 

delay 𝜏𝑐𝑡𝑟𝑙 is estimated as shown Equation ( 31 ).  

The actuation delay 𝜏𝑎𝑐𝑡 is estimated via Equation ( 32 ) as the deviation between 

the actual instant of trigger point 𝑡𝑡𝑟𝑔 when the measured height 𝑧𝑚 is detected to have 

hit the reference value 𝑧𝑡 and the moment of shutdown point 𝑡𝑠ℎ𝑢𝑡 when the UV lamp is 

just confirmed to be turned off.  

𝜏𝑚𝑒𝑎𝑠 ≅ 𝑡𝑎𝑐𝑞𝑢𝑖𝑟𝑒 − 𝑡𝑎𝑛𝑎𝑙𝑦𝑧𝑒 ( 30 ) 

𝜏𝑐𝑡𝑟𝑙 = 𝜏𝑠 + (𝜏𝑠𝑐 + 𝜏𝑐)  ≅ 𝜏𝑠_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 + (𝑡𝑡𝑟𝑔 − 𝑡𝑠𝑒𝑛𝑠) ( 31 ) 

𝜏𝑎𝑐𝑡 = 𝜏𝑐𝑎 + 𝜏𝑎 ≅ 𝑡𝑠ℎ𝑢𝑡 − 𝑡𝑡𝑟𝑔 ( 32 ) 

The values of 𝑡𝑎𝑐𝑞𝑢𝑖𝑟𝑒, 𝑡𝑎𝑛𝑎𝑙𝑦𝑧𝑒, 𝑡𝑠𝑒𝑛𝑠, 𝑡𝑡𝑟𝑔 and 𝑡𝑠ℎ𝑢𝑡 are obtained from the image 

timestamp of the frame acquired, respectively, at the acquisition node, measurement 

node, decision-making control node and at the UV lamp switch node. 

9.4.5 The control scheme 

9.4.5.1 Compensator 

A real-time monitoring of UV curing reaction rates of some stereolithography 

resin with a reflectance infrared spectrometry technique, revealed a significant additional 

conversion of reactive groups as the so-called dark curing, which means a post-irradiation 

polymerization process after termination of exposure [50]. Similarly, dark curing is 

expected in the ECPL process and cannot be neglected with the experimental materials in 

this study, as some extra vertical growth is observed from the interferogram changes 

detected by the ICM&M system.  
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In the ECPL On-Off control strategy, the inherent dark curing could introduce 

near the set point of the target total height a significant deadband, where no control 

actions are available to regulate the cured height after switching off the UV lamp. 

Consequently, the part of dark curing is uncontrollable by the simple on-off feedback 

controller, and should be accounted for upfront by a compensator which is aimed to 

reduce the cured height error attributed to dark curing. It is difficult to provide a kinetic 

model of the effects of dark curing. For simplification, in this study, the width of the On-

Off control deadband is defined as a lumped ratio (𝑟𝐷/𝑇) of dark cured height 𝑧𝐷𝑎𝑟𝑘 to 

total cured height 𝑧𝑇𝑜𝑡𝑎𝑙, which assumes linear dependency of dark cured height 𝑧𝐷𝑎𝑟𝑘 on 

the leading exposed cured height 𝑧𝐸𝑥𝑝 in the ECPL process with a constant ratio 𝑟𝐷/𝐸 as 

shown in Equation ( 33 ). Accordingly, Equation ( 34 ) is used to derive the lumped 

percentage (𝑟𝐷/𝑇), which is also shown to be a constant, for quantifying the contribution 

of dark cured height 𝑧𝐷𝑎𝑟𝑘 in the total cured height 𝑧𝑇𝑜𝑡𝑎𝑙. The ratio value 𝑟𝐷/𝑇 could be 

identified experimentally with the specific material used in the process. 

𝑟𝐷/𝐸 =
𝑧𝐷𝑎𝑟𝑘
𝑧𝐸𝑥𝑝

 
( 33 ) 

𝑟𝐷/𝑇 =
𝑧𝐷𝑎𝑟𝑘
𝑧𝑇𝑜𝑡𝑎𝑙

=
𝑧𝐷𝑎𝑟𝑘

𝑧𝐷𝑎𝑟𝑘 + 𝑧𝐸𝑥𝑝
=

𝑟𝐷/𝐸×𝑧𝐸𝑥𝑝

𝑧𝐷𝑎𝑟𝑘 + 𝑟𝐷/𝐸×𝑧𝐸𝑥𝑝
=

𝑟𝐷/𝐸

1 + 𝑟𝐷/𝐸
 

( 34 ) 

 

Provided a set point (𝑧𝑠) of desired total cured height of a target 3D part, the 

compensator estimates by Equation ( 35 ) a reference value, which will be input to the 

succeeding feedback controller serving as a trigger point (𝑧𝑡) for switching the UV lamp. 

𝑧𝑡 = 𝑧𝑠×(1 − 𝑟𝐷/𝑇) 
( 35 ) 

In previous study for ICM&M validation, experiments were conducted to cure 

multiple samples [92], and the ICM&M method were applied off line to measure out the 

dark cured height and total cured height of the 24 samples. Histogram of the resultant 
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ratios, in Figure 70, shows that the average ratio of dark cured height to exposed cured 

height was 0.108.  

 

Figure 70. Statistics of the ratio of dark cured height over exposed cured height 

 

As reported in literature [59], the dark reaction contributes to about 10% 

conversion of monomer at the locus where irradiation is received, which may explain 

why the dark cured height occupies around 9.75% of total height in the ICM&M 

measurement. Therefore, the lumped percentage of dark curing in the entire ECPL curing 

(𝑟𝐷/𝑇) was estimated to be 10% which is to be used in the compensation for the part of 

dark curing in the real-time On-Off control experiments. 

9.4.5.2 Feedback controller 

A closed-loop feedback controller is a key component in the On-Off control 

system. It compares the measured height 𝑧𝑚 (feedback from the ICM&M system) with 

the reference value 𝑧𝑡 (derived from the compensator), and calculates the difference as 

shown in Equation ( 36 ) for an error signal 𝑧𝑒. 

𝑧𝑒 = 𝑧𝑚 − 𝑧𝑡 
( 36 ) 
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The measurement latency 𝜏𝑚𝑒𝑎𝑠 and control delay 𝜏𝑐𝑡𝑟𝑙 are subject to stochastic 

computing environment factors and more difficult to predict compared with the control 

delay that exhibit a more deterministic value and is easier to characterize. Consequently, 

the measurement latency and control delay is not specifically accounted for in this initial 

controller design. In other words, this controller design assumes negligible delays in 

measurement and control which actually can be well supported by an enhanced 

computing system in the future. To unveil the system’s full potentiality, with the forward-

looking assumption of insignificant delays in measurement and control, only the 

relatively predictable and physically inevitable delay in the actuation 𝜏𝑎𝑐𝑡 is addressed in 

the feedback controller design.  

Experiments can be conducted to quantify the actuation delay 𝜏𝑎𝑐𝑡, and a 

statistical mean delay of the measured delays for repeated experiments is used to estimate 

the dead zone 𝑧𝑡𝑜𝑙 in the controller for the specific experimental conditions (i.e., number 

of online measured pixels, and measurement interval). The initial characterization 

experiments that measure online one pixel at a measurement interval of about 0.55 

second, indicate that it takes approximately 0.4 second for the control action is executed 

after the control decision is made. 

The actuation delay can lead to a deadband in the controller, referred in the ECPL 

process as a tolerance of controlled height. The controller is supposed to shut down the 

UV lamp when the feedback error hits the non-zero tolerance rather than exactly zero so 

that the extended light curing due to the delay would bring the feedback error down to 

around zero. Therefore, the height control tolerance 𝑧𝑡𝑜𝑙 is estimated as one half of the 

over-cured height caused by the delayed termination of the UV exposure using the 

method of linear interpolation as shown in Equation ( 37 ). The symbol 𝑧𝑐𝑦𝑐𝑙𝑒 denotes the 

cured height per oscillating cycle in the ICM&M detected time sequence of interferogram 

intensity at the measured pixel, and its value has been characterized to be 

approximately12 µm as shown in Equation ( 28 ). 𝑇𝑃𝑟𝑜𝑐𝑒𝑠𝑠 is the period of the 
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interferogram intensity signal at the end of illuminated curing process, and is dependent 

on both the exposure time and intensity. In this study, a rough average value of 

𝑇𝑃𝑟𝑜𝑐𝑒𝑠𝑠 ≈ 5𝑠 could be used for estimating the controller tolerance. With an empirical 

value of 𝜏𝑎𝑐𝑡 ≈ 0.4𝑠, 𝑧𝑡𝑜𝑙 is estimated to be 0.5 µm which is used in the real-time 

measurement and control experiments reported in this study. 

𝑧𝑡𝑜𝑙 ≈
1

2
×(𝑧𝑐𝑦𝑐𝑙𝑒×

𝜏𝑎𝑐𝑡
𝑇𝑃𝑟𝑜𝑐𝑒𝑠𝑠

) 
( 37 ) 

With a proper setting of the tolerance 𝑧𝑡𝑜𝑙, the controller algorithm for updating 

online the ECPL process input (𝑢) of UV lamp actuating signal is developed in Equation 

( 38 ). Via switching off the UV lamp at an optimal time point decided by the algorithm, 

the controller is aimed to bring the final process output as close to the set point as 

possible.  

𝑢 = {
1 ("On"), −𝑧𝑒 > 𝑧𝑡𝑜𝑙
0 ("Off"), −𝑧𝑒 ≤ 𝑧𝑡𝑜𝑙

 
( 38 ) 

9.4.5.3 Overall integrated control system 

As summarized in Figure 71, a real-time monitoring and control system for the 

ECPL process output of cured height is developed based on the classical feedback control 

theory [101]. The block diagram illustrates the control scheme with signals (shown as red 

symbols), control logic (shown as blue equations) and interpretations. The set point 𝑧𝑠 

means the desired total cured height, while the trigger point 𝑧𝑡 means the reference value 

of cured height at which a control signal of cutting off the UV exposure is sent. It is noted 

that the trigger point flags the impending end (not immediate end due to the actuation 

delay 𝜏𝑎𝑐𝑡) of exposed curing stage, only which the feedback controller can intervene. As 

explained previously, the feedback control loop cannot manipulate the dark curing stage, 

which is therefore compensated in the predefined calculation instead. The developed in-

situ ICM&M system is used to sense the cured height in real time. With the measured 

information of cured height 𝑧𝑚 under UV exposure, an On-Off feedback controller with a 
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deadband of height tolerance 𝑧𝑡𝑜𝑙 is used to determine the optimal time when to terminate 

illuminating the workpiece on the building platform. 

Please note that 𝑟𝐷/𝑇 is tunable in the controller setting for better control accuracy 

if an empirical ratio obtained from the model in Equation ( 33 ) turns out to be 

inadequate. Another adjustable parameter in the controller is 𝑧𝑡𝑜𝑙, whose value might be 

inaccurate as is roughly estimated by Equation ( 37 ). 

 

 

Figure 71. Scheme diagram of feedback control for real-time cured height in ECPL 

process 

 

9.5 Offline measurement methods 

In this study, the actual height profile of the cured flat-top parts is represented by 

the overall average and deviation values. This section describes in details how actual 

height profile is measured offline to bolster the upcoming interpretation and discussion 

about the experimental results in Section 9.7. 

To measure the parts cured in the experiments, two methods are employed: an ex-

situ confocal laser microscope (Olympus LEXT 3D Material Confocal Microscope) and 

an offline implementation of the developed ICM&M method. The microscope serves to 
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provide a standard measurement that is regarded as the actual process output 𝑧𝑝. The 

offline ICM&M method is performed in this post analysis as a validation tool to evaluate 

the potentiality of real-time ICM&M in an unrestricted computational environment, as 

well as to provide a further demonstration of the metrology’s capability echoing with the 

previous offline characterization experiments. While the microscope cannot measure out 

the exposure height and dark height, the offline ICM&M method offers unique advantage 

in being able to estimate the exposure height and dark height across the cured part so that 

one can evaluate the accuracies of the compensator and the feedback controller (in Figure 

71). 

9.5.1 Microscope measurement 

To obtain a complete view of the overall heights profile under the microscope 

such that could be better compared with the ICM&M full-field measurement, for each 

cured block, several sampling horizontal and vertical profile lines across the part are 

measured under the microscope. However, a direct cursor measurement in microscope 

provides only average result without variation indication; worse still, it is prone to human 

error. Therefore, analysis of the exported measurement data is performed to calculate 

average and variance for each profile line. 

According to the probability theory, the sum of two independent normally 

distributed random variables is normal with its mean being the sum of the two means and 

its variance being the sum of the two variances [102]. The measured single lines’ heights 

are aggregated to provide an estimation for the overall average height of the cured part. 

To estimate the height variation across the entire part, firstly, the variances of sampled 

profile lines are averaged, and then the square root of the averaged variance is used as the 

average standard deviation – a metric for the overall roughness of the ECPL cured block. 

For example, Figure 72 shows how the microscope is used to measure a cured 

part in one of the designed experiments (specifically, Group #2 Subset #2 in Table 18). 
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The measurement results shown in Figure 72 are the difference between the two cursors - 

one indicates the substrate and the other the sample surface – manually placed by the 

operator with naked eyes judgment. Thus, the cursor measurement is not necessarily an 

accurate measurement of the detected profile under microscope. The exact profile data 

are exported from the microscope and analyzed for a profile line’s average and variance 

height. In this instance, 5 horizontal lines and 5 vertical lines are measured. As shown in 

Table 17, the resultant overall height profile (with an average of 41.60 µm and standard 

deviation of 4.79 µm as shown in red bold numbers) is obtained by aggregating the 10 

measured lines. Deviations of a few microns exist between the cursor measurement 

(Column 2) and microscope data average (Column 3), demonstrating the necessity of 

adopting the microscope data analysis approach, which meanwhile enables an estimation 

of the variance and deviation.  

 

Table 17. Evaluate a sample cured part’s height profile with its microscope data 
Sampling 

Profile 

Line # 

Microscope 

Cursor 

Measurement 

(µm) 

Microscope Data 

Average (µm) 

Microscope Data 

Variance (µm) 

Microscope Data 

Standard 

Deviation (µm) 

1 42.93 40.40 33.79 5.81 

2 42.93 44.34 16.37 4.05 

3 42.93 44.04 19.32 4.40 

4 42.93 44.29 14.74 3.84 

5 37.22 35.88 27.03 5.20 

6 35.01 39.04 21.22 4.61 

7 43.86 45.01 24.60 4.96 

8 40.86 43.02 24.08 4.91 

9 40.86 42.25 23.48 4.85 

10 35.01 37.72 24.76 4.98 

Overall 40.45 41.60 22.94 4.79 
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(a) Profile Line #1 

 

(b) Profile Line #2 

 

(c) Profile Line #3 

 

(d) Profile Line #4 

 

(e) Profile Line #5 

 

(f) Profile Line #6 

 

Figure 72. Measuring multiple profile lines across a sample cured part with microscope 
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(g) Profile Line #7 

 

(h) Profile Line #8 

 

(i) Profile Line #9 

 

(j) Profile Line #10 

 

Figure 72 (continued). Measuring multiple profile lines across a sample cured part with 

microscope 

 

9.5.2 Robust ICM&M method off line 

Since the real-time measurement is subject to constraints in computation speed 

and power, an offline ICM&M analysis for the same interferogram dataset as analyzed 

online is used to measure the desired overall height profile of a cured part. The sensor 

model and fundamental algorithms are the same for both real-time and offline ICM&M, 

however, the later could tap into the full video resource for more pixels data to obtain 

results with less bias and less error. Moreover, due to smaller acquisition rates in the real-

time experiments, the signal noise ratio (SNR) of the sampled interferogram data is fairly 
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lower, compared with that of the data collected without online analysis in a pure 

acquisition as in the previous work of offline ICM&M validation and characterization 

(Chapter 8) [92]. Therefore, a more robust ICM&M method, which equips the basic 

ICM&M algorithms (developed in Chapter 6) with a majority voting scheme and an 

outlier treatment technique, is exploited to enhance the measurement accuracy for the 

real-time experiment data.  

Both the methods of voting and outlier treatment take the advantage of a rich 

dataset involving more sampling pixels. The majority voting method is called each run of 

measurement, during the execution of ICM&M, to identify the curing window coherently 

and easily (in case of noisy data) with the feedback of updated status from all the ROI 

pixels at large, and aims to improve an individual pixel measurement accuracy. After all 

ROI pixels are measured, the outlier treatment method would be employed as a 

postprocessing measure to detect and correct the outlier individual pixel within the 

initially resultant height profile statistics, and focus on ensuring a consistent and robust 

measurement for each individual pixel so as to provide a final height profile measurement 

with an improved overall estimation accuracy across the ROI. 

9.5.2.1 Voting scheme for identifying the curing window 

A majority voting scheme is designed to identify the cure start and curing stop 

more consistently across the ROI. One base for determining the voting result is the 

percentage of pixels that are required for the algorithm to adopt a proposal that the 

process is at incubation period or dark period. The threshold percentage values are chosen 

based on experiments using two majority votings - 2/3 and 4/5. It is found experimentally 

that 2/3 voting and 4/5 voting would not make a significant difference in the defined 

curing window. Increasing the voting percentage threshold from 2/3 to 4/5 could increase 

the average and deviation in cured heights slightly by less than 1 um. However, the 

deviation result from 2/3 voting is closer to the microscope measurement result, which 
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implies that 2/3 voting can output a smoother and more realistic height distribution. 

Therefore, for identifying pre-curing incubation period, it is decided to adopt 2/3 majority 

voting which is more robust and more accurate across the cured area despite possible 

underestimation for some individual pixels. For identifying resting period, 4/5 voting is 

proper, and even if it is not timely identified, the sufficiently long window used in the 

curve fitting for dark curing period could help alleviate the error. 

In this study, if the number of pixels at incubation period drops below a threshold 

of 2/3 of the total pixels, the algorithm begins to allow individual pixel start curing; 

otherwise, all pixels are decided to be still at incubation despite some possible wavy 

signals existing in some pixels. Similarly, after the UV lamp is off, once 4/5 pixels are 

marked as have stopped curing already, the algorithm will artificially force all the other 

pixels into the resting stage, because the fluctuating tails in the unsettled pixels are likely 

noises instead of curing oscillations. 

Generally speaking, this majority voting method is effective in suppressing false 

alarms in the should-be incubation stage and should-be resting stage, so that each pixel 

measurement would be immune to various spurious oscillations at the non-curing stages.  

To demonstrate the benefit of the voting scheme, a cured part in one of the 

designed experiments (specifically, the target height is 40 µm, Group #2 Subset #1 in 

Table 18) is measured by the ICM&M method, without and with the voting scheme, 

respectively. The ROI of measured pixels is shown in Figure 73 - a 100×100 pixels 

square (red dashed line) defined by the four corner pixels. The initial measurement 

without voting is displayed in Figure 74 (a), which shows a very large standard deviation 

of 11.5 µm. One outstanding pixel that is located at [Width, Height] of [310, 170] is 

obviously overestimated to be 133 µm and its time sequence of grayscale data is analyzed 

in Figure 75 (a). The grand pattern of the data shows approximately 3 cycles, but the 

ICM&M algorithm counts the misleading fluctuations within the time frame of [0, 17s] 

into the curing window. Supervised by the voting scheme, the ICM&M algorithm 
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estimate the curing window for the entire ROI to be [17.914s, 41.768s] as shown in 

Figure 76. In in Figure 76 (a), there are 441 pixels in total, and once the number of 

incubation pixels drops below 2/3 of that (i.e., 294), the time point is marked as the 

earliest allowable curing start time (i.e. 17.914 s) before which all the curing pixels 

determined by the ICM&M classification rules are forced artificially back to incubation 

stage. Similarly, in Figure 76 (b), the 4/5 voting for resting period uses the threshold 

number of 352 to find the latest allowable curing stop time (i.e., 41.768 s), after which all 

the curing pixels determined by the ICM&M classification rules are forced into resting 

stage so that the noises in tailing period would not induce error.  

With the aid of voting, the ICM&M algorithm could easily discard the spurious 

waves, and correctly calculate the total phase angle for the problematic pixel is 3.15 

cycles and the estimated height is 40.08 µm which is right on target as shown in Figure 

75 (b). The resultant height profile from the ICM&M with voting is more uniform and 

closer to reality as shown in Figure 74 (b); however, there is still improvement room to 

reduce the variation further and thus an outlier detection mechanism is introduced to 

address the issue (Section 9.5.2.2). 

 

 

Figure 73. ICM&M without vs. with voting: selected region of pixels to be measured 
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(a) 

 

(b) 

 

Figure 74. ICM&M without (a) vs. with (b) voting: estimated height profile 

 

 

 

 

 

(a) 

 

(b) 

 

Figure 75. ICM&M without (a) vs. with (b) voting: measuring a pixel with noisy 

incubation signal 
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(a) 

 

(b) 

 

Figure 76. ICM&M voting for ECPL process stage (a) incubation; (b) resting. 

 

9.5.2.2 Outlier detection and treatment 

The majority voting assisted ICM&M algorithms mentioned above would output 

an initial height profile such as Figure 75 (b). In this study, outliers in the initial results 

are defined as these measured heights that are 1-sigma away from the robust fitted 

average. Detected outliers are replaced by the median filtered (3×3 filter span) values in 

the matrix of initial ICM&M measurement profile. The same example as in Section 

9.5.2.1 is used to demonstrate the effect of applying the outlier removal algorithm. Figure 
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77 displays a more uniform profile with a sigma of 4.51 µm which is reduced effectively 

from these estimated in Figure 75, and closer to the standard deviation of 5.07 µm 

estimated from the microscope data.  

 

Figure 77. An example of final height profile estimated by the ICM&M with voting and 

outlier removal schemes 

 

9.5.2.3 Summary 

The robust ICM&M algorithms which incorporate the methods of majority voting 

and outlier removal, are applied to the real-time acquired interferogram video for each 

part cured in the experiments, and the estimated height profile of average height 

(𝑧𝐼𝐶𝑀_𝑂𝑓𝑓) and standard deviation is used as the offline ICM&M result in this study. 

9.6 Experiment design for real-time ECPL process measurement and control 

Theoretically, one could deploy the ECPL-M&C codes onto the physical system, 

conduct an in-process measurement of the height profile for an entire region of interest, 

and simultaneously apply online a control method with the accessible measurement result 

to cure a part with desired height. The ideal approach of real-time implementation of 

ECPL process feedback control demands prohibitively large computing memory and fast 

computing speed, in order to synchronize the ICM&M analysis with the real-time 
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interferogram data acquisition, as well as to realize timely hardware (i.e., the UV lamp in 

the ECPL system) responses to the feedback control algorithm with minimal delay. In 

general, a reliably fast measurement and actuation for real-time process control would be 

computationally expensive. 

Given the restricted computing resource, only a limited number of pixels are able 

to be measured online as a demonstration of the ICM&M method’s qualification as a 

real-time process metrology. A fast curing process can sustain an online measuring for 

one pixel, which does not demand much computation time. In a slow curing process, 

however, a relatively long measurement interval would not affect the measurement 

accuracy significantly, and could support a multi-pixel measurement without hindering 

the software thread for acquisition. Multi-pixel measurement is preferable, since it is 

more robust and more representative in the estimation of cured height than one single 

pixel is. With the current system and software, in a fairly slow curing process, three 

pixels could be measured online simultaneously between two consecutive measurements 

without causing severe latency between the ICM&M acquisition and analysis. In the 

designed experiments, in addition to measuring and control a normal ECPL process under 

a moderate exposure intensity, another set of experiments with a relatively slow process 

is planned, altogether, to demonstrate the ICM&M method’s potentiality in real-time 

measurement both locally and globally, as well as to validate the On-Off control 

method’s capability of controlling the process with different set points and different 

dynamics (e.g., curing speed). 

Another consideration in the experiment design is to relax the constraint of 

measurement latency which actually could be well unleashed in a high performance 

computing system, in order to provide a fairer and truer evaluation of the developed real-

time system’s performance. Because of the observation that severe measurement latency 

occurs at the onset of ICM&M and lasts for a while before settling down to an acceptable 

level, in this study, a target height is selected to be sufficiently large so that its required 
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exposure time could overcome the troublesome window of high measurement latency. 

The chosen target height is expected to take the process to where the thread of 

measurement and control analysis could catch up with that of data acquisition, thereby 

the assumption of negligible ICM&M latency in the controller design (Section 9.4.5.2) 

can be justified. 

Specifically, in this study, two groups of experiments, with different exposure 

intensities corresponding to different UV iris levels at 22% and 5%, respectively, are 

designed to demonstrate the capability of the developed methodology of real-time 

measurement and control for the ECPL process. It has been found that the curing process 

under lower-intensity exposure is slower [92], therefore, an ECPL process at 22% UV iris 

level is adopted for the first group of experiments (denoted as “normal process”), and the 

5% UV iris level is used in the second group of experiments (referred to as “slow 

process”). In each single run of experiment, under a constant UV exposure intensity (i.e., 

fixed UV iris level), a square bitmap of 250×250 pixels is displayed on the DMD to cure 

a flat-top block of desired height. The target height is set to be 80 µm in the “normal 

process” experiment and 40 µm in the “slow process” experiment. The ICM&M method 

and the On-Off feedback controller are applied in unison to measure and control the 

cured height in real time. An ex-situ confocal laser microscope is used to measure the 

cured part for obtaining the actual process output of cured height 𝑧𝑝. The designed 

experiments are as shown in Table 18 with the varying factors accentuated.  
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Table 18. Experimental design for real-time ECPL process measurement and control 

 

9.7 Experiment results and implications 

For each of the three sets of experiments in Table 18, six trials of ECPL curing 

with real-time measurement and control are implemented resulting in six sample cured 

parts. Two samples have to be discarded (i.e., the yielding rate is about 16/18 = 89%), 

because of some severe damages during the postprocessing (washing and cleaning) and 

failed microscope measurement due to the chromatic dispersion of residual soap water. 

Herein, the study reports result for six samples in Group #1, six sample in Group #2 

Subset #1 and four samples in Group #2 Subset #2.  

Offline measurements for these samples, including microscope measurement of 

the real cured parts and offline ICM&M analysis of the real-time acquired interferogram 

videos, are presented in Section 9.7.1. 

The experiments results are interpreted centering on the two essential real-time 

elements of in-process measurement and closed-loop control, presented in 9.7.2 and 

Section 9.7.3, respectively. The analysis primarily involves multiple pairwise 

comparisons among four quantities of total height: target cured height 𝑧𝑠, actual cured 

height – microscope measurement of the process output of cured part’s height 𝑧𝑝, real-

time ICM&M measurement 𝑧𝑚, and offline ICM&M measurement 𝑧𝐼𝐶𝑀_𝑂𝑓𝑓. As the 

feedback controller (Figure 71) aims to monitor the exposure height only, an 

investigation into the exposure height measurement results, including the trigger point of 

Subset #1 Subset #2

Exposure Intensity 

(UV Iris level)
22% 5% 5%

Exposure Pattern Bitmap Size 

(Pixels × Pixels)
250×250 250×250 250×250

Measurement Interval

(Frames/Run )
10 10 30

Number of Pixels 

Measured Real Time
1 1 3

Set Point of Target Height 80 µm 40 µm 40 µm

Ratio of Dark and Total Cured 

Heights 
0.1 0.1 0.1

Tolerance of Controlled Height 0.5 µm 0.5 µm 0.5 µm

Controller 

Settings

Experiment Groups

Group #1: Normal Process
Group #2: Slow Process

ECPL 

Process 

Conditions

ICM&M 

Settings

  /𝑻

 𝒕𝒐𝒍 

 𝒔 
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target exposure height 𝑧𝑡, real-time ICM&M measured sampling pixel(s)’s exposure 

height 𝑧𝐸_𝑅𝑇, and offline ICM&M measured average exposure height 𝑧𝐸_𝑂𝑓𝑓, is also 

necessary for evaluating the overall process measurement and control accuracy.  

9.7.1 Offline measurement 

9.7.1.1 Results of the offline measurement for ECPL process output 

With the methods presented in Section 9.5, the offline measurement results, 

including both the microscope and the ICM&M measurements, are shown in Table 19. 

As a reference for more details about the implementation of the offline ICM&M method 

(Section 9.5.2) to analyze the interferogram videos in the real-time measurement and 

control experiments, analysis resultant figures of the curing window identification, the 

selected ROI, the area profile of cured height, and the process dynamics, are displayed in 

Appendix A. In Group #1, a ROI of 130-by-130 pixels is measured at an interval of every 

5 pixels, thus a total of 729 pixels are measured to evaluate the height profile across the 

cured part. In Group #2, a ROI of 100-by-100 pixels is measured at an interval of every 5 

pixels, thus a total of 441 pixels are measured to evaluate the height profile across the 

cured part. 

As could be observed in Table 19, the ICM&M method is versatile in measuring 

not only the total height (yellow columns) but also the exposure and dark curing heights 

(blue columns), as well as in estimating the curing window length that is the difference 

between the estimated curing start and the estimated curing stop (brown columns). The 

offline measurement results are used in the succeeding reports of real-time measurement 

and control results (e.g., Sections 9.7.2 to Section 9.7.5) for validation of the ECPL 

process measurement and control method as well as for the analysis of overall error in the 

process output of total height. 
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Table 19. Offline measurement results for the samples cured in the real-time 

measurement & control experiments 

Part 1: Total height measurement 

 

Part 2: Exposure height measurement 

 

Experiment 

Group

Experiment Subgrouping 

based on Online 

Measurement Setting

Sample 

NO.

Total Height-

Average (µm)

Total Height-

Standard 

Deviation (µm)

Total 

Height 

Average  

(µm)

Total 

Height 

Standard 

Deviation 

(µm)

Sample 1 76.85 4.93 80.30 3.76 3.45

Sample 2 83.51 5.83 88.81 4.17 5.30

Sample 3 82.61 6.16 86.32 5.03 3.71

Sample 4 83.12 4.03 88.36 3.40 5.25

Sample 5 78.99 5.15 81.88 3.44 2.89

Sample 6 79.63 4.68 82.70 4.52 3.08

Sample 1 45.05 6.39 44.15 4.14 -0.90

Sample 2 36.90 5.52 36.12 3.55 -0.77

Sample 3 44.87 7.05 41.36 3.69 -3.51

Sample 4 39.12 6.29 39.21 3.15 0.09

Sample 5 33.29 5.01 28.59 3.68 -4.71

Sample 6 44.20 5.07 38.91 4.51 -5.30

Sample 1 40.02 5.64 38.77 3.57 -1.25

Sample 2 42.71 4.89 42.05 3.99 -0.66

Sample 3 43.93 5.01 39.11 4.39 -4.82

Sample 4 41.60 4.79 42.16 5.87 0.56

Absolute Error in 

Total Height (µm)

Group #1

(Normal 

Process: UV iris 

level 22%)

10 frames / run of online 

measurement for 1 pixel

Group #2 

(Slow Process: 

UV iris level 

5%)

Subset #1

(10 frames / run of online 

measurement for 1 pixel)

Subset #2

(30 frames / run of online 

measurement for 3 pixel)

Experiment Index Microscope Measurement
Offline ICM&M 

Measurement

Offline ICM&M 

Vs. 

Microscope

Experiment 

Group

Experiment Subgrouping 

based on Online 

Measurement Setting

Sample 

NO.

Exposure 

Height - 

Average 

(µm)

Exposure  

Height -

Standard 

Deviation 

(µm)

Dark 

Cured 

Height 

(µm)

Ratio of 

Dark 

Height to 

Total 

Height

Estimated 

Curing 

Start Time 

(s)

Estimated 

Curing 

Stop Time 

(s)

Estimated 

Curing 

Window 

Length (s)

Sample 1 73.65 3.35 6.62 8.2% 3.806 19.249 15.443

Sample 2 84.36 3.49 4.37 4.9% 3.468 21.913 18.445

Sample 3 81.53 3.89 4.96 5.7% 3.466 21.193 17.727

Sample 4 82.87 2.84 5.36 6.1% 3.779 22.926 19.147

Sample 5 74.44 2.83 7.60 9.3% 3.545 19.501 15.956

Sample 6 76.18 3.56 6.82 8.2% 3.695 20.165 16.470

Sample 1 40.47 3.63 3.50 7.9% 18.079 44.114 26.035

Sample 2 32.40 3.23 3.51 9.7% 18.327 39.545 21.218

Sample 3 37.56 3.08 3.68 8.9% 17.703 41.867 24.163

Sample 4 35.33 2.99 3.68 9.4% 17.946 40.595 22.649

Sample 5 25.48 3.51 2.95 10.3% 18.187 36.936 18.750

Sample 6 36.51 4.07 2.09 5.4% 17.914 41.768 23.854

Sample 1 35.62 3.37 3.00 7.7% 18.148 41.098 22.950

Sample 2 38.29 3.58 3.64 8.7% 17.952 42.422 24.470

Sample 3 36.00 4.28 2.63 6.7% 18.336 43.365 25.029

Sample 4 36.18 4.71 5.29 12.5% 17.169 44.141 26.972

Group #1

(Normal 

Process: UV iris 

level 22%)

10 frames / run of online 

measurement for 1 pixel

Group #2 

(Slow Process: 

UV iris level 

5%)

Subset #1

(10 frames / run of online 

measurement for 1 pixel)

Subset #2

(30 frames / run of online 

measurement for 3 pixel)

Experiment Index Offline ICM&M Measurement
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9.7.1.2 Measurement of the total cured height to evaluate the ICM&M system accuracy 

The total cured height of each sample is measured by both the microscope and the 

ICM&M method. Compared against the microscope results, the ICM&M shows good 

agreement despite some minor errors which are mostly within 5 µm. The spread (i.e. the 

standard deviation) of the height profile measured by the ICM&M method is also close to 

that measured by the microscope. Actually, the ICM&M method measures a relatively 

smaller deviation than the microscope does, which is attributed to some possible 

deviation introduced in the postprocessing such as cleaning and washing.  

The measurement discrepancies may primarily stem from the refractive index 

calibration error and the interferogram data deficiency. Notably, in Group #1 - a normal 

process that cures parts under an exposure intensity of 22% UV iris level, the total 

heights measured by the ICM&M method are all larger than these got by the microscope 

with a positive average bias of (3.95 ± 1.07 µm), which reveals a systematic error that is 

due to the underestimated refractive index for larger height (e.g., 80 µm) in the 

calibration. Group #2 shows closer agreement between the ICM&M method and 

microscope yet with a negative average bias of (-2.13 ± 2.22 µm), indicating that the 

refractive index might be more accurate but overestimated in the smaller-height zone 

(e.g., 40 µm). It is worth to point out that the refractive index used in this real-time 

experiment is obtained directly from the previous offline ICM&M validation experiment 

(Section 8.3.1.4) which uses a different batch of materials, and the batch-to-batch 

variances in the materials could induce differences in refractive index. The results of 

Group #1 and Group #2 demonstrate the necessity of calibration for an accurate refractive 

index of a new batch of materials even though it has nominally the same formulation. 

Furthermore, a similar measurement error pattern of overestimated height in above-80 

µm measurement and underestimated height in under-50 µm measurement has also been 

observed in previous offline ICM&M validation experiments in Section 8.2.4, testifying 

that the refractive index is evolving significantly over the curing process and a more 
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accurate refractive index model is needed to reflect the changes and to enhance the 

ICM&M accuracy. 

To conclude, firstly, the offline measurement results provide a further validation, 

on top of the previous validation experiments as presented in Chapter 8, of the ICM&M 

method in a different scenario with a relative sparse data acquisition and lower data 

quality due to the real-time computation limitation. Secondly, this offline ICM&M 

measurement validation demonstrates that the ICM&M method could provide more 

reliable online measurement results given more pixels being able to be measured online 

with sufficient computation resource. Thirdly, the resultant measurement errors (the 

rightmost column in Table 19) of the offline ICM&M provide an evaluation of the 

ICM&M system measurement error which could be used to estimate the real-time 

measurement accuracy as presented in Section 9.7.5. 

9.7.1.3 Measurement of exposure curing and dark curing to assess compensation 

accuracy 

As developed in the ICM&M algorithms (Section 6.4) [103], the ICM&M method 

has an inbuilt ability to measure not only the part at the end but also the part in process by 

detecting and differentiating the process stages of exposure curing and dark curing. For 

the parts cured in the real-time control experiments, the exposure height (i.e., the cured 

height under exposure) and the dark height (i.e., the cured height in dark curing) are 

estimated by the ICM&M method offline, and Table 19 shows the results.  
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Figure 78. Ratio of dark height to exposure height for the parts cured in the real-time 

measurement and controls experiments 

 

The ratios of dark height to exposure height for the parts cured in the real-time 

measurement and controls experiments are shown in Figure 78, and compared with the 

preset ratio of 10% that is adopted in the controller design in Figure 71 (Section 9.4) and 

in the experiments. As observed in Figure 78, the ratio of dark to exposure height is not 

ideally the preset amount. It is possible that the limitations of the ICM&M method 

present some errors in estimating the exposure height and dark height. Nevertheless, the 

observed deviations between the column of “Dark Cured Height” in Table 19 and the 

preset target dark height (i.e., 10% of the target total height) can still indicate a significant 

error source for the process control due to a potential inaccurate compensation in the 

controller. The effect is addressed later in Section 9.7.5 about the process control 

accuracy. 
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9.7.1.4 Potentiality of the ICM&M method for modeling the ECPL process 

With the ability to identify the start of exposure curing and the end of dark curing, 

the ICM&M method possess a unique utility in estimating the entire curing window 

length which is directly related to the cured height. Intuitively, the longer the curing 

window is, the larger the cured height is. Theoretically, there is a logarithmic model 

between the exposure time and the cured height [79]. However, the exposure window is 

different from the curing window due to the existence of incubation and dark curing 

stages in photopolymerization process; and there is no revelation yet about the 

relationship between the net curing window length and the cured height for a lack of in-

process metrology. 

Herein, as shown in Figure 79(a), the results provide a convincing demonstration 

that the ICM&M method is capable of identifying the curing window consistently and 

accurately. The normal process in Group #1 and slow process in Group #2 show a very 

similar curing start time within each group, respectively, and together show an expected 

long incubation for the slow process. It is also desired that the same process in each 

group should have similar curing stop time. However, in Figure 79 (a), unlike the curing 

start time, the curing stop time shows obvious variations. The actual time when the UV 

lamp shut down is also shown in Figure 79 (a), explaining that the variations of the 

curing stop time stem from the variations of the actual exposure time which is determined 

by the real-time controller. Though inherent process and material variations could induce 

some slight difference in the curing window, the especially rugged pattern of the 

estimated curing stop time indicate that the real-time control is not accurate sometimes, 

leading to either earlier or later than the desired curing stop and causing significant 

variations in the curing window length. Please note that the performance of the real-time 

control will be evaluated further in an upcoming discussion. One main finding reported in 

Figure 79 (a) is that the ICM&M method is sensitive to the process input of exposure, 

and can estimate the curing window of start time and stop time consistently and 
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accurately. Figure 79 (b) shows that the longer the curing window is, the higher the cured 

part is, which validates further the ICM&M method’s capability of estimating the curing 

window correctly. 

In summary, the ICM&M method’s capability of in-process measurement for the 

exposure curing and dark curing, together with the demonstrated correlation between the 

curing window length and cured height, could be explored in the future work of the 

modeling of photopolymerization based additive manufacturing process.  
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(a) 

 

(b) 

 

Figure 79. Explore the ICM&M method’s utility in ECPL process modeling: (a) 

capability of identifying the curing window; (b) vivid correlation between the estimated 

cured window length and the actual cured height  
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9.7.2 Real-time in-process measurement 

9.7.2.1 Results of the real-time ICM&M for ECPL process 

To test the performance of the ICM&M method in real time measurement for the 

ECPL process, one representative pixel is measured online in Experiment Group #1 and 

in the first subset of Experiment Group #2. To further demonstrate the measurement 

capability and to investigate the effect of online sampling bias, more than one pixels (i.e., 

three pixels due to the limited computation power) are measured and a robust average of 

the multiple measurements is used as final measurement in a second subset of 

Experiment Group #2. The real-time data acquisition and measurement results for all the 

samples are available in Appendix B. A summary of the real-time measurement results, 

particularly for the exposure height (blue columns) and total height (yellow columns) 

measured online, are displayed in Table 20. Herein, a series of figures (Figure 80 - Figure 

83) are available to provide comprehensive comparisons between the offline (Table 19) 

and the real-time (Table 20) measurement results of exposure height (Figure 80 and 

Figure 81 for Group #1 and #2, respectively) and total height (Figure 82 and Figure 83 

for Group #1 and #2, respectively). 

The observed measurement deviations are mainly caused by spatial sampling bias, 

data noise, and inability to perform the robust ICM&M method (9.5.2) due to real-time 

computation limits. Another hidden measurement error is attributed to the online 

measurement latency as investigated in Section 9.7.2.3. The real-time ICM&M errors and 

online measurement latency would peril the process control accuracy as discussed further 

in Section 9.7.3. 
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Table 20. Real-time measurement results for the samples cured in the real-time 

measurement & control experiments 

 

 

 

 

Vs. 

Target 

Vs. offline 

ICM&M

Vs. offline 

ICM&M

Vs. 

Microscope

1 80 72 73.17 80.03 1.17 -0.48 -0.27 3.18

2 80 72 78.08 86.44 6.08 -6.27 -2.37 2.93

3 80 72 74.22 74.22 2.22 -7.31 -12.10 -8.39

4 80 72 80.90 80.90 8.90 -1.97 -7.46 -2.22

5 80 72 78.41 89.59 6.41 3.97 7.71 10.60

6 80 72 75.31 86.33 3.31 -0.87 3.63 6.71

1 40 36 39.85 42.51 3.85 -0.62 -1.63 -2.54

2 40 36 37.24 43.13 1.24 4.83 7.01 6.24

3 40 36 36.80 42.57 0.80 -0.76 1.21 -2.30

4 40 36 35.93 38.41 -0.07 0.60 -0.80 -0.71

5 40 36 36.86 36.86 0.86 11.38 8.27 3.57

6 40 36 35.94 41.38 -0.06 -0.58 2.47 -2.82

1 40 36 38.57 46.63 2.57 2.95 7.86 6.60

2 40 36 36.10 42.60 0.10 -2.19 0.55 -0.11

3 40 36 37.46 40.91 1.46 1.46 1.81 -3.01

4 40 36 37.25 53.76 1.25 1.07 11.59 12.16

Sample 

NO.

Real-time 

Measurement 

Setting

Experiment 

Group

Exposure Heights Total Height

Exposure 

Height 

Total 

Height

Exposure 

Height

Total 

Height 

Experiment Index Target (µm)

Group #1

(Normal 

Process: UV 

iris level 

22%)

10 frames / 

run of online 

measurement 

for 1 pixel

Group #2 

(Slow 

Process: UV 

iris level 

5%)

Subset #1

(10 frames / 

run of online 

measurement 

for 1 pixel)

Subset #2

(30 frames / 

run of online 

measurement 

for 3 pixel)

Real-time ICM&M 

Estimation (µm)

Absolute Error (µm)

 in Real-time Estimation
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Figure 80. Measurement results of exposure height for the parts cured in the real-time 

measurement and control experiments Group #1 

 

 

Figure 81. Measurement results of exposure height for the parts cured in the real-time 

measurement and control experiments Group #2 
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Figure 82. Measurement results of total height for the parts cured in the real-time 

measurement and control experiments Group #1 

 

 

Figure 83. Measurement results of total height for the parts cured in the real-time 

measurement and control experiments Group #2 
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9.7.2.2 Real-time measurement bias and accuracy 

In this study, the real-time ICM&M error, defined as the deviation between the 

real-time ICM&M and microscope results, is broken down into two independent parts as 

below. 

(1) The first part is real-time measurement bias, which is estimated as the 

deviation between the real-time sampled and the offline ICM&M measured population 

results as listed in the corresponding columns in Table 20. Comparing with the offline 

ICM&M implementation which is able to measure a significantly more pixels (i.e., 729 

pixels in Group #1 and 441 pixels in Group #2) and to deploy more robust algorithms that 

require data of more pixels, the real-time ICM&M results obtained from a limited spatial 

sampling of only one or three pixels due to computation constraints, is prone to 

misrepresent the overall population height thereby causing a measurement bias.  

(2) The second part is the ICM&M system error, which is estimated as the 

deviation between the offline ICM&M and microscope results as listed in the 

corresponding columns in Table 19. The offline ICM&M results is more comparable with 

the microscope in terms of average and standard deviation across the entire cured part 

and could reveal better the inherent error of the ICM&M method (including the error due 

to the calibration error and the refractive index modeling inaccuracy) as discussed in 

Section 9.7.1. Please note that, since the microscope cannot measure out the exposure 

height, for estimating the ICM&M system error in measuring the exposure height, a value 

of 90% (approximated ratio of exposure height to total height) of the deviation in 

measured total heights (listed in Table 19) is used for process control error analysis in 

Section 9.7.3. 

In addition to online sampling bias, low signal noise ratio (SNR) of the online 

measured pixel’s time sequence of grayscales is another significant error source in real-

time measurement. Notably, the noise is especially evident in the slow process (Group 

#2) that employs a low exposure intensity, as shown in the figures in Appendix B. For 
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example, Sample 5 in Group #2 Subset#1 displays a quite flat data curve of low SNR and 

results in the worst estimation of exposure height among all the samples in both Group #1 

and Group #2, as shown in Figure 81. Sample 4 in Subset#2 presents obvious misleading 

cycles in the supposed-to-be resting period, and results in the largest error between real-

time and offline measured total heights as shown in Figure 83.  

To evaluate fairly the real-time measurement performance, as shown in Figure 80 

- Figure 83, with the presence of spatial variance across the cured part, the real-time 

sampled measurement is considered acceptably accurate as long as the real-time result 

(red diamond) falls within the offline ICM&M resultant range centered on the average 

(purple circle) and bracketed by the standard deviation (error bar). Based on this 

criterion, in the real-time measurements of the exposure height, 3 out of 6 (50%) parts in 

Group #1 and 8 out of 10 (80%) parts in Group #2 are measured inaccurately compared 

to the offline ICM&M results as shown in Figure 80 and Figure 81. In real-time 

measurement of the total height, 3 out of 6 (50%) parts in Group #1 and 6 out of 10 

(60%) parts in Group #2 exhibit severe errors as shown in Figure 82 and Figure 83. 

Interestingly, in Group #2 of the slow process, compared with Subset #1, there is no 

significant improvement in Subset #2 by measuring more pixels, and one possible 

explanation is that the benefits of measuring more pixels are offset by the cost of longer 

measurement interval due to the limited computing resource in the system setup. 

To conclude from the real-time measurement of both normal and slow ECPL 

process, it is anticipated based on the worst-case scenario, that using the current ICM&M 

system in real time, at least 50% ECPL parts could be measured accurately for exposure 

height and for total height. The real-time measurement errors stem primarily from 

measurement bias due to the limited spatial sampling, and in case of slow process also 

stem from real-time data’s low SNR. In the future, the real-time measurement error due 

to the limited and unknowingly biased ROI could be solved by select a more 

representative and complete set of ROI provided that more computation power is 
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available. Also, the real-time measurement accuracy could be further improved with 

better quality data from a better camera.  

9.7.2.3 Online measurement latency results in over exposure 

As introduced in Section 9.4.4, the ICM&M latency 𝜏𝑚𝑒𝑎𝑠 refers to the lag 

between the two parallel threads of real-time interferogram acquisition and online 

measurement analysis, and depends heavily on the computing power and camera speed. 

Currently due to some dynamic uncertainty in the computer system and potential 

deficiency in the parallel computing software, the measurement latency 𝜏𝑚𝑒𝑎𝑠 is fairly 

unpredictable varying significantly by one order of magnitude throughout a single ECPL 

process for curing one part, for example, as shown in Appendix B.3, it could fluctuate 

rather randomly from less than 0.1 second up to more than 2 second. Normally, there is a 

large latency at beginning of each run of measurement, and the latency time would 

decrease (ideally could decrease to negligible amount) before the next run of 

measurement thus the analysis would not affect acquisition much. The measurement 

latency usually decreases as the measurement computation gets smoother and more 

synchronized with the acquisition, yet it is prone to hike with stochastic environment 

factors such as other exhaustive background programs running in the computer or 

electronics glitches. The latency time could also vary significantly, among different 

experiments, with the changes in the number of online measured pixels and in the 

measurement interval.  

Results of latency and measurement error due to the corresponding over exposure 

are shown in Figure 86 and Table 21, along with other sources of delay, in the succeeding 

section that analyzes the real-time control accuracy. For more details about the real-time 

latency, please refer to Figure B4 in Appendix B.3, which show the experimental latency 

curves and potential effects of the latency on the ensuing delays in control and actuation.  
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It is found that Group #1 tends to have large latency and the slow process in 

Group #2 mostly (9 out of 10 samples) have almost zero latency, which is mainly because 

the slow process is not that computationally intensive thus the delay is mitigated. Also, 

specifically in Subset #2 of Group #2, the measurement interval is long enough to avoid a 

significant latency. Both slow process and long measurement interval aim to parallelize 

the concurrent process and measurement, and the results demonstrate that the strategy 

works; however, please note that the root cause lies in the computation limits. 

The over-cured height under exposure due to the measurement latency for each 

sample is also presented in Table 22 in Section 9.7.5. The final output of cured height is 

partially correlated with the measurement latency induced control error as discussed in 

Section 9.7.5. 

9.7.3 Examine the performance of real-time feedback control for exposure height 

As the real-time ECPL process measurement by the ICM&M method being 

examined above, another key issue is to evaluate the feedback control accuracy in the 

closed loop as shown in Figure 71. The system delays including measurement latency, 

feedback control delay and actuation delay, as introduced in Section 9.4.4, could induce 

significant additional exposure curing in the ECPL process and thus errors in the 

exposure height. Therefore, this section will firstly present the results of the single part of 

real-time feedback control node that compares the reference point of target exposure 

height and the real-time measured height, which outputs an error defined as feedback 

control error. The follow-up subsections (9.7.3.2, 9.7.3.3) reports the analysis of the 

experimental system delays and consequential errors in exposure height, providing 

estimations for the measurement latency induced error, feedback control error and 

actuation error. Meanwhile, the estimated feedback control errors in Section 9.7.3.3 

provide a sound explanation about the experimental result of errors in Section 9.7.3.1. 

The overall delay effects could be reduced with optimized software and faster hardware. 
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9.7.3.1 Results of the real-time feedback control for ECPL process 

Frequently, it makes more sense to describe the performance objective in terms of 

measurement 𝑧𝑚 rather than the process output 𝑧𝑝, since often the only knowledge of 

process output is obtained from the online measurement [101]. The On-Off feedback 

control loop’s performance should be fairly evaluated by assuming that the target 

exposure height 𝑧𝑡 is accurately provided by the leading compensator and that the real-

time measurement is accurate. Please note that the errors in feedfworward compensator 

and online measurement will be incorporated into a comprehensive analysis later in 

Section 9.7.5. 

Therefore, to evaluate purely the feedback control ability in presence of 

measurement noise and process disturbance within the time interval of UV exposure, the 

online measurement at triggering time point 𝑡𝑡𝑟𝑔 is compared against the provided 

reference point 𝑧𝑡. Results are plotted in Figure 84and Figure 85 for Group #1 and Group 

#2, respectively. Generally speaking, the normal process shows larger errors in exposure 

height control than the slow process does, which is understandable as slow process is less 

sensitive to process delays. The observed deviation reflects the error in the feedback 

control for exposure height, which is accounted by the feedback control delay due to the 

discrete measurement (i.e., measurement interval effect) and the transmission and 

controller computation delays as shown in Figure 86. For each sample in the two groups 

of experiments, the estimation result of the over-cured height due to the feedback control 

delay (as shown in Table 21) matches well with and accounts for the deviation observed 

in Figure 84and Figure 85. 
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Figure 84. Real-time feedback control results for exposure height in the real-time 

measurement and control experiments Group #1 

 

 

Figure 85. Real-time feedback control results for exposure height in the real-time 

measurement and control experiments Group #2 
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9.7.3.2 Results of delays in measurement, control and actuation 

With the real-time measurement - either of 1 pixel for curing at 22% UV iris level 

or of 3 pixels for curing at 5% UV iris level, the average image acquisition speed shows a 

similar rate about 18 frames per second (Table B1 in Appendix B), in other words, the 

average acquisition interval is 55ms per frame consistently in the experiments. Therefore, 

Group 2.2 (Group #2 Subset #2) which conduct measurement every 30 frames has a 

longer measurement interval of approximately 1.68s, compared with other experiments 

which conduct measurement every 10 frames corresponding to an interval of 0.55s. 

As per the concepts and methods presented in Section 9.4.4, the online 

measurement latency, the control delay and the actuation delay in the experiments are 

estimated. Details about how the discrete measurement and transmission delay induce the 

control delay in the real-time measurement, and about the latency reflecting the 

computing environment fluctuations that cause the delays, are all shown in Appendix B3. 

Delays in the real-time process measurement and control experiments are 

displayed in Figure 86. The measurement latency tends to be smaller for the slower 

process in Group #2 compared with that in Group #1. 

The feedback control delay is comprised of two parts – one due to the discrete 

measurement and the other due to the transmission and controller computation effort. As 

observed in Figure 86, in the experiments which has an measurement interval of 0.55 s 

for measuring only one pixel online (Group #1 and Group #2 Subset #1), the control 

delay due to the transmission and controller computation dominates. In the experiments 

with a triple interval to enable measuring multiple pixels (Group #2 Subset #2), the 

control delay due to missed detection by the discrete measurement or the measurement 

interval effect is significantly hiking, while the other part of control delay is negilibly 

small because the long measurement interval allows abundant time for transmitting the 

feedback signal as well as for performing the control algorithm. 
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Figure 86 Delays in the real-time process measurement and control experiments 

 

As a summary, the time lapse between the process and measurement, the extended 

exposure time due to the delay in the feedback control and actuation, are listed in Table 

21 (blue columns). Real-time measurement with longer measurement interval is prone to 

postpone detecting the measurement and delay the control. Regardless of the process 

speed, sufficiently fast measurement and fast computation is demanded to detect process 

deviation so that exposure time and intensity adjustment can be done to rectify the 

problem in a timely manner [104]. Computing power limitation is the root cause for the 

delays and should be addressed to unleash the potentiality of the real-time control system. 

9.7.3.3 Over-cured heights due to extended exposure 

The over-cured height output by an extended exposure due to the delays in 

measurement, control and actuation could be estimated with the characterized ICM&M 

sensitivity model. Specifically, Equation ( 39 ) is used to estimate the over-cured height 

caused by the delays, and parameters used in this study are provided. It is worth to point 

out that the estimated period of ICM&M data 𝑇𝑃𝑟𝑜𝑐𝑒𝑠𝑠 is easily identified from the 

experimental output data of grayscale time sequence. Specifically, 𝑇𝑃𝑟𝑜𝑐𝑒𝑠𝑠 is estimated 

as being 3.2 s for the normal process in Group #1 and 6.5 s for the slow process in Group 
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#2. The good agreement between the estimated and observed over-cured heights due to 

the feedback control delay, as shown in Table 21, provides a verification of the estimated 

values of 𝑇𝑃𝑟𝑜𝑐𝑒𝑠𝑠, which thus could be used in Equation ( 39 ) to estimate the over-cured 

heights for other types of delays. Particularly, the over-cured height due to measurement 

latency cannot be measured out, hence, has to be estimated by Equation ( 39 ). The 

actuation delay could be inferred from the real-time measurements, but not reliably 

enough especially in case of too much noise, for example, several experiments’ (e.g., 

Group#1 Sample 3 and 4) real-time measurements show unrealistic zero value of over-

cured height due to considerably non-zero actuation delay. Therefore, the over-cured 

height due to actuation delay is rather to be estimated by Equation ( 39 ). 

𝑧𝑜𝑐 ≈
1

2
×(𝑧𝑐𝑦𝑐𝑙𝑒×

𝜏

𝑇𝑃𝑟𝑜𝑐𝑒𝑠𝑠
) 

( 39 ) 

where, zcycle is characterized to be 12 µm as in Equation ( 28 ); 𝑇𝑃𝑟𝑜𝑐𝑒𝑠𝑠 is roughly 3.2 

s for the normal process in Group #1 and 6.5 s for the slow process in Group #2; 𝜏 is 

the delay in measurement or control or actuation for estimating the corresponding 

result of over-cured height 𝑧𝑜𝑐 under extended exposure. 

As a summary in Table 21, the over-cured heights (highlighted in red) due to the 

system delays (shown in the blue columns), are estimated by the online measurement 

results directly to account for the feedback control delay, and by the ICM&M 

characteristic of sensitivity model in Equation ( 39 ) to account for the measurement and 

actuation delays. The results are incorporated in the ultimate error analysis in Section 

9.7.5.  
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Table 21. Real-time measurement and control system delays and resultant errors in the 

process output of cured height 

 

 

9.7.4 Examine the performance of real-time control for total height 

As presented in Figure 71, the overall process control system consists of two parts 

– compensation for dark height and On-Off feedback control for exposure height. The 

most direct and desired metric for the entire control system’s performance is to check 

whether the process output 𝑧𝑝 approximates the set point of target total height 𝑧𝑠 in the 

presence of measurement errors and uncertainty due to process distrubance 𝑑𝑝 and 

measurement noise 𝑛𝑚. 

τ meas Z OC_RT τ ctrl_s τ ctrl_scc τ ctrl Z OC_RT Z OC_ICM τ act Z OC_RT Z OC_ICM

1 0.004 0.02 0.332 0.000 0.332 1.17 1.25 0.406 1.44 1.52

2 0.533 2.00 0.118 1.550 1.668 6.08 6.26 0.272 0.97 1.02

3 0.165 0.62 0.364 1.032 1.396 2.22 5.24 0.257 0.00 0.96

4 0.865 3.24 0.339 2.114 2.453 8.90 9.20 0.305 0.00 1.14

5 0.611 2.29 -0.084 1.490 1.406 6.41 5.27 0.515 2.20 1.93

6 1.100 4.12 -0.033 1.094 1.061 3.31 3.98 0.710 2.57 2.66

1 1.137 2.10 0.097 1.605 1.702 3.85 3.14 0.433 0.55 0.80

2 0.033 0.06 0.216 0.499 0.715 1.24 1.32 0.285 0.51 0.53

3 0.118 0.22 0.071 0.575 0.646 0.80 1.19 0.318 0.41 0.59

4 0.006 0.01 -0.033 0.000 -0.033 -0.07 -0.06 0.356 0.69 0.66

5 0.203 0.37 0.151 0.522 0.673 0.86 1.24 0.422 0.00 0.78

6 0.005 0.01 -0.035 0.000 -0.035 -0.06 -0.13 0.460 0.76 0.85

1 0.005 0.01 1.420 0.000 1.420 2.57 2.62 1.413 2.22 2.61

2 0.004 0.01 0.000 0.064 0.064 0.10 0.12 1.528 2.03 2.82

3 0.006 0.01 0.741 0.000 0.741 1.46 1.37 0.812 1.25 1.50

4 0.150 0.28 0.696 0.000 0.696 1.25 1.28 1.214 2.14 2.24

τ meas

τ ctrl

τ ctrl_s

τ ctrl_scc

τ act

Z OC_RT

Z OC_ICM

Total Feedback Control Delay (s)

Feedback Control delay due to Discrete Measurement (s)

Feedback Control delay due to Transmission & Controller Computation (s)

Actuation Delay (s)

Over-cured Height inferred from Real-time Measurement (µm) 

Over-cured Height estimated by ICM&M Characteristic (µm)

Actuation Delay

Experiment 

Group

Online 

Measurement 

Setting

Sample 

NO.

Notes: symbols and definitions

Measurement Latency at Trigger point (s)

Group #1

(Normal 

Process: UV 

iris level 

22%)

10 frames / run 

of online 

measurement 

for 1 pixel

Group #2 

(Slow 

Process: UV 

iris level 5%)

Subset #1

(10 frames / 

run of online 

measurement 

for 1 pixel)

Subset #2

(30 frames / 

run of online 

measurement 

for 3 pixel)

Measurement 

Latency
Feedback Control Delay
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Therefore, to evaluate the overall control ability (including both compensator and 

feedback controls) with the uncertainties and noises in both the ECPL process and the 

ICM&M sensor, the ultimate error for total height control is estimated by comparing the 

process output 𝑧𝑝 that is measured by an ex-situ microscope against the setpoint of 

desired total height 𝑧𝑠. Results are plotted in Figure 87 and Figure 88 for Group #1 and 

Group #2, respectively. In the normal process measurement and control (Group #1), the 

setpoint of total height falls in the range of the actual height profile measured by the 

microscope for each of the 6 samples, and the errors are all below 4 µm (i.e., the 

relatively errors are all under 5%). In the second group of slow process control, 7 out of 

10 samples have a deviation from the measured average height less than 4 µm, that is, 

about 70% of the samples have a relative error under 10%. Main reasons for less control 

accuracy in the slow process measurement and control include larger measurement 

interval and notably lower SNR in the grayscale data. Especially, the worst sample - 

Sample 5 in Group #2 Subset #1, is completely off the spread of the measured height and 

has the biggest error of (-6.71) µm, which is caused by the real-time measurement error 

due to poor data quality and measurement bias. Moreover, Sample 1 in Group #2.1 has 

the second largest error of 5.05 µm which attributes to the feedback control delay induced 

by the measurement interval effect. A comprehensive analysis for the final process output 

of cured height is performed in Section 9.7.5 and presented in Table 22 and Figure 89. 

Another important finding is that the integrated system of measurement and 

control achieves good repeatibility at maintaining the process output around the target 

setpoint, despite process variations in each individual experiment. As is shown clearly in 

Appendix B, the process dynamics relfected by the time sequence of grayscales of the 

online measured pixels (Figure B1-B3 in Appendix B.2) exhibit difference among 

repeated experiments in the same group. Moreover, the latency and system delays also 

vary from run to run of experiment as shown in Figure B4 and Figure B5 in Appendix 

B.3. Altogether, the observed part-to-part (repeated experiments under the same settings) 
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and batch-to-batch (different settings) variations in the real process, are probably 

attributed to non-uniformity in exposure and materials disturbances and uncertainties in 

the process (especially dark curing), noises and errors in the ICM&M system, and 

instability in the computation system. Nevertheless, the measurement and control system 

is designed to behave with the presense of these variations by trakcing the process 

dynamics and manipulating the input accordingly to obtain a desired output.  
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Figure 87. Overall process control results for the parts cured in the real-time 

measurement and control experiments Group #1 

 

 

Figure 88. Overall process control results for the parts cured in the real-time 

measurement and control experiments Group #2  
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9.7.5 Error analysis for the real-time process measurement and control system 

To evaluate the performance of the entire system for ECPL process measurement 

and control, a variety of performance objectives, including the abovementioned ICM&M 

measurement performance (both offline and real-time) and feedback control performance, 

are considered to interpret the experimental results. In the developed real-time 

measurement and control system for the ECPL process, the ultimate error in total height 

is broken down into two parts – error in exposure height and error in dark height. The 

former is attributed to two main categories of causese – real time measurement error and 

system delays, while the later is caused by inaccurate compensation. A comprehensive set 

of error sources includes the following six factors, and estimations of the corresponding 

errors are summarized in Table 22. 

1. Real-time measurement bias which is estimated by the deviation between 

online sampled and offline ICM&M measured population exposure heights as shown in 

Table 20. 

2. ICM&M system error which is estimated by the absolute deviation between the 

offline ICM&M estimation and the microscope result as shown in Table 19. 

3. Over-cured height under extended exposure due to online measurement latency 

as shown in Table 21. 

4. Over-cured height under extended exposure due to feedback control delay as 

shown in Table 21. 

5. Over-cured height under extended exposure due to actuation delay as shown in 

Table 21. 

6. Compensation error which is estimated by the deviation between the offline 

ICM&M measured dark height (results as shown in Table 19) and the preset dark height 

(Table 18) by the compensator (Section 9.4.5.1).  

Given the independent error sources of bias in online sampling, system error in 

ICM&M method, latency in real-time measurement, delays in real-time control and 
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actuation, and uncertainty in the dark curing, the method of multiple linear regression is 

employed for error analysis about the developed ECPL process feedback control system. 

In the multiple linear regression, predictors are the six types of errors identifed and 

estimated above (as shown in Column 2 – Column 7 in Table 22), and the response is the 

actual error in total height (as shown in the red Column in Table 22); thus the regression 

coefficients are computed by a function of “regress” in MATLAB [105]. 

Results of the multiple regression analysis of the error sources in the entire 

process measurement and control system is shown in Table 22. To visualize the error 

sources and effects in the process measurement and control sytem, Figure 89 shows the 

breakdown analysis for the overall error with the six error sources in the process 

measurement and control system, presents their contributions in the form of “weight” 

which is the coefficient of corresponding type of error in the multiple regression error 

model, and illustrates how these factors interplay to output the ultimate error. 

The coefficients of the multiple regression indicate how influential the 

corresponding error source is in the resultant error; hence the larger the absolute value of 

the weight, the more deviation the source could cause in the final output of total height. It 

is found that the most significant error sources are real-time measurement bias due to 

limited spatial sampling and data noises, ICM&M error, feedback control delay, and 

compensation for dark curing. It is noted that all the measurement related sources 

(measurement bias, ICM&M error, measurement latency) have negative weights, which 

is anticipated in a negative feedback control system. The actuation delay has the least 

weight, which makes sense as the control system is designed with a “height tolerance” 

(Figure 71) to at least partially (if not fully) account for its potential effect of introducing 

a deadband (Section 9.4.5.3). The measurement latency turns out to have a small weight 

of (-0.13), which is justified by the intentional target height that is chosen to be big 

enough to achieve a better synchronization between the acquisiton and the analysis loops 

as introduced in the design of experiments (Section 9.6). It is reasonble to think that with 
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sufficient computation power, the developed system can output arbitrary target height 

that falls in the measurement range (experimentally verified range is 0 to at least 200 µm) 

of the current ICM&M syste with accuracy and precision. 

 

Table 22. Error analysis for the real-time measurement and control of the ECPL process 

 

 

Error in Dark 

Height (µm)

Real-time 

Measurement 

Bias * 

ICM&M 

System 

Error **

Measurement 

Latency

Feedback 

Control 

Delay   

Actuation 

Delay

Fitted 

Error

Residual

(Actual vs. 

Fitted )

Group1 

Sample 1
-0.48 3.11 0.02 1.17 1.52 -1.38 -3.15 -3.21 0.06

Group1 

Sample 2
-6.27 4.77 2.00 6.08 1.02 -3.63 3.51 3.37 0.14

Group1 

Sample 3
-7.31 3.34 0.62 2.22 0.96 -3.04 2.61 2.71 -0.10

Group1 

Sample 4
-1.97 4.72 3.24 8.90 1.14 -2.64 3.12 3.01 0.11

Group1 

Sample 5
3.97 2.60 2.29 6.41 1.93 -0.40 -1.01 -0.70 -0.31

Group1 

Sample 6
-0.87 2.77 4.12 3.31 2.66 -1.18 -0.37 -0.34 -0.03

Group2.1 

Sample 1
-0.62 -0.81 2.10 3.85 0.80 -0.50 5.05 4.99 0.06

Group2.1 

Sample 2
4.83 -0.70 0.06 1.24 0.53 -0.49 -3.10 -3.22 0.12

Group2.1 

Sample 3
-0.76 -3.16 0.22 0.80 0.59 -0.32 4.87 4.99 -0.12

Group2.1 

Sample 4
0.60 0.08 0.01 -0.07 0.66 -0.32 -0.88 -1.07 0.19

Group2.1 

Sample 5
11.38 -4.23 0.37 0.86 0.78 -1.05 -6.71 -6.76 0.05

Group2.1 

Sample 6
-0.58 -4.77 0.01 -0.06 0.85 -1.91 4.20 4.13 0.07

Group2.2 

Sample 1
2.95 -1.13 0.01 2.57 2.61 -1.00 0.02 0.25 -0.23

Group2.2 

Sample 2
-2.19 -0.60 0.01 0.10 2.82 -0.36 2.71 2.85 -0.14

Group2.2 

Sample 3
1.46 -4.34 0.01 1.46 1.50 -1.37 3.93 3.82 0.11

Group2.2 

Sample 4
1.07 0.51 0.28 1.25 2.24 1.29 1.60 1.16 0.44

Weights of 

Error 

Source

-1.013 -1.165 -0.130 1.081 0.074 1.050

*

**

***

****

*****

Data (Offline ICM&M Estimated Dark Height) in Table 18 subtracted by Desired Dark Height 

Data (Microscope) in Table 18 subtracted by Target Total Height 

Notes: explanation about how the corresponding error item is estimated

 Coefficients result from 

Multiple Regression

Feedforward 

Compensation 

Error

****

Actual 

Observation 

*****

Data (Real-time vs. Offline ICM&M) in Table 19 

Data (Offline ICM&M vs. Microscope) in Table 18 multiplied by 0.9 (estimated ratio: exposure height /total height)

Data (the red columns) in Table 20

Exp. 

Index

Error in Exposure Height  (µm)
Overall Error in Total Height 

(µm)

Real-time 

measurement error
Over-cured height (µm) under 

extended exposure due to ***

Multiple 

Resgression 

Estimation (µm)
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Figure 89. Error analysis for the real-time process measurement and control system 

 

To verify the error model for the cured height with the weighted error sources, the 

fitted error and residual are calculated as shown in the two rightmost columns in Table 

22. It indicates that various possible error sources have been well identified and 

understood. With this understanding and appropriate improvements in hardware, it is 

conceivable that the real-time control method with the aid of the developed ICM&M 

system could achieve a sub-micron control accuracy. Furthermore, the close to zero 

residuals for all the samples demonstrate vividly that the error analysis is accuracte and 

adequate with all possible sources incorporated, hence implications for the significant 

error sources can bolster an in-depth discussion of the work and can justfity the 

recommendations for future improvement as in Section 9.8.  

9.8 Discussion and recommendation 

The experiment results and ultimate error analysis provide a thorough and 

detailed investigation about the capabilities and limitations in the current real-time 

measurement and control system for the ECPL process, shedding light onto research 
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directions for improving the system. Future research effort is aimed to solve the real-time 

measurement bias and system delays by boosting the computing software and hardware , 

to improve the ICM&M system by better calibration, and to address the compenstation by 

modeling the process (especially the dark curing part) more accurately, so that the current 

process control error of 5% is anticipated to be reduced greatly down to 1%. Furthermore, 

the section will present some more thoughts about improving the control accuracy. 

9.8.1 Online compensation for the measurement latency 

Measurement latency is caused by the inevitable delay in the measurement 

analysis and the process data acquisition, and could be reduced with a better equipped 

platform of optimized software and improved hardware. The existence of ICM&M 

latency indicates that it is an asynchronous metrology, which inevitably could induce 

some control errors. 

As noted in Section 9.4, the preliminary On-Off controller design does not 

consider about latency in the measurement, and by selecting a proper set point (in Section 

9.6) that requires sufficiently long exposure time to allow the latency to drop to an 

acceptable level (e.g., less than 0.1s), one could assume that the received measurement is 

synchronized with the ongoing ECPL process. Even though, experimental results still 

show that sometimes the latency spikes right before the trigger point and induce control 

error significantly. 

Although the error analysis for this specific groups of experiments show an 

insignificant weight of measurement latency (Section 9.7.5) due to the purposefully-

selected target heights, it could actually have the same level of significance as the 

feedback control delays do in case of process control for outputting arbitrarily desired 

height. Therefore, measurement latency is still needs to be addressed.  

In addition to fastening the computing, some computation strategy could be 

adopted to compensate for the asynchronous loop. Notably, in this study, the developed 
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software actually can provide the controller easy access to each acquired frame’s 

timestamp so that it knows how old the received measurement is. This information can 

then be used by the controller in the control signal calculation. Specifically, future work 

is recommended to calculate the control signal using a current cured height estimated by 

extrapolating the received measurement feedback that is probably outdated.  

9.8.2 A predictive on-off feedback control to address discrete measurement issue 

Due to the ICM&M sensing failure or communication problem or simply a 

considerably long measurement interval, the discrete measurement effect is pronouncing 

in the feedback control delay. There is a need to introduce the concept of “timeout” from 

a control perspective [100]. As it is not always beneficial to wait for a new measurement 

before doing control, and a controller that uses a timeout can be designed to stop the 

exposure upfront when the predicted height would reach the target before the arrival of 

next measurement. Furthermore, a process equipped with the on-off control will 

constantly overshoot its setpoint [46]. It is recommended to combine a predictive control 

with the feedback control to manipulate the input around the reference point. 

Specifically, in the EPCL process control, the “timeout” is defined as an 

automatic upfront cessation of exposure before a new measurement is available, when the 

remaining exposure time for reaching the target height predicted at the current 

measurement time point is smaller than one measurement period. The key problem is to 

determine how long the residual exposure is before a timeout should be executed in-

between the two measurements.  

Therefore, one can augment the existing design of the On-Off feedback controller 

with a predictive model which can determine online when a timeout is needed. An 

evolutionary cycle to cycle (EC2C) controller is designed, and a linear predictive model 

with online adaptively estimated parameters is developed to predict the remaining 

exposure time. The timeout is decided to be activated at the end of a predicted under-one-
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measurement-period residual exposure time, which is calculated by the predictive model 

using exponentially weighted historic measurement data. The EC2C is actually proposed 

in Section 3.7.1, and elaborated in one of the author’s journal publications [70]. The 

simulation study of the designed EC2C demonstrates that performance in the ECPL 

process closed-loop measurement and control can be increased by use of timeout. The 

described methodology can be extended to other layer-by-layer additive manufacturing 

process feedback control. 

EC2C combines the advantages of real-time On-Off feedback control with model 

prediction control (MPC), in order to improve the ECPL process control accuracy. To 

implement EC2C experimentally, the two most important prerequisites are the 

availability of online measurement, as well as a précising timing of measurement (i.e. 

constant or at least predictable measurement period) that helps the controller to estimate 

the necessary remaining exposure time for achieving target cured height [70]. 

Based on the previous real-time implementation of the On-Off controller, efforts 

were made to achieve the more advanced On-Off control with EC2C. Unfortunately, the 

timer object used for real-time ICM&M is subject to the limitations of the hardware, 

operating system and software, and cannot guarantee the demanded uniformly-spaced 

image acquisition and constant measurement analysis. Actually, it is noted by 

MathWorks that timer objects should be avoided for real-time applications [106], because 

(1) Matlab is implemented in Java and may execute some indefinitely long computation, 

and (2) Windows operating systems have no real-time guarantees. Therefore, the current 

MATLAB platform based ECPL-M&C software in the windows operating system is not 

well suited for real-time precise timing control which is however required by EC2C. 

Consequently, experimental implementation and investigation of the EC2C for ECPL 

process is not able to be materialized in this study. Yet the simulation study [70] of the 

EC2C shows its promising capability of achieving a better control of the cured height 

compared to the basic On-Off control studied above.  
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To enhance confidence in deterministic execution for real-time process 

measurement and control, in future work, the entire system should adopt a real-time 

operating system (RTOS) for data acquisition and measurement analysis to ensure 

reliability and repeatability of process control. 

9.8.3 Control dark curing in the ECPL process 

In this study, as introduced in Section 9.4.5.1, the compensator adopts an 

empirical process model that assumes a constant ratio of dark height to exposure height 

(1/9 in the experiments) to determine the reference point for the feedback controller. An 

inadequate or excessive compensation would be a significant error source in the ECPL 

process control for the final cured part accuracy, as demonstrated in the error analysis in 

Section 9.7.5. As dark curing is shown to present disturbing uncertainties and errors in 

the ECPL process control, in addition to improving the process model thus the 

compensation accuracy, alternative effective control strategy for dark curing could be 

considered in future development of more advanced control system for the ECPL 

process. This section provides some possible solution to address dark curing in ECPL 

process control.  

Radical-based photopolymerization is characterized by a rapid cessation of 

polymerization when the photo-curing light source is extinguished, and theoretically it is 

possible to reduce or minimize the dark curing period because radical based active center 

could have a shorter propagating time with more efficient termination reactions [107]. 

There exists some research on purposely extending dark curing, since effective dark 

curing would be useful to reduce processing times and lower initiator concentrations, as 

well as to achieve photo-curing in shadow regions which finds application in dark curing 

polymerizable dental composition [107]. The other control direction of shortening the 

dark curing stage is desired in case of ECPL process control. Such a controlled radical 

polymerization in which the radical active centers are terminated when the light source is 
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extinguished can be envisioned by manipulating the chemical formulation in-situ, 

because the extent of dark curing depends on the chemical composition of the resin [50]. 

Generally, the speed of the dark reaction depends also on the sensitivity of the 

photopolymer, which can be controlled by many factors such as the materials of 

monomer and matrix [96, 107]. Specifically, the dark curing in photopolymerization 

process could be reduced by rapid oxygen-scavenging of radicals [66]. The current ECPL 

process neither adds polymerization inhibitor in the resin purposefully, nor prevents 

atmospheric oxygen which plays the role of inhibitor from diffusing into the chamber. 

There is some but not sufficient inhibitor to stop the photopolymerization immediately 

for effective control of the dark curing.  

Therefore, for the ECPL process, to improve the On-Off control accuracy, oxygen 

could be introduced into the resin chamber at the time when UV lamp shuts down so that 

dark curing could be suppressed. Notably, as one disruptive photopolymerization based 

AM technology, the continuous liquid interface production successfully achieves high-

speed and high-resolution 3D printing of complex microstructures, fundamentally by 

establishing and controlling an oxygen-inhibited dead zone [108]. Similarly, herein, the 

proposed “rapid quenching” method of manipulating the inhibitive oxygen via adjusting 

online the chemical composition in the reaction chamber, is expected to increase the 

process controllability by reducing the error and uncertainty in the controller’s reference 

value thereby to improve the control accuracy at the total cured height. 

Additionally, another approach to mitigate dark curing effect is to gradually 

decrease the intensity (i.e., iris level) toward the end of the process so that as the process 

approaches the target height, there should be little to no dark reaction. Such a strategy 

could be used with a trade-off of manufacturing speed, hence it might not be suitable in 

applications where a fast process is desired. 
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9.9 Chapter summary 

In this chapter, a real-time feedback control system consisting of a compensator 

and a facile On–Off feedback control loop that is combined with the ICM&M system is 

developed, and deployed onto the physical ECPL system. The experimental results 

provide a validation of the ICM&M system’s real-time capability in capturing the process 

dynamics and in sensing the process output, as well as a demonstration of the feedback 

control system’s capability in controlling the cured height with the presence of ECPL 

process disturbances and uncertainty, ICM&M noises and errors, and computation system 

instability. Altogether, the study exemplifies how a well-established real-time closed-

loop measurement and control system can help realize an accurate, repeatable and robust 

photopolymerization based additive manufacturing process. 

A basic feedback controller is developed to control the ECPL process cured 

height in real time. The goal is to cure a part with desired height by the real-time 

measurement and control system. The system’s performance is evaluated with two groups 

of experiments that cures square blocks with different desired cured heights under 

different exposure intensity. In the first group of normal ECPL process, a mild UV 

intensity at 22% lamp iris level was applied; and in the second group, a much lower UV 

intensity at 5% iris level was used corresponding to a much slower curing process. The 

rationale for designing such two experiment groups of different curing rate includes three 

considerations in order to examine both the measurement system’s and the control 

system’s capabilities at: (1) adapting to different processes dynamics; (2) adapting to 

different setpoints; (3) global measurement and control with multiple pixels measurement 

online; and (4) performing well with the presence of system delays and dark curing 

process uncertainties. A thorough analysis of the real-time measurement and control 

results assisted with the offline ICM&M and microscope is carried out to validate the 

system’s capability in measuring and controlling online the part’s vertical height. It 

demonstrates further that the ICM&M system could benefit the process modeling with its 
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capability of revealing the process dynamics such as process stages, curing speed and 

dark curing height which cannot be obtained by offline metrology. The measurement and 

control system’s performance is satisfactory in achieving the desired cured height with an 

error in order of several microns (less than 5 µm), which is reasonable and accountable 

due to the system constraints in real-time. A comprehensive error analysis unveils the 

major error sources in the current system, including measurement and controls delays and 

dark curing process uncertainties, and recommendations of future work for unleashing the 

system’s potentiality are made accordingly. 

This proof-of-concept implementation demonstrates that one can implement the 

real-time ECPL process measurement and control with the developed ICM&M method 

on the currently resource-constrained prototyping ECPL system in the lab. It can be 

extended with more advanced devices and more computation power to a full-fledged 

ECPL machine. The measurement feedback control reported here might be the first of its 

kind in the photopolymerization based AM industry, since it can produce a part with 

desired cured height under various exposure intensities in real-time. Provided a multi-

core computer with larger RAM and higher speed, the ICM&M could run faster online 

for more pixels measurement simultaneously with minimal latency, and thereby could 

enable a better in-process estimation of the cured height; meanwhile the On-Off feedback 

control loop can sense, compute, trigger and actuate all in a timely manner to control the 

exposure time with minimal delay. The real-time process measurement and control 

system demonstrates great potentiality to perform even better, and intrinsically 1% error 

(or less than 1 µm error) can be anticipated without compromising to the computation 

limit.  

Besides, since the On-Off feedback control is confronted with the challenges from 

dark curing in the ECPL process, more control actions should be incorporated to address 

the uncertainty brought by dark curing. One possible solution is to suppress the part of 

dark curing via online formulation adjustment. The EC2C, a subtler predictive on-off 
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feedback controller, is expected to improve the control accuracy with its online prediction 

model which could add more robustness and accuracy to the basic On-Off controller. 

However, the current computing software and hardware system could not guarantee a 

precise and constant measurement period that is required in implementing EC2C for the 

ECPL process [70, 109]. It is recommended that in the future one could start with EC2C 

for cured height control in the ECPL process with an advanced real-time operating 

system. 

Furthermore, in the future, given the limitations of the simple on-off control 

method, to achieve more comprehensive and capable control, manipulating the exposure 

intensity at intermediate levels, that is, an exposure intensity control system such as PID 

control and advanced adaptive control methods could be explored to control the 

geometrical dimensions and optical properties desired for ECPL applications in micro-

optics.  

To conclude, this study opens up an avenue for real-time closed-loop advanced 

control of photopolymerization based additive manufacturing processes to facilitate their 

applications for precision fabrication in a wide spectrum of industries.  

One major part of this chapter is involved with real-time measurement using the 

developed ICM&M method, answering directly Research Question 1 and validating fully 

Research Hypothesis 1. Another major part of this chapter is control system design which 

answers Research Question 2, and the real-time control experiments results validate 

Research Hypothesis 2. Especially, the through error analysis at the end (Section 9.7.5) 

indicate that various possible error sources have been well identified and understood. 

With this understanding and appropriate improvements in hardware, it is conceivable that 

the real-time control method with the aid of the developed ICM&M system could achieve 

a sub-micron control accuracy, providing a strong support for Research Hypothesis 2. 
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CHAPTER 10 CLOSURE AND FUTURE WORK 

 

This chapter summarizes the previous chapters’ conclusions and presents 

potential benefits from the dissertation research. The research questions and hypothesis 

evaluated in this thesis are revisited in Section 10.1. The entire work presented in this 

dissertation is summarized in Section 10.2. In Section 10.3, the intellectual and 

developmental/engineering contributions of this work are presented. With some 

limitations of the research identified in Section 10.4, the chapter ends with Section 10.5, 

which presents the scope of long-term work and recommendations for future research 

areas to pursue in order to further mature the ECPL technology. 

10.1 Revisiting Research Questions 

This section presents the research questions investigated and the hypothesis 

evaluated in this thesis. The objective of this research presented in Chapter 4, is restated 

here: 

“To develop a real-time process measurement and control method for ECPL”. 

In order to achieve this objective several research questions were identified and 

hypotheses were proposed for each of them. The validity of the hypotheses is tested in 

this section. 

1. Research Question 1 

Question: How to develop a real-time metrology for the ECPL process based on 

the existing in-situ interferometric curing monitoring system to measure the cured part 

dimensions, specifically the cured heights across the curing area? 

Hypothesis: A real-time metrology for cured part dimensions could be achieved 

by processing a time series of pixel intensities in a sequence of interferograms, which are 

provided by the existing in-situ interferometric curing monitoring (ICM) system, based 

on interference optics and online parameter estimation algorithms. 



 286 

Validation of Hypothesis: Four research tasks were performed to validate the 

hypothesis about real-time metrology: (1) to establish a sensor model that can interpret 

the dynamics of interference pattern for the desired measurand of cured height (Chapter 

5); (2) to develop fast and robust algorithms for estimating online the sensor model 

parameters and computing the cured height (Chapter 6); (3) to experimentally validate 

and characterize the real-time metrology of ICM&M (Chapter 8) in an offline 

implementation mode; (4) to examine the real-time measurement performance and errors 

with the ICM&M method (part of Chapter 9, especially, Sections 9.3, 9.7.2).  

Firstly, as presented in Chapter 5, the ICM&M sensor model of instantaneous 

frequency based on interference optics was built to interpret the fringes in-situ 

automatically, and a fundamental algorithm of online parameter estimation adopting 

moving horizon exponentially weighted Fourier curve fitting and numerical integration 

was developed to extract the phase change underlying the fringes in order to measure 

cured object shape and height. 

Challenged by large volume of stream data with process dynamics signals and 

noises, a comprehensive data mining approach (Chapter 6) for evaluating the ICM&M 

sensor model was developed to equip the basic online algorithm with denoising, 

statistical learning and rule-based classification, adaptive fitting, robust regression, and 

outlier detection and correction, leading to an intelligent, accurate, robust and efficient 

measurement method. Algorithms parameters effects were studied, and empirical values 

obtained from experimental observations were incorporated to guarantee realistic 

solutions derived.  

As a summary of the first part of validation for Hypothesis 1, the established 

ICM&M sensor model and algorithms underpin the hypothesis, by fundamental physics 

model and data mining approach, and preliminary experimental study. 

1. Accurate single voxel measurement with quality data 

2. Full-field measurement : 70% voxels can be measured accurately 
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3. Robustness: 30% outlier voxels would not affect height profile estimation 

4. Real-time Feasibility: computation time < 200 ms 

 

For experimental validation, an application program in MATLAB to integrate the 

ECPL and ICM&M systems for real-time image acquisition and online measurement 

analysis was developed (Chapter 7).  

Initially, given the limited computing power, as a preliminary study, the ECPL 

process interferograms were acquired real time and analyzed off line (Chapter 8). A 

coherent series of experiments were performed curing square samples by varying the 

factors of exposure time and intensity, and a representative full-field height profile was 

measured for each cured sample by both the in-house ICM&M and a commercial 

confocal microscope, to evaluate the measurement characteristics including traceability, 

comparability, accuracy, repeatability, sensitivity, uncertainty, resolution and range. 

Results showed that the ICM&M could provide a cost-effective measurement for cured 

heights with excellent accuracy and reliability, and decent capability of estimating lateral 

dimensions. It can measure multiple voxel heights consistently and simultaneously, and 

features the capability of full-field measurement which is desired in global measurement 

and control of ECPL.  

As a summary of the second part of validation for Hypothesis 1, the offline 

implementation of the ICM&M for measuring a series of samples provides a fair 

evaluation of the measurement characteristics and a benchmark for the real-time 

metrology,  to support the hypothesis. The substantial experiment results and findings are 

listed below. 

1. With initial sensor model assuming constant refractive index 

(1) Best traceability for same-condition cured samples (error ≈ 1 µm); 

(2) Good traceability for generally cured samples (20 out of 22 samples have error 

≤ 5 µm) 
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2. With modified sensor model using evolving refractive index 

At least 75 % (i.e., 18 out of 22 samples in the reported experiments) of the ECPL 

parts could be measured accurately (error ≤ 2 µm). 

3. Well understood characteristics and utilities of the ICM&M method 

 

A series of subsequent experiments implementing the ICM&M method in real 

time were conducted. 

As a summary of third third part of validation for Hypothesis 1, the real-time 

measurement experiments provide a direct and reasonably good proof-of-concept support 

the hypothesis, although real-time ICM&M is prone to be more erroneous due to a longer 

acquisition interval (e.g., 55 ms vs. 33 ms) and limited pixels measured online which 

does not sustain some robust algorithms. The worst-case scenarios (i.e. current limited 

system) found that at least 50% (actually ≥60% in the experiments) ECPL parts could be 

measured online accurately (error ≤ 5 µm) for exposure height and for total height. The 

real-time measurement errors stem primarily from measurement bias due to the limited 

spatial sampling, and in case of slow process also stem from real-time data’s low SNR. 

The real-time measurement error due to the limited and unknowingly biased ROI could 

be solved by select a more representative and complete set of ROI provided that more 

computation power is available. Also, the real-time measurement accuracy could be 

further improved with better quality data from a better camera. 

 

In addition to geometrical measurement, a model of evolving effective refractive 

index for the in-process curing part was developed. Both the trend and magnitude order 

(0.001) of the refractive index change found by the ICM&M analysis for the ECPL 

process agreed with the literature reported finding of a gradual increase in refractive 

index as the photopolymer resin cures. An enhanced ICM&M sensor model with growth-

dependent effective refractive index was thereby developed to improve its measurement 
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accuracy. The ICM&M method has a potentiality in estimating both dimensions and 

refractive index for the photopolymerized part. 

Furthermore, the ICM&M method successfully illustrated the ECPL curing 

process dynamics in terms of instantaneous frequency which is associated with the curing 

velocity, i.e., growing rate in units of µm per second. It was shown to be responsive to 

the curing start / stop, curing speed, and curing area as shown in the designed experiment 

series varying exposure time, intensity and pattern size. It can also estimate exposure 

cured height and dark cured height which cannot be measured by commercial offline 

metrology systems. The evidence of the relationship between UV intensity and photo 

curing process dynamics, along with the relationship between the exposure and dark 

curing, can be utilized for photopolymerization-based additive manufacturing process 

modeling and control. An insightful process model and thereby an effective process 

control system could be developed in future with the evidence of the relationship between 

UV intensity and photo curing process dynamics. The new thinking of exposure intensity 

control could be a ground-breaking complement to the traditional exposure time control, 

to realize an ultimate control of the ECPL process for better accuracy. 

To conclude, corresponding to the research question and hypothesis, an 

interferometric curing monitoring and measuring (ICM&M) method that consists of a 

sensor model (Chapter 5) and online measurement algorithms (Chapter 6) was well 

established for full field measurement across the entire cured area, and was successfully 

applied to measure the height of cured part with good accuracy and precision both in off 

line (Chapter 8, Section 9.7.1) and real time (Section 9.7.2). It also holds promising 

potentiality in process modeling for innovative exposure intensity control of 

photopolymer additive manufacturing. 
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2. Research Question 2 

Question: As a baseline control, without a constitutive process model of first 

principle differential equations, what is an applicable ECPL process control approach, 

which could utilize the real-time measurement system to improve the process accuracy? 

Hypothesis: Using an empirical compensation model for dark curing, a basic On-

Off control approach with the online measurement feedback of exposure height, is 

applicable in ECPL process to control the height of cured part in real time without 

requiring sophisticated process model. 

Validation of Hypothesis:  

Corresponding to this part of research, in Chapter 9, a real-time control system 

consisting of a compensator and a facile On–Off feedback control loop that is combined 

with the ICM&M system is developed, and deployed onto the physical ECPL system. A 

MATLAB based software system integrating real-time acquisition, measurement and 

control by parallel computing was created (Chapter 7), to implement the developed real-

time measurement and control system for the ECPL process. 

As a summary of the third part of validation for Hypothesis 2, the development 

and experimental deployment of a feedback controller fully supports the hypothesis by a 

series of experiments demonstrating the controller’s capability of 

(1) adapting to different processes dynamics 

(2) adapting to different setpoints 

(3) global control potential with multiple pixels measurement online;  

(4) performing well (error ≤ 5 µm) with the presence of system delays and 

process uncertainties (e.g. dark curing) 

(5) submicron control with the well-understood error sources to enhance the 

system in the future. 

To conclude, the study in Chapter 9 validates the hypothesis for a simple but 

effective feedback control system without requiring a sophisticated process model. Under 
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constrained system, it could control the ECPL process output of cured height with decent 

accuracy (i.e., deviation is within 5 µm) despite significant system delays and various 

process disturbances and uncertainties. The developed methodologies hold even greater 

potentiality in reducing the error further with an enhanced software and hardware system. 

10.2 Conclusion 

Polymer-based additive manufacturing (AM) is poised to be one advanced 

manufacturing technology that positively affects major industry such as polymeric 

electronics and biomedical devices in the world. The vision of polymer-based AM, and 

the resulting applications that use the revolutionary parts made via AM, is inspirational. 

However, this vision is not fully a reality today due to several technical challenges, 

including the challenges associated with process modeling, process measurement and 

control, materials characterization, and part functional performance for polymer AM. A 

portfolio of research and development being undertaken by industry, academia, and the 

government will help overcome these challenges and fulfill the vision, leading to greater 

proliferation of polymer AM technologies. The lack of real-time sensors critical to 

process monitoring and control has been identified as one of the major challenges that are 

currently impeding large-scale deployment of polymer additive manufacturing (AM) 

processes. 

This research is focused on real-time measurement and control for a 

photopolymer AM process using an in-house exposure controlled projection lithography 

(ECPL) machine, which is a layerless mask-projection stereolithographic apparatus and 

could cure a 3D part on a stationary resin chamber with ultra violet exposure from 

beneath the transparent substrate. To improve the process accuracy with advanced closed-

loop control, the study developed an interferometric curing monitoring and measuring 

(ICM&M) method that consists of a sensor model and online measurement algorithms, 
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and successfully applied it to measure the height of cured part with good accuracy and 

precision both in real time and off line. 

The ICM&M sensor model of effective interface and instantaneous frequency 

based on interference optics was built to interpret the fringes in-situ automatically. 

Challenged by the speed, size and noise of the stream data from the ICM&M system, a 

comprehensive data mining approach for evaluating the ICM&M sensor model was 

developed to boost the basic online algorithm and realized an intelligent, accurate, robust 

and efficient measurement method. Algorithms parameters effects were studied, and 

empirical values obtained from experimental observations were incorporated to guarantee 

realistic solutions derived. Besides, a model of evolving effective refractive index for the 

in-process curing part was developed, enabling the ICM&M method to estimate both 

dimensions and refractive index for the photopolymerized part. An application program 

in MATLAB was created to integrate the ECPL process, ICM&M system and controller 

for real-time image acquisition, online measurement analysis and control computation, 

providing a human-machine interface to automate and monitor the ECPL process, and a 

test platform to validate and operate the developed measurement and control systems. 

For experimental validation of the developed measurement method (Research 

Hypothesis 1), two parts of experiments were performed and analyzed – one is offline 

ICM&M and the other is real-time ICM&M. To begin with, a coherent series of 

experiments were performed to evaluate the measurement characteristics including 

traceability, comparability, accuracy, repeatability, sensitivity, uncertainty, resolution and 

range. Results showed that the ICM&M could provide a cost-effective measurement for 

cured heights with excellent accuracy and reliability, and decent capability of estimating 

lateral dimensions. Furthermore, the ICM&M method successfully illustrated the ECPL 

curing process dynamics in terms of instantaneous frequency which is associated with the 

growing rate (µm/s). It was shown to be responsive to the curing start / stop, curing 

speed, and curing area. The unfolded dynamics can be utilized to develop an insightful 
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process model and advanced control system for photopolymerization-based additive 

manufacturing in future. The new thinking of exposure intensity control could be a 

ground-breaking complement to the traditional exposure time control, to realize an 

ultimate control of the ECPL process for better accuracy. As a more advanced 

experimental validation, the real-time measurement enabled by the parallel computing 

technique, shows that the ICM&M method could measure multiple voxel heights 

simultaneously in real time, featuring the capability of real-time full-field measurement 

which is desired in global measurement and control of ECPL. The real-time measurement 

results are mixed due to the uncertainties in the limited samples measured online and 

camera data noises; however, the worst scenarios still demonstrate that the ICM&M 

method can measure with great accuracy for more than 50% of the samples. The real-

time ICM&M method shows very promising potential to be able to measure more 

accurately with enhanced hardware and computation. 

For validation of a basic real-time process control method with accessible 

measurement feedback (Research Hypothesis 2), a feedback controller is designed and 

deployed physically. With the real-time measurement and control experiment, the 

integrated system shows proven capabilities in: (1) adapting to different processes 

dynamics; (2) adapting to different setpoints; (3) global measurement and control with 

multiple pixels measurement online; and (4) performing well with the presence of system 

delays and dark curing process uncertainties. Under the constrained hardware system and 

limited computation environment, the developed control system could still control the 

ECPL process output of cured height at a reasonably small error under 5 µm, despite 

multiple influential error sources including system delays, process disturbances and 

uncertainties (e.g. dark curing). Substantive recommendations are provided to further 

augment the fundamental control system reported in the dissertation. It is promising that 

the developed real-time control method with the aid of the developed ICM&M system 
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could achieve a sub-micron control accuracy given enhanced hardware and computing 

system in the future. 

As a result of this research effort, an economical and effective real-time 

measurement system has been developed allowing for the implementation of a feedback 

control. A cyber-physical system of real-time measurement and control is developed and 

implemented in the ECPL process in replacement of previous problematic open-loop 

process planning methods. The developed real-time system features online parameter 

estimation and adaptive learning of the process model, which is essential for controlling 

black/grey-box ECPL process with unmeasurable variations and disturbances. The 

closed-loop control strategy in unison with real-time metrology are exemplified to be able 

to achieve the target part’s height with good accuracy, repeatability and robustness in the 

presence of process uncertainties and disturbances, reducing the part-to-part and batch-to-

batch variability in the ECPL process. 

Although a global measurement and control of the ECPL process has not been 

fully materialized due to several practical engineering problems (e.g., limited 

computation power, to-be-optimized software coding, and to-be-upgraded hardware), the 

validity and potentiality of the developed ICM&M method along with the feedback 

control method have been demonstrated by a facile On-Off control system and 

representative experimental cases presented in the dissertation. Both the ICM&M system 

and the real-time control method are shown to be able to measure and control at 

submicron level accuracy with improved hardware and software systems. 

10.3 Contribution 

Investigation of Instrumentation and control methodologies, which will be needed 

to meet the evolving needs of photo polymerization based processes and other additive 

manufacturing processes, could be a challenging and vibrant area for academic 

researchers and industrial practitioners alike.  
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10.3.1 Summary of novelty 

The new methods, findings, results and implications obtained from this research 

are summarized as below. 

1. A novel and cost-effective method (i.e., ICM&M method) for both real-time 

and offline dimensional measurement in photopolymer based AM process is 

developed. Specifically, 

(1) a new sensor model utilizing novelly  concepts of “effective 

interface”and “instantaneous frequency”  based on interference optics is 

developed; 

(2) a new paradigm of fast, accurate and robust data analytics for in-situ 

measurement for AM is established. 

2. Newly identified characteristics of the developed ICM&M method. 

3. Newly unveiled photopolymerization process dynamics in terms of growing 

speed, cured height and refractive index, which are not reported before. 

4. Newly quantified dark curing height, which is not available due to a lack of in-

process measurement tool. 

5. A new software with parallel computing and user interface is created, realizing 

a cyber-physical system that can integrate and automate the hardware system, and 

can visualize, measure and control the ECPL process. 

6. Real-time On-Off control for ECPL 

(1) New knowledge about the On-Off feedback control capabilities, as 

well as the fully identified error sources for improvement, are obtained 

through experiment. 

(2) A New Evolutionary Cyle-to-Cyle Control (EC2C) scheme, which is a 

predictive on-off feedback control aimed to address discrete measurement 

issue, is developed and studied via simulation [70]. 

7. With the new knowledge obtained from the developed ICM&M method, 
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(1) new photopolymer AM process modeling is enabled; 

(2) new process control methodology to manipulate exposure intensity for 

desired properties is envisioned. 

10.3.2 Overall contribution 

Generally speaking, the most significant contribution of the dissertation is having 

delivered a systematic and paradigmatic research for developing a real-time additive 

manufacturing process measurement and control system, including sensor modeling 

and data mining, dynamics visualization and control, system integration and process 

automation, along with software development, experiment validation and applications 

exploration. The outcome of this research not only improves the particular ECPL 

process but also inspires the general AM community. Several impacts are perceived in 

multiple areas of AM process metrology, control and modeling. (1) It pioneers to address 

the gap of lacking traceable in-process measurement methods for polymer additive 

manufacturing. (2) It enables a real-time feedback control which has been envisioned for 

years by the AM industry but just got some emerging materialization. (3) It unveils 

photopolymerization dynamics from a unique perspective that can bridge the molecular 

reactions and the microscale forming, and the enabled modeling advance could facilitate 

precision polymer additive manufacturing by upscaling molecules and nanoscale 

materials for real-world applications. 

To elaborate, the outcome and impact of this research is presented in details from 

two perspectives: (1) the direct benefits for the ECPL process – the particular AM 

process being studied for in the dissertation (Section 10.3.3); (2) the inspiration for the 

general AM community (Section 10.3.4). 
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10.3.3 Contributions to the particular AM process - ECPL 

With the theoretical research on metrology and control, the research culminates in 

delivering a functional ECPL measurement and control software to integrate the ECPL 

system, the ICM&M system and the control system, realizing a cyber-physical system for 

the ECPL - a photopolymer additive manufacturing process - with good accuracy and 

robustness.  

Specifically, the contributions of this research to the ECPL process could be 

expanded as below. 

1) Established a real-time metrology (ICM&M method) for ECPL process, 

which can provide online feedback to enable advanced controls and can 

provide an offline measurement method to examine the process data and 

dynamics. 

2) Performed an in-depth research on the ICM&M algorithms, and made 

constructive recommendations for future improvement. 

3) Characterized and validated experimentally the developed ICM&M system’s 

performance in measuring vertical height. 

4) Built an evolving refractive index model during the ECPL process, which 

could expand the ICM&M’s capability in measuring optical property of 

refractive index. 

5) Revealed the ECPL process dynamics including exposure curing and dark 

curing, cured speed and height evolution, enhanced the understanding about 

the process, provided a powerful tool for building a more accurate and 

control-oriented process modeling. 

6) Created a software using MATLAB that provides a computing platform to 

implement the developed metrology and control methods, to conduct 

experiments of real-time measurement & control for the ECPL process, to 
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implement offline ICM&M implementation for calibration, process data 

analysis and modeling. 

7) Designed and implemented a basic closed-loop control system with the online 

ICM&M system to measure and control the ECPL process in real time. 

8) Improved the accuracy, precision, robustness and reliability of the ECPL 

process, which is nonlinear and prone to process variations and disturbances 

with the developed real-time metrology and closed-loop control system. 

9) Demonstrated that real-time sensor and feedback controller is applicable for 

ECPL and promising for other photopolymerization based additive 

manufacturing processes. 

10) Investigated literature on controls of relevant manufacturing process and 

proposed some conceptual design of advanced control methods for the 

black/grey-box ECPL process. 

10.3.4 Contributions to the general AM research 

From a broader perspective of the overall AM industry, this section firstly 

concludes the contribution for general polymer AM research as ECPL is essentially an 

photopolymerization based AM process. Furthermore, it reviews the challenges and 

needs which are confronting the existing research on the two key technology nodes in 

AM processes - measurement and control, respectively, and highlights the contribution of 

this study accordingly. 

10.3.4.1 To the research for polymer additive manufacturing 

This research could be generalized and extended to sense and control a variety of 

photopolymerization based additive manufacturing processes. The reported real-time 

measurement system has the potential to break through the technological limitations 

(dimensional accuracy and process repeatability) of the existing photopolymer AM 
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systems. Notably, it can add knowledge in photopolymerization related processes for 

advanced process modeling and control. Insights gained from this study could help 

extend the use of additive manufacturing in more polymer and soft material research and 

applications.  

(1) Metrology for polymerization process 

The lack of real-time sensors critical to process monitoring and control has been 

identified as one of the major challenges that are currently impeding large-scale 

deployment of polymer additive manufacturing (AM) processes [6]. The reported 

ICM&M method provides a potential metrology tool for estimating both geometry 

property (dimensions) and optical property (refractive index) for the photopolymerized 

part.  

(2) Modeling for polymerization process 

Key to a successful application of control to a manufacturing process is the 

availability of appropriate mathematical models, which range from empirical forms such 

as from design of experiments (DOE) to system identification to analytical forms such as 

detailed fundamental physics and first principle differential equations. Existing 

photopolymerization based AM process models usually assume that the cured height is 

determined by lumped sum exposure dose, and seldom acknowledge the individual effect 

of intensity, which however might be critical in the photopolymerization process to form 

delicate features (e.g. edges and curves) and even to affect the final part’s properties (e.g. 

refractive index, strength). It is unavoidable to combat the complicated process dynamics 

for better understanding and control of the system. Hence, a more sophisticated process 

model could be developed with the intensity as one of the process parameters, and an in-

process metrology is necessary to aid the modeling. 

In this study, the developed ICM&M method can unveil the photo-curing process 

dynamics in terms of instantaneous frequency which is associated with the growing rate 

(µm/s). The dynamics unfolded for the developed metrology can be utilized to develop an 
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insightful polymerization process model that bridges the molecular level reactions and 

the microscale structures. The reported metrology tool and accompanied modeling 

advance could facilitate one interesting polymer research area on upscaling molecules 

and nanoscale materials (e.g., nano particle) by means of precision additive 

manufacturing to real world applications.  

(3) Control for polymerization process 

Though intensity is thought to affect the process behavior, the influence is not 

clearly recognized. Few formal or quantitative study has been reported on the effect of 

intensity magnitude in curing.  

This dissertation reveals some initial findings in such effect of exposure intensity 

on photopolymerization. It not only confirms vividly that higher intensity exposure can 

cure an object faster, but also quantifies eloquently how the growing speed evolves over 

the curing process. 

The new thinking of exposure intensity control enabled by the developed 

metrology could be a ground-breaking complement to the traditional exposure time 

control, in order to realize a comprehensive control for geometry accuracy and other 

properties (e.g., optical properties, mechanics strength) in photopolymer additive 

manufacturing of functional parts. 

10.3.4.2 To the metrology research for additive manufacturing 

Broadly speaking, this research provides an exemplification that real-time 

metrology in unison with closed-loop control strategies can reduce layer-to-layer, part-to-

part and batch-to-batch variability in AM processes.  

(1) Real-time metrology 

The primary AM researches that focus on in-process monitoring have been 

associated with determining the geometry and the temperature profile of the metal AM 

process. Inrafred thermography and pyrometry are two well-developed non-intrusive 
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techniques for the measurement of surface temperatures. There are also some reported 

works on in-process monitoring of the dimensional accuracy, errors and defects during 

the build process. A few reports also discuss the in-process measurement of strain–stress. 

However, little of such in-process measurement is reported for non-metal (e.g. 

polymer) AM process. This study aims to fill in this gap in real-time measurement by 

providing an in-process metrology for a photopolymer AM process. 

(2) Reliable metrology 

Even for the considerably developed metal AM process, it is still in urgent need 

for continual research effort in finding new traceable metrology with better accuracy and 

repeatability as well as in identifying new measurable process signatures. Similar 

challenges are confronting the non-metal AM processes, for which the research and 

development of measurement science and controls technology is under-developed.  

This study pioneers in the existing research to address this gap of lacking 

traceable measurement methods, by achieving accurate and repeatable measurements as 

presented in the experimental validation (Chapter 8), and gaining a comprehensive 

understanding of measurement characteristics including traceability, sensitivity and 

uncertainty. 

10.3.4.3 To the control research for additive manufacturing 

(1) Control loops and architecture 

It is well known that the relationships between parameters in the AM processes 

are complex. For example, in powder bed fusion (PBF) process, process maps will be a 

key tool to organize and communicate the complex, multidimensional parameter 

relationship topology [110]. These maps will be essential for multi-input, multi-output 

(MIMO) control algorithm design, and model-based predictive controller design. The 

metal AM process control design landscape is still so far limited in variety, with most 

examples using melt-pool temperature and/or size to control laser power or speed. This 
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method could very well be the most effective; however, there is wider potential for 

different levels of control loops. For example, control loops may occur discretely 

between completion of each build layer rather than continuously.  

Furthermore, a better understanding of measurement uncertainty would assist 

system controller design by identifying the necessary level of precision required to attain 

the goals of the control system. Taking the metal AM for example, it is yet unclear which 

signatures are best modelled or measured, and which input parameters are best controlled 

for which timescale (either continuously or discrete inter-layer). Further work should 

involve the development of monitoring techniques through the use of new sensors and 

measurement methods that will enable the integration of materials, process control and 

feedback [9]. 

As a conclusion from the research status and needs, it is a worthwhile endeavor to 

create an AM control loop architecture that identifies the multiple potential control loops, 

and provides a basis for identifying which loops are optimal for controlling which 

parameter-quality relationship.  

This study initiates an investigation for lithography based AM processes control 

(Chapter 3) [111], and proposes a framework of promising process control architecture 

at different levels for the photopolymer AM processes. Furthermore, it exemplifies such a 

piece of work in identifying the to-be-improved nodes for optimal control, by designing 

and implementing of a facile control system with a thorough identification for error 

sources and possible solutions (Chapter 9).  

(2) Control platform 

As the process control research is still in a theory study stage with ideal 

conceptual designs, there are scant reports on some materialized real-time control 

systems for AM processes. Future work should involve the development of AM research 

platform to test and demonstrate the in-process measurement and control methods. 
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This research establishes such a platform (i.e., the ECPL-M&C software 

application) that materializes a cyber-physical system for the ECPL process 

measurement and control in real time. Specifically, it integrates a friendly user interface 

with the developed process metrology – ICM&M system and the designed On-Off control 

system, for testing the measurement and control algorithms as well as for improving the 

ECPL process automation and accuracy. Remarkably, it enables a macroscopic (micro-

scale) visualization of the molecular-level photopolymerization process and could aid 

advanced process modeling and control. 

10.3.4.4 To the commercial photopolymer AM systems 

The ICM&M system is not directly applicable to measure parts cured on 

commercial photopolymer AM systems (e.g., stereolithography) due to different system 

setups. However, it could be used to characterize the commercial photopolymer 

materials’ photopolymerization dynamics such as growth speed (unit: µm/s) in an ex-situ 

system. The unveiled curing behavior in microscale could help the companies develop a 

more powerful process plan that is capable of fabricating parts more accurately and 

precisely on the commercial photopolymer based AM machines. 

10.4 Limitations 

The 3D printing machine under study (ECPL) is an in-house additive 

manufacturing process as described in the introduction part of the dissertation. It was 

designed for continuous structures such as microlens and microfluidic channels, which 

does not have overhanging features, and is not able to print lattice structure. The ICM&M 

system was designed specifically for ECPL process measurement and assumed 

correspondingly a measurand as a continuous bulk. Real-time monitoring of lattice 

structures printing is not within the research scope but could still benefit from the 

research approaches and methodologies. For intricate structures such as lattice, a different 
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optics metrology using sophisticated configuration and principle might be needed rather 

than the Mach-Zehnder interferometer based ICM&M method in this dissertation. 

10.5 Future work  

10.5.1 Long-term goal 

3D printing and additive manufacturing is facing challenges in resolution, 

robustness and reliability. Investigation of Instrumentation and control methodologies, 

which will be needed to meet the evolving needs of this industry, could be a challenging 

and vibrant area for academic researchers and industrial practitioners alike. 

The long-term goal of this research is to fully understand and control the ECPL 

processes for fabricating complex micro parts in micro-optics, micro-fluidics, MEMS and 

bio-manufacturing. Insights from this research could help the ECPL system to be 

deployed for practical applications. Furthermore, this research will aid control-oriented 

modeling and simulation, sensor and controller development and implementation in 

various additive manufacturing processes. This research will help extend the use of 3D 

printing and additive manufacturing in more advanced technology applications where 

both structural integrity and functional properties are demanded. 

10.5.2 Recommendation for Future Work  

Future work includes engineering design and development of both the hardware 

and software system. Extension and explore to global measurement and control also 

presents an interesting challenge. Applications of a full-fledged fabrication machine 

integrating both the ECPL and ICM&M system need to be materialized. The following 

lists several specific research tasks that could be considered in the future work to improve 

the modeling, measurement and control for the ECPL process. 
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10.5.2.1 To develop a constitutive and control-oriented process model of ECPL 

with the aid of ICM&M and COMSOL 

A good understanding of the polymerization kinetics is essential in designing a 

robust and effective reactor control strategy. The key to building a reliable model is to 

mathematically describe the chemical and physical phenomena involved in a process and 

to derive the necessary material, energy and momentum balances [24]. These 

mathematical descriptions involve nonlinear algebraic and differential equations. The 

rigor and correctness of a dynamic polymerization model are strongly related to the 

availability of accurate information on the thermodynamic and transport properties of the 

polymerization system. Therefore, a constitutive model of the ECPL process could be 

available with chemical reactions and transport which has been simulated in COMSOL 

[17, 112].  

In the broad picture of the entire ECPL project, it has been envisioned to utilize 

the current research on process measurement together with COMSOL multiphysics 

model [112] to develop a more constitutive ECPL process modeling useful for control 

purpose. 

The future work could include a new project having to do with the relationship 

between the scientific theory of polymerization and the ECPL process as measured by the 

ICM&M. More specifically, one would like to establish a constitutive process model by 

connecting the macroscopic interferogram pattern dynamics of phase shifting, the 

microscale cured bulk height evolution and the refractive index changes in the order of 

magnitude of 0.001, all of which can be provided by the ICM&M method, with the 

molecular-level polymerization reaction theory which can be simulated in COMSOL. 

The COMSOL program to model the changing height and refractive index throughout the 

reaction could be developed, and compared with the cured height and refractive index 

determined by the ICM&M. The COMSOL model provide chemical and physics theory 
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insights, which could be combined with the ICM&M measurement data, to develop a 

sophisticated and control-oriented process model for better control of the ECPL process. 

Some preliminary research has been conducted by using ICM&M to measure 

some ECPL cured samples of microlens. Prior to the experiment, a COMSOL 

Multiphysics photopolymerization model was developed and simulated to plan for the 

ECPL process inputs of a timed sequence of size-varying circular bitmaps to output a 

microlen of desired shape and target dimensions (i.e., base diameter is 200 µm and 

center-top height is 80 µm). The process planning method and process input details are 

reported in the literature [112], and two repeated experiments were conducted resulting in 

two microlens referred as Sample #1 and #2 in this section. During the experiment, the 

ICM&M system was used to record online in parallel with the ECPL curing process for a 

microlen. After the experiment, the cured microlen was measured by an ex-situ confocal 

laser microscope and results are shown in Figure 90. Meanwhile, the ICM&M method 

was performed with the real-time acquired video of interferogram for the microlen curing 

process, to obtain an estimation of the cured height in the center of curing area, and 

results are shown in Figure 91.  

Moreover, in the particular application case of curing microlens with a sequence 

of circular bitmap pattern, the center voxel is of great interest for investigating the 

process dynamics as it contains the curing from the very beginning to the end of the 

entire exposure duration with all the bitmaps. Voxels at the edges, for instance, do not 

necessarily get exposed as the bitmap patterns shrink into smaller circles.   
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(a) Sample #1:  

 

(b) Sample #2:  

 

Figure 90. Confocal microscope (Objective Lens Magnification 25×, edges could be 

clearly imaged and measured under a higher magnification lens e.g. 50×) measured 

centerline profile for the ECPL cured microlens (a) Sample #1; (b) Sample #2. 

 

 

(a) Sample #1:  

 

(b) Sample #2:  

 

Figure 91. ICM&M estimation results for the center voxel in the EPCL cured microlens 

(a) Sample #1; (b) Sample #2. 

 

Therefore, the center voxel which represents the topmost point in the cured part 

will be studied to unveil a comprehensive process in COMSOL simulation and ICM&M 

estimation, as shown in Figure 92. The top-center height of the cured part is also easily 

available under the microscope observation – 90.420 µm for Sample #1 and 89.953 µm 
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for Sample #2 as shown in Figure 90, which are in good accordance with the ICM&M 

estimated center height - 91.280 µm for Sample #1 and 89.997 µm for Sample #2 as 

shown in Figure 91. Hence, the ICM&M method is demonstrated to be able to detect the 

real process dynamics and measure the cured height accurately (at least for the center 

voxel as compared herein). 

However, comparing the COMSOL simulation with the ICM&M estimation in 

Figure 92, it seems that the developed COMSOL model [112] severely underestimated 

the microlen’s center height, probably because the real process conditions and materials 

are slightly different from these in the simulation while the COMSOL model [112] is 

known to be extremely sensitive to process variations. It is noted in Figure 92 that the 

ICM&M system, however, successfully captures the real physical process dynamics and 

provides a pretty accurate measurement result that is close to the actual height measured 

by the microscope. 

 

(a) Sample #1:  

 

(b) Sample #2:  

 

Figure 92. Process simulation by COMSOL and measurement by the ICM&M method 

for the center voxel in the EPCL cured microlens (a) Sample #1; (b) Sample #2. 

 

The discrepancies observed (Figure 92) between the COMSOL simulation and the 

ICM&M estimation, suggest that an improved Multiphysics model could be developed 

with the aid of the ICM&M method that has been validated to agree with the microscope. 
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Inspired by the preliminary research results as presented above, in the future, 

research by comparing more experimental results from the COMSOL Multiphysics 

process simulation, the ICM&M estimation and the microscope measurement, could be 

performed to explore their connections for a potential constitutive and control-oriented 

process model, which can incorporate both the prediction from the molecular / polymer 

science and the observation by the optical metrology.  

It is worth to point out that a high fidelity process model will be mainly used to 

complement the measurement system to provide a more robust estimation of the 

measurands (e.g., height, mechanical properties), since the metrology system is usually 

susceptible to noise especially in real-time implementation. If a comprehensive and 

robust measurement method is developed in the future, chance is that one needs only a 

simple or even no process model for controlling the corresponding properties that could 

be measured well. 

10.5.2.2 To improve the experiment design for ICM&M calibration / validation / 

characterization 

The ICM&M method is essentially about a sensor model and estimation 

algorithms; hence a model validation technique such as cross validation is applicable to 

the calibration for refractive index value and to the validation and characterization of the 

ICM&M method. The holdout method is the simplest kind of cross validation [113]. The 

data set corresponding to the experiment set is separated into two sets, called the training 

set as calibration experiment and the testing set as validation experiment.  

This study actually adopts the holdout method to calibrate and validate the 

ICM&M off line as presented in Chapter 8. Specifically, with multiple experiments, one 

should decide which experiment is used to calibrate for refractive index, so that the others 

are used to validate the ICM&M method. The calibration experiment plays the role as a 

training set, while the validation experiment plays the role as a testing set. Firstly, in the 
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calibration process, the ICM&M model uses the training set data to obtain refractive 

index that is going to be used in the validation. Then in the validation experiment, with 

the calibrated refractive index, the ICM&M model is used to predict the output values of 

cured height for the experiment data in the testing set, and the errors between the 

prediction and observation are used to evaluate the ICM&M model and algorithm. The 

advantage of this method is that it is straightforward and economical. However, its 

evaluation can have a high variance. The evaluation may depend heavily on which 

experiment end up in the training set and which end up in the test set, and thus the 

evaluation may be significantly different depending on how the division is made. The 

holdout estimate of error rate will be misleading if one happens to get an “unfortunate” 

split, especially in the ICM&M case where the calibrated refractive index might have a 

wide distribution due to the ROI selection and stochastic noises and process uncertainty. 

For more accurate calibration of the refractive index in the ECPL process, instead 

of single calibration experiment currently used in the study, more repeated experiments 

should be conducted and variations could be observed among the obtained refractive 

indices from the same-conditioned experiments 

The machine learning experiment design technique called “K-fold cross 

validation”, might improve over the holdout method statistically and does not depend 

much on how the experiments are split for training and testing, though it is more 

computationally expensive. Inspired by the “K-fold cross validation”, a better design for 

ICM&M calibration and validation could be employed to characterize the ICM&M 

system and the refractive index model, and it does not need to specify which experiment 

is used as calibration. The advantage of the new experiment design based on K-Fold 

cross validation is that all the experiments in the dataset are eventually used for both 

calibration and validation. For large datasets, even 3-Fold cross validation will be quite 

accurate.  
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It is recommended that even just for the calibration purpose to develop an 

accurate refractive index model, a set of three experiments can be used so that a 3-fold 

cross validation can be conducted to estimate the refractive index more accurately. A 

precisely identified refractive index model is critical in the succeeding experiments to 

measure the ECPL process in real time or the cured parts off line. This experiment 

method should be more accurate than the one used in Chapter 8 that used only a single 

small subset of the experiments to estimate the refractive index.  

Furthermore, the improved experiment design for ICM&M calibration and 

validation can be beneficial for a better characterization of the metrology in terms of 

traceability, accuracy and repeatability. 

10.5.2.3 To quantify the in-process refractive index changes 

In addition to the improved calibration experiment (Section 10.5.2.2) for 

modeling better the evolution of refractive index in the ECPL process, it would be 

interesting to directly measure and model the real refractive index of solid cured part, to 

replace or complement the calibration procedure. In future, provided capable 

measurement equipment available for direct measurement of refractive index over the 

cured part, it is recommended to verify and quantify the in-process refractive index 

changes so as to improve the ICM&M sensor model accuracy. 

10.5.2.4 To upgrade the ICM&M hardware system 

Noise would be a big concern for the ICM&M performance. A filter technique 

was applied to preprocess the data and the experiment reported in the dissertation showed 

that 30 fps was working well. So far, the ICM&M has been proven to be a very cost 

effective approach by using a common camera. A high-performance camera with higher 

image quality and measurement resolution would be recommended in future 

improvement to cope with rising quality requirements. 
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10.5.2.5 To develop a three-dimensional (3D) ICM&M system 

For the current research stage, we focus on measuring and controlling the cured 

height in vertical dimension only. In this study, the lateral boundary in the interferograms 

was approximated manually by human eyes, and the chosen ROI was aimed to measure 

the main part height for a direct comparison with the microscope measurement. 

Theoretically, by measuring voxels height profile, the lateral shape could be defined 

naturally. However, this approach of realizing a 3D ICM&M method demands a high-

resolution and high-performance system of camera and computer. 

In the future, image processing and analysis technologies such as image 

segmentation, edge detection, and pattern recognition could be explored to estimate the 

cured shape and sizes in the lateral dimensions, and then can be combined with the 

vertical height measurement method as reported in this study to realize a 3D ICM&M 

method.  

Thereby, algorithms for ICM&M could be extended to 2D and 3D measurement 

and enable more comprehensive measurement and control. 

10.5.2.6 To employ a real-time operating system for fast precise and reliable 

process control 

As is pointed out in Section 9.8.2, a real-time operating system is envisioned to 

enable a more advanced and accurate process control method such as EC2C. For many 

engineers and scientists, running a measurement or control program on a standard PC 

with a general-purpose OS installed (such as Windows) is unacceptable. At any time, the 

operating system might delay execution of a user program for many reasons: to run a 

virus scan, update graphics, perform system background tasks, and more. For programs 

that need to run at a certain rate without interruption (for example the ECPL process 

measurement and control system), this delay can cause process errors. 
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Note that this behavior is by design: general-purpose operating systems are 

optimized to run many processes and applications at once and provide other features like 

rich user interface graphics. In contrast, real-time operating systems are designed to run a 

single program with very precise timing. Specifically, real-time operating systems can 

allow one to [114]: 

• Perform tasks within a guaranteed worst-case timeframe 

• Carefully prioritize different sections of the program 

• Run loops with nearly the same timing each iteration (typically within 

microseconds) 

• Detect if a loop missed its timing goal 

Real-time computing systems can be categorized as "hard real-time" and "soft 

real-time". To clarify, hard real-time systems are designed to absolutely guarantee that a 

task will execute within a certain worst-case timeframe. Therefore, for projects involving 

safety or systems that could result in a large investment in the event of failure, hard real-

time is often a requirement. On the other hand, soft real-time systems are designed to 

satisfy the timing requirements most of the time but without absolute certainty. This can 

be acceptable for operations like video processing, where a lost data frame is not good 

but may not necessarily be a critical problem. For example, the developed ECPL-M&C 

software in MATLAB is a “soft real-time” system. However, MATLAB is not 

traditionally used to do real-time analysis. Instead, LabVIEW is widely adopted for 

demanding real-time analysis which can be fulfilled with appropriate hardware.  

There have been literature reporting a successful real-time microstructure control 

of a metal additive manufacturing process by using National Instruments (NI) real-time 

operating system and LabVIEW for online camera image acquisition and processing and 

an NI motion module for applying controller signals to the system (e.g. CNC traveling 

speed, laser power and laser spot size) [5]. The ECPL system could also benefit from 
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using a more professional and more advanced software platform and real-time operating 

system for process measurement and control. 

For future work, it is recommended to adopt real-time operating system to 

improve the real-time measurement and control of ECPL in terms of computation speed, 

precision and reliability. Even in the case where precise timing and long term reliability 

are not absolute requirements, building a real-time system can provide added peace of 

mind that the program will continue to run without interrupting the measurement or 

control process [114]. Also, please note that the use of software synchronization was not 

problematic at the low image acquisition rate (1 Hz); however, the use of hardware 

synchronization, which provides resolution in the order of nanoseconds, will be used 

when higher collection rates are desired.  

10.5.2.7 To develop a comprehensive ECPL control for both geometry and 

properties 

Firstly, it is worthwhile to deepen the existing research on the basic process 

control as presented in Chapter 9. The corresponding future work to leverage the 

bootstrapping research is elaborated in Section 9.8. 

So far there has been no characterization work to identify the ECPL process 

parameters (i.e., chemical composition of photo initiator concentration and oxygen 

concentration, exposure time and exposure intensity) effects on the final cured part 

mechanical properties such as residual stress, hardness and strength, or on the optical 

properties of refractive index. One factor influencing the mechanical properties is the 

relaxation of the polymer matrix that occurs after exposure and continues after dark 

curing. As in most polymerization cases, in the ECPL process the chemical reactions 

usually occur faster than mechanical relaxation and other effects of physical processes, 

which suggests that mechanical properties could vary with time after cure and the post-

cure changes of mechanical properties such as modulus depend on materials used in the 
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polymerization process [115]. Additional in-situ measurement technologies are required 

to characterize the polymer part properties, and the evolution of properties after cure 

should also be modeled with the online measured properties to achieve a potential real-

time comprehensive multi-input multi-output (MIMO) process control for the ECPL 

process. 

As a start of this part of research, thorough investigations are needed to 

understand which of the process variables should be used as a comprehensive control 

action besides the single exposure time as described in the study. It has been found that 

exposure intensity could affect the curing rate significantly, and chance is that it also 

affects other properties other than geometry dimensions. Therefore, intensity control 

might dominate in the comprehensive control strategy for final part properties. 

Results indicate that the exposure intensity has a more critical effect on the curing 

rate [92]. Hence, the future work is recommended to start with a simplified problem that 

only uses exposure intensity as a controlling action to manipulate the curing rate to 

fabricate a micro part of desired properties. Such advanced control methods, with closed-

loop feedback control, have various embodiment designs based on different schemes and 

algorithms. A preliminary investigation has been conducted to identify some potential 

control methods for the exposure intensity in the ECPL system, which showed that 

classical PID control and adaptive neural network control might be good candidates 

[111]. With the advanced controller being designed, a methodology could be finalized to 

control the microstructure and properties in real-time during the ECPL process. Real-time 

curing rate, cured height and refractive index values can be extracted from the ICM&M 

method developed in this thesis. The target is to obtain a functional gradient part by 

controlling the output microstructural variations in geometry, residual stress and 

refractive index based on curing rate changes during the process. The developed closed-

loop control system measures the curing rate and cured height in real-time and feeds it to 

a real-time controller. The controller, utilizing a to-be identified correlation between the 
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curing rate and part properties, feeds in the required curing speed to reach the desired 

properties such as optical refractive index. 

Towards the end of this future research path, a controlled microstructure with 

desired mechanical and optical properties will be expected with controlled curing rates 

through the ECPL process. The comprehensive ECPL process control could help achieve 

its promising application as a novel additive manufacturing method for fabricating 

gradient-index lenses [116]. 
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APPENDIX A 

OFFLINE ICM&M ANALYSIS RESULT FOR THE SAMPLES 

CURED IN THE REAL-TIME CONTROL EXPERIMENTS 

 

A.1 Voting scheme for identifying curing window in global measurement 

 Introduced in Section 9.5.2.1, the majority voting method is employed to 

boost the robustness of the offline ICM&M algorithms for a full-field profile 

measurement of the parts cured in the real-time controls experiment in Chapter 9. Figure 

A1, Figure A2 and Figure A3 display the details of how the globally allowable curing 

start and curing stop are determined for each sample in Group #1, Group #2 Subset #1 

and Group #2 Subset #2, respectively. The artificial enforcement of earliest allowable 

curing start and latest allowable curing stop in defining the longest curing window, 

effectively suppresses the interferogram noises in the non-curing stages of the ECPL 

process, thereby improves the overall profile measurement robustness and accuracy. 

 

  



 318 

G
ro

u
p
 #

1
: 

S
am

p
le

 #
1

 

1(a) 

Voting for the 

earliest 

beginning of 

curing in the ROI 

 

1(b) 

Voting for the 

latest end of 

curing in the ROI 

 

G
ro

u
p
 #

1
: 

S
am

p
le

 #
2

 

2(a) 

Voting for the 

earliest 

beginning of 

curing in the ROI 

 

2(b) 

Voting for the 

latest end of 

curing in the ROI 

 



 319 

G
ro

u
p
 #

1
: 

S
am

p
le

 #
3

 

3(a) 

Voting for the 

earliest 

beginning of 

curing in the ROI 

 

3(b) 

Voting for the 

latest end of 

curing in the ROI 

 

G
ro

u
p
 #

1
: 

S
am

p
le

 #
4

 

4(a) 

Voting for the 

earliest 

beginning of 

curing in the ROI 

 

4(b) 

Voting for the 

latest end of 

curing in the ROI 

 



 320 

G
ro

u
p
 #

1
: 

S
am

p
le

 #
5

 

5(a) 

Voting for the 

earliest 

beginning of 

curing in the ROI 

 

5(b) 

Voting for the 

latest end of 

curing in the ROI 

 

G
ro

u
p
 #

1
: 

S
am

p
le

 #
6

 

6(a) 

Voting for the 

earliest 

beginning of 

curing in the ROI 

 

6(b) 

Voting for the 

latest end of 

curing in the ROI 

 

Figure A1. Majority voting in the offline ICM&M analysis (Real-time Group #1)  
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Figure A2. Majority voting in the offline ICM&M analysis (Group #2 Subset #1)  
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Figure A3. Majority voting in the offline ICM&M analysis (Group #2 Subset #2)  
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A.2 Measured region and results by the offline ICM&M method 

 In the offline ICM&M analysis of the real-time acquired interferogram 

videos in Chapter 9 (Section 9.7.1), the region of interest (ROI) selected in the 

interferogram video and the corresponding area profile of cured height for each sample in 

the designed experiments (Table 18. Experimental design for real-time ECPL process 

measurement and control), are displayed in Figure A4, Figure A5, and Figure A6 for 

Group #1, Group #2 Subset #1 and Group #2 Subset #2, respectively. 
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Figure A4. Offline ICM&M analysis of the samples cured in the real-time 

experiments (Group #1) - Left: region of pixels selected in the interferogram video to be 

measured; Right: corresponding area profile of cured heights across the selected region  
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Figure A5. Offline ICM&M analysis of the samples cured in the real-time 

experiments (Group #2 Subset #1) - Left: region of pixels selected in the interferogram 

video to be measured; Right: corresponding area profile of cured heights across the 

selected region  
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Figure A6. Offline ICM&M analysis of the samples cured in the real-time 

experiments (Group #2 Subset #2) - Left: region of pixels selected in the interferogram 

video to be measured; Right: corresponding area profile of cured heights across the 

selected region  
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A.3 Selected example pixel measured by the offline ICM&M method 

 In the implementation of the ICM&M method, firstly each individual pixel 

is measured, and then the aggregate of individual measurements would be used to 

evaluate the overall height profile for the measured region. As a demonstration of the 

detected and measured process dynamics, one representative pixel in the ROI (as shown 

in Figure A4 – A6) is selected for each sample, and the corresponding data and analysis 

result is presented in Figure A7, Figure A8, and Figure A9 for Group #1, Group #2 

Subset #1 and Group #2 Subset #2, respectively.  
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Sample 1: 1(a): 

 

1(b): 

 

1(c) 

 

Sample 2: 2(a): 

 

2(b): 

 

2(c) 

 

Sample 3: 3(a): 

 

3(b): 

 

3(c) 

 

Figure A7 (Part 1). Example of individual pixel’s data dynamics and 

measurement results in the offline ICM&M analysis (Real-time Group #1): (a) time 

sequence of pixel’s grayscale and data analysis; (b) estimated evolution of the 

instantaneous frequency; (c) estimated time curve of cured height.  
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Sample 4: 4(a): 

 

4(b): 

 

4(c) 

 

Sample 5: 5(a): 

 

5(b): 

 

5(c) 

 

Sample 6: 6(a): 

 

6(b): 

 

6(c) 

 

Figure A7 (Part 2). Example of individual pixel’s data dynamics and 

measurement results in the offline ICM&M analysis (Real-time Group #1): (a) time 

sequence of pixel’s grayscale and data analysis; (b) estimated evolution of the 

instantaneous frequency; (c) estimated time curve of cured height.  
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Sample 1: 1(a): 

 

1(b): 

 

1(c) 

 

Sample 2: 2(a): 

 

2(b): 

 

2(c) 

 

Sample 3: 3(a): 

 

3(b): 

 

3(c) 

 

Figure A8 (Part 1). Example of individual pixel’s data dynamics and 

measurement results in the offline ICM&M analysis (Real-time Group #2 Subset #1): (a) 

time sequence of pixel’s grayscale and data analysis; (b) estimated evolution of the 

instantaneous frequency; (c) estimated time curve of cured height.  
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Sample 4: 4(a): 

 

4(b): 

 

4(c) 

 

Sample 5: 5(a): 

 

5(b): 

 

5(c) 

 

Sample 6: 6(a): 

 

6(b): 

 

6(c) 

 

Figure A8 (Part 2). Example of individual pixel’s data dynamics and 

measurement results in the offline ICM&M analysis (Real-time Group #2 Subset #1): (a) 

time sequence of pixel’s grayscale and data analysis; (b) estimated evolution of the 

instantaneous frequency; (c) estimated time curve of cured height.  
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Sample 1: 1(a): 

 

1(b): 

 

1(c) 

 

Sample 2: 2(a): 

 

2(b): 

 

2(c) 

 

Sample 3: 3(a): 

 

3(b): 

 

3(c) 

 

Figure A9 (Part 1). Example of individual pixel’s data dynamics and 

measurement results in the offline ICM&M analysis (Real-time Group #2 Subset #2): (a) 

time sequence of pixel’s grayscale and data analysis; (b) estimated evolution of the 

instantaneous frequency; (c) estimated time curve of cured height.  
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Sample 4: 4(a): 

 

4(b): 

 

4(c) 

 

Figure A9 (Part 2). Example of individual pixel’s data dynamics and 

measurement results in the offline ICM&M analysis (Real-time Group #2 Subset #2): (a) 

time sequence of pixel’s grayscale and data analysis; (b) estimated evolution of the 

instantaneous frequency; (c) estimated time curve of cured height.  



 340 

 

APPENDIX B 

REAL-TIME ICM&M DATA ACQUISITION AND ANALYSIS 

RESULT FOR THE SAMPLES CURED IN THE REAL-TIME 

CONTROL EXPERIMENTS 

 

B.1 Real-time data acquisition and logging 

 The interferogram acquisition is performed in parallel with the 

measurement analysis in the real-time process measurement and control experiments. The 

data logging records each interferogram’s image data and time stamps, as well as the 

process flags of “UV Open Frame Index” and “UV Close Frame Index” which mark the 

frame when the UV lamp opens and when the UV lamp closes respectively. 

Table B1: Real-time acquisition results and logging of UV lamp status 

 

 

  

Experiment 

Group

Experiment Subgrouping 

based on Online 

Measurement Setting

Sample 

NO.

Number of 

Frames 

Acquired

Acquisition 

Time (s)

Average

Frame Interval (s)

Average 

Acquisition Speed 

(FPS: Frames/Sec)

UV Open 

Frame 

Index

UV Close 

Frame Index 

(Norminal)

UV Close

Frame Index 

(Actual)

Sample 1 502 27.896 0.056 18 1 260 263

Sample 2 502 26.351 0.052 19 1 340 341

Sample 3 502 26.628 0.053 19 1 330 331

Sample 4 502 28.396 0.057 18 1 310 311

Sample 5 502 26.461 0.053 19 1 280 286

Sample 6 502 27.283 0.054 18 1 280 289

Sample 1 1002 62.317 0.062 16 1 700 704

Sample 2 1002 54.743 0.055 18 1 660 661

Sample 3 1002 53.953 0.054 19 1 690 692

Sample 4 1002 52.897 0.053 19 1 690 693

Sample 5 1002 53.959 0.054 19 1 580 583

Sample 6 1002 54.390 0.054 18 1 740 745

Sample 1 1002 58.095 0.058 17 1 630 652

Sample 2 1002 55.469 0.055 18 1 690 715

Sample 3 1002 57.623 0.058 17 1 690 700

Sample 4 1002 53.340 0.053 19 1 690 709

Real-time Acquisition and Logging of InterferogramExperiment Index

Group #1

(Normal 

Process: UV iris 

level 22%)

10 frames / run of online 

measurement for 1 pixel

Group #2 

(Slow Process: 

UV iris level 

5%)

Subset #1

(10 frames / run of online 

measurement for 1 pixel)

Subset #2

(30 frames / run of online 

measurement for 3 pixel)
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B.2 Online measured pixels’ time sequence and measurement results 

 Corresponding to Section 9.7.2, Figure B1, Figure B2 and Figure B3 

display the details about the online measured pixel(s)’s data dynamics and analysis 

results for each sample in Group #1 (1 pixel measured online), Group #2 Subset #1(1 

pixel measured online), and Group #2 Subset #2 (3 pixels measured online), respectively. 

 Please note that the time curve of real-time measured cured height 

represented by the real-time measurement of the pixel(s) for each sample in Figure B1, 

Figure B2 and Figure B3, is shown in the Figure B5. 
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Sample 1 

 

Sample 2 

 

Sample 3 

 

Sample 4 

 

Sample 5 

 

Sample 6 

 

Figure B1. Online measured pixel’s data dynamics and measurement results in the 

real-time ICM&M analysis (Real-time Group #1)  
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Sample 1 

 

Sample 2 

 

Sample 3 

 

Sample 4 

 

Sample 5 

 

Sample 6 

 

Figure B2. Online measured pixel’s data dynamics and measurement results in the 

real-time ICM&M analysis (Real-time Group #2 Subset #1)  
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Sample 1: Pixel 1 

 

Sample 1: Pixel 2 

 

Sample 1: Pixel 3 

 

Sample 2: Pixel 1 

 

Sample 2: Pixel 2 

 

Sample 2: Pixel 3 

 

Sample 3: Pixel 1 

 

Sample 3: Pixel 2 

 

Sample 3: Pixel 3 

 

Sample 4: Pixel 1 

 

Sample 4: Pixel 2 

 

Sample 4: Pixel 3 

 

Figure B3. Online measured pixels’ data dynamics and measurement results in the 

real-time ICM&M analysis (Real-time Group #2 Subset #2)  
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B.3 Real-time measurement latency and control system delays 

As per the concepts and methods presented in Section 9.4.4, the results of 

online measurement latency, control delay and actuation delay are estimated for 

each run of experiment.  

To support 9.7.2.3, Figure B4 display the real-time latency for each frame 

of interferogram and analyzes the measurement latency at trigger point. Please 

note that the latencies in the control window and actuation window of frames can 

reveal the fluctuations of the computing environment which could account for the 

observed delays in control and actuation. Sometimes, a spike in latency time 

occurs at the frame when the ideal trigger point is reached, indicating a possible 

computing strain in the background. As the subsequent frames analysis gradually 

catch up with the acquisition till the analysis thread resumes synchronized with 

the acquisition, the real triggering usually takes place later than the ideal time 

point resulting in a control delay (details shown in Figure B5). After triggering, 

the hardware response in the UV lamp takes some time, leading to actuation 

delay. In turn, the UV lamp shutting down process could also occupy some 

computation resource, and thus could hinder the analysis and drag down the 

analysis speed further. Altogether, the racing of multithreads could randomly lead 

to delays in the measurement, control and actuation, as shown in Figure B4.  

As introduced in Section 9.7.3.2, Figure B5 illustrates the two components 

of the total control delay, which are caused by the discrete measurement (i.e. 

measurement interval effect) and the delays in transmission and controller 

computation, respectively. The real-time cured height evolution which is 

estimated by evaluating the real-time measurement of the pixel(s) for each sample 

in Figure B1, Figure B2 and Figure B3, is shown in the Figure B5. 
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(1) Group#1 Sample 1: Normal process (UV iris level 22%), 1 pixel measured online 

 

(2) Group#1 Sample 2: Normal process (UV iris level 22%), 1 pixel measured online 

 

(3) Group#1 Sample 3: Normal process (UV iris level 22%), 1 pixel measured online 

 

Figure B4. Real-time latency and indication for computation fluctuations that 

could account for delays in measurement, control and actuation   
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(4) Group#1 Sample 4: Normal process (UV iris level 22%), 1 pixel measured online 

 

(5) Group#1 Sample 5: Normal process (UV iris level 22%), 1 pixel measured online 

 

(6) Group#1 Sample 6: Normal process (UV iris level 22%), 1 pixel measured online 

 

Figure B4 (continued). Real-time latency and indication for computation 

fluctuations that could account for delays in measurement, control and actuation   
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(7) Group#2 Subset#1 Sample 1: Slow process (UV iris 5%), 1 pixels measured online 

 

(8) Group#2 Subset#1 Sample 2: Slow process (UV iris 5%), 1 pixels measured online 

 

(9) Group#2 Subset#1 Sample 3: Slow process (UV iris 5%), 1 pixels measured online 

 

Figure B4 (continued). Real-time latency and indication for computation 

fluctuations that could account for delays in measurement, control and actuation  
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(10) Group#2 Subset#1 Sample 4: Slow process (UV iris 5%), 1 pixels measured 

online 

 

(11) Group#2 Subset#1 Sample 5: Slow process (UV iris 5%), 1 pixels measured 

online 

 

(12) Group#2 Subset#1 Sample 6: Slow process (UV iris 5%), 1 pixels measured 

online 

 

Figure B4 (continued). Real-time latency and indication for computation 

fluctuations that could account for delays in measurement, control and actuation  
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(13) Group#2 Subset#2 Sample 1: Slow process (UV iris 5%), 3 pixels measured 

online, measurement run every 30 frames 

 

(14) Group#2 Subset#2 Sample 2: Slow process (UV iris 5%), 3 pixels measured 

online, measurement run every 30 frames 

 

Figure B4 (continued). Real-time latency and indication for computation 

fluctuations that could account for delays in measurement, control and actuation   
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(15) Group#2 Subset#2 Sample 3: Slow process (UV iris 5%), 3 pixels measured 

online, measurement run every 30 frames 

 

(16) Group#2 Subset#2 Sample 4: Slow process (UV iris 5%), 3 pixels measured 

online, measurement run every 30 frames 

 

Figure B4 (continued). Real-time latency and indication for computation 

fluctuations that could account for delays in measurement, control and actuation  
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(1) Group#1 Sample 1: Normal process (UV iris level 22%), 1 pixel measured online 

 

 

(2) Group#1 Sample 2: Normal process (UV iris level 22%), 1 pixel measured online 

 

 

Figure B5. Real-time ICM&M measurement and analysis for online delays in the 

ECPL process measurement and control system   
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(3) Group#1 Sample 3: Normal process (UV iris level 22%), 1 pixel measured online 

 

 

(4) Group#1 Sample 4: Normal process (UV iris level 22%), 1 pixel measured online 

 

 

Figure B5 (continued). Real-time ICM&M measurement and analysis for online 

delays in the ECPL process measurement and control system   
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(5) Group#1 Sample 5: Normal process (UV iris level 22%), 1 pixel measured online 

 

 

(6) Group#1 Sample 6: Normal process (UV iris level 22%), 1 pixel measured online 

 

 

Figure B5 (continued). Real-time ICM&M measurement and analysis for online 

delays in the ECPL process measurement and control system   
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(7) Group#2 Subset#1 Sample 1: Slow process (UV iris 5%), 1 pixels measured online 

 

 

(8) Group#2 Subset#1 Sample 2: Slow process (UV iris 5%), 1 pixels measured online 

 

 

Figure B5 (continued). Real-time ICM&M measurement and analysis for online 

delays in the ECPL process measurement and control system   
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(9) Group#2 Subset#1 Sample 3: Slow process (UV iris 5%), 1 pixels measured online 

 

 

(10) Group#2 Subset#1 Sample 4: Slow process (UV iris 5%), 1 pixels measured 

online 

 

 

Figure B5 (continued). Real-time ICM&M measurement and analysis for online 

delays in the ECPL process measurement and control system   
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(11) Group#2 Subset#1 Sample 5: Slow process (UV iris 5%), 1 pixels measured 

online 

 

 

(12) Group#2 Subset#1 Sample 6: Slow process (UV iris 5%), 1 pixels measured 

online 

 

 

Figure B5 (continued). Real-time ICM&M measurement and analysis for online 

delays in the ECPL process measurement and control system   
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(13) Group#2 Subset#2 Sample 1: Slow process (UV iris 5%), 3 pixels measured 

online, measurement run every 30 frames 

 

 

(14) Group#2 Subset#2 Sample 2: Slow process (UV iris 5%), 3 pixels measured 

online, measurement run every 30 frames 

 

 

Figure B5 (continued). Real-time ICM&M measurement and analysis for online 

delays in the ECPL process measurement and control system   
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(15) Group#2 Subset#2 Sample 3: Slow process (UV iris 5%), 3 pixels measured 

online, measurement run every 30 frames 

 

 

(16) Group#2 Subset#2 Sample 4: Slow process (UV iris 5%), 3 pixels measured 

online, measurement run every 30 frames 

 

 

Figure B5 (continued). Real-time ICM&M measurement and analysis for online 

delays in the ECPL process measurement and control system  
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APPENDIX C 

ECPL-M&C SOFTWARE 

 

C.1 Software Manual 

Two example instruction for performing a real-time measurement and control 

experiment (Chapter 9) with the software is presented as below, using the GUI described 

previously. 

 Experiment Group # 1: 1 pixel, 22% UV 

Sample 1: 250×250 square 

Instructions: 

1. Connect UV lamp, camera, and DMD 

2. Open Matlab, run "Real_Time_ICM", measure & control online by following 

the steps as below.  

(1) Set the measurement period box value "10" (default already), UV light 

"22" 

(2) The online acquired interferograms are simultaneously written into the 

global variable "g_all_frame", which is initialized in the matlab code 

"pb_AcquireAVI_Callback.m", and user could set the number of maximum 

frames to be acquired in that code. 

For UV=22% and curing 80um, 500 frames will do. Hence, one could change 

the frame number at Line 72 (highlighted in blue) to be "500". 
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(3) Input "250" in the boxes of "Rectangle Width" and Rectangle Height" , 

and "Generate DMD bitmap" 

(4) Make sure to CHECK "Target Cured Height" and UNCHECK "Target 

Exposure Time", this is already by default but better make sure. Set the Target 

Cured Height as "80" . 

(5) "Start Camera"           

(6) "Set ROI" (1 pixel: H=210, w=285) 

Step: In “pb_SetROI.m”, change the g_POI as below 

 
  

(7) "Start Acquisition" and wait until the pushbutton "Open UV Light" is 

enabled. This may take one minute or longer. 

(8) "Open UV Light" 

(9) After UV light is off, wait for 3 seconds, click "Stop Acquisition", and 

hold on till the status bar under the image shows “Main worker Returned 

measurement and analysis results.” 

Note: Do NOT click “Stop Acquisition” again if it still continues acquiring 

because the acquisition will stop automatically when 500 frames are acquired. 

(10) Close the app. 
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C.2 MATLAB Codes 

This section lists all the key functions in the MATLAB based ECPL-M&C 

software. 

1. Function: “icmFit2.m” 

The function is for adaptive curve fitting. The codes are as below. 

function ret = icmFit2(dataX, dataY, params, 

prevRet) 

%% Function returns the following parameters: 

...ret.fitobject = fitobjects{iFitTrial}; % fitting 

trial which outstands 

    ...ret.fitgof = gofs{iFitTrial}; 

    ...ret.movingHorizon = 

movingHorizons(iFitTrial); 

    ...ret.halfLife = halfLifes(iFitTrial); 

    ...ret.frameIdx = frameIdx_local = 

length(rawY); 

    ...ret.firstValidFoiIdx: curing starts,i.e.,end 

of threshold 

    ...ret.fitStatus: 0:not started; 1:fail; 

2:valid 

    ...ret.fittype: "fourier 1" 

    ...ret.fitoptions 

    ...ret.I0: baseline amplitude (DC) 

    ...ret.I1: oscillation amplitude (AC) 

    ...ret.freqW: angular frequency in 

Im=I0+I1*cos(W*t+phi) 

    ...ret.freq: frequency = W/2/pi (unit:Hz) 

    ...ret.time: relative time (s) from beginning 

of measurement = dataX(end) 

 

%% Smooth time sequence of grayscale 

dataY = smooth(dataY); 

dataLen = length(dataY); 

frameIdx_local = dataLen; 

 

%%--if want to use different criterions for 

threshold and dark period, use below 

if isempty(params.uvIris)|| (params.uvIris >= 10) 



 363 

    Threshold_I1 = 10; 

    % 1.5s range to detect dark curing 

    darkWindowLen = 44;  

    darkRange = 20; 

else % set empirical frequency range [0.1 Hz,0.5 

Hz]for uvIris=5 

    Threshold_I1 = 10; 

    % 2.5s range to detect dark curing 

    darkWindowLen = 44;  

    darkRange = 10; 

end 

  

%%--------------------- 

  

%% Initialize fitting options 

if params.RunNo == 1 

     

    % y = a0 + a1*cos(w*x) + b1*sin(w*x),where x is 

actually time "t" 

    % Coefficients = [a0;a1;b1;w]; 

    opts = fitoptions('fourier1'); 

    opts.Display = 'Off'; 

     

    % note: setting reasonable limit is very 

important! 

    % set limits of the coefficients "a0,a1,b1,w" 

    % If FPS of video is 30, maximum detectable 

frequency is 30/2=15, while 

    %     wMax = 2 * pi * params.FPS/2; 

%     wMax = 2 * pi * 

min(params.FPS/2,params.f_max); 

    aMax = 255 * 1; 

     

    %%--- 1st curve fitting, bound frequency to get 

a good start, starting point is important 

    % set empirical frequency range [0.4 Hz,1.2 Hz] 

for uvIris>5 

    if isempty(params.uvIris)|| (params.uvIris >= 

10) 

        opts.Lower = [0 -aMax/2 -aMax/2 0.4*2*pi]; 

        opts.Upper = [aMax aMax/2 aMax/2 1.2*2*pi]; 
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    else % updated on 07-22-2016: set empirical 

frequency range [0.1 Hz,0.5 Hz]for uvIris=5 

        opts.Lower = [0 -aMax/2 -aMax/2 0.1*2*pi];  

        opts.Upper = [aMax aMax/2 aMax/2 0.5*2*pi]; 

    end 

    %%--------- 

     

    opts.MaxIter = 400; 

    %     opts.TolFun = 1.0e-6; 

    %     opts.TolX = 1.0e-6; 

    opts.TolFun = 1.0e-3; 

    opts.TolX = 1.0e-5; 

    % opts.StartPoint = [0 0 0 0]; 

     

else % if previous fitting exists, keep using it 

    opts = prevRet.fitoptions; 

    % note: setting reasonable limit is very 

important! 

    % set limits of the coefficients "a0,a1,b1,w" 

    % If FPS of video is 30, maximum detectable 

frequency is 30/2=15, while 

    wMax = 2 * pi *min(params.FPS/2,params.f_max); 

        %             wMax = 2 * pi *params.f_max; 

    aMax = 255 * 1; 

     

    % Set frequency range [0.1,15 Hz] for curing 

period before UV closes 

    if (prevRet.fitStatus ~= 0) && 

(isempty(params.RunNo_uvClose) || (params.RunNo <= 

params.RunNo_uvClose)) 

        opts.Lower = [0 -aMax/2 -aMax/2 0.1*2*pi]; 

        opts.Upper = [aMax aMax/2 aMax/2 wMax]; 

    elseif ~isempty(params.RunNo_uvClose) && 

(params.RunNo > params.RunNo_uvClose) % dark curing 

period, fitting frequency could be low to 0        

        opts.Lower = [0 -aMax/2 -aMax/2 0]; 

        opts.Upper = [aMax aMax/2 aMax/2 wMax]; 

    end 

     

    % use the previous starting point to save time 
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    if prevRet.fitStatus == 2 || prevRet.fitStatus 

== 42 || (prevRet.fitStatus ~= 0 && 

prevRet.fitgof.rsquare >= 0.75 && 

prevRet.fitgof.rsquare ~= 1)  

        opts.StartPoint = 

coeffvalues(prevRet.fitobject); 

    end 

end 

  

%% At threshold period, useless fitting, simply 

return 

if (prevRet.fitStatus == 0) && 

(std(dataY(prevRet.frameIdx+1:end)) < 

5)&&(range(dataY(1:end)) < 20)% previously use 10 

    ret.fitobject = []; 

    ret.fitgof.rsquare = 1; 

    ret.movingHorizon = params.MHL; 

    ret.halfLife = params.halfLife; 

    ret.frameIdx_dummy = frameIdx_local; 

    ret.frameIdx = params.frameIdx; 

    ret.firstValidFoiIdx = 0; % NOT curing frame 

yet 

    ret.fitStatus = 0; % NO fitting yet 

    ret.fitoptions = opts; 

    % retrun DC (Direct Current) values 

    ret.I0 = mean(dataY((prevRet.frameIdx+1):end)); 

    ret.I1 = 0; 

    ret.freqW = 0; 

    ret.freq = 0; 

    ret.time = dataX(end); 

    return 

end 

  

%% At the dark curing period, when the curve flats 

out, no need fitting 

if (~isempty(params.RunNo_uvClose) && 

(std(dataY(prevRet.frameIdx+1:end)) < 5)... 

        &&(range(dataY(end-darkWindowLen:end)) <= 

darkRange))...%% updated on 07-22-2016 

        || (prevRet.fitStatus == 3) 

    ret = prevRet; 
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    ret.fitobject = []; 

    ret.fitgof.rsquare = 1; 

    ret.movingHorizon = params.MHL; 

    ret.halfLife = params.halfLife; 

    ret.frameIdx_dummy = frameIdx_local; 

    ret.frameIdx = params.frameIdx; 

    ret.fitStatus = 3; % Dark curing, NO fitting 

    ret.fitoptions = opts; 

    ret.I0 = mean(dataY((prevRet.frameIdx+1):end)); 

    ret.I1 = 0; 

    ret.freqW = 0; 

    ret.freq = 0; 

    ret.time = dataX(end); 

    return 

end 

  

%% Start fitting 

% R-square threhold value for fitting goodness 

rsqTh = params.rSquare; 

  

nMaxTrial = 2; 

halfLifes = params.halfLife* [1,1]; 

movingHorizons = 

min(dataLen,round(params.MHL*[1,1.5])); 

% if dark curing period, extend the window length 

to estimate the lower frequency 

if ~isempty(params.RunNo_uvClose) && 

(params.RunNo >= params.RunNo_uvClose) 

    halfLifes = round(params.halfLife* [2,3]); 

    movingHorizons = 

min(dataLen,round(params.MHL*[2,3])); 

end 

  

% uvIris level too low, e.g., uvIris=5, curing 

frequency is 0.2Hz, need 

...longer MHL to estimate the frequency accurately 

if params.uvIris < 10 

    halfLifes = params.halfLife* [1,2]; 

    movingHorizons = 

min(dataLen,round(params.MHL*[2,3]));  

     



 367 

    % dark curing, longer MHL 

    if ~isempty(params.RunNo_uvClose) && 

(params.RunNo >= params.RunNo_uvClose) 

    halfLifes = round(params.halfLife* [2,3]); 

    movingHorizons = 

min(dataLen,round(params.MHL*[4,6])); 

    end 

end 

  

fitobjects = cell(nMaxTrial, 1); 

gofs = cell(nMaxTrial, 1); 

  

fitStatus = 1; 

for iFitTrial = (1:nMaxTrial) 

    halfLife = halfLifes(iFitTrial); 

    movingHorizon = movingHorizons(iFitTrial); 

     

    trainLen = movingHorizon; 

    trainIdxs = ((dataLen - trainLen + 1) : 

dataLen)'; 

    trainX = dataX(trainIdxs); 

    trainY = dataY(trainIdxs); 

     

    weights = exp((trainIdxs - trainIdxs(end)) / 

halfLife * log(2)); 

    opts.Weights = weights; 

     

    [fitobject, gof] = fit( trainX, trainY, 

'fourier1', opts ); 

    fitobjects{iFitTrial} = fitobject; 

    gofs{iFitTrial} = gof; 

     

    if round(gof.rsquare,2) >= rsqTh 

        fitStatus = 2; 

        break; 

    else 

        if iFitTrial > 1 && gof.rsquare < 

gofs{Idx_PrevTrial}.rsquare 

            iFitTrial = Idx_PrevTrial; 

            break; 

        else 



 368 

            % otherwise keep going 

            Idx_PrevTrial = iFitTrial; 

        end 

    end 

end 

  

%% Return values 

ret.fitobject = fitobjects{iFitTrial}; 

ret.fitgof = gofs{iFitTrial}; 

ret.movingHorizon = movingHorizons(iFitTrial); 

ret.halfLife = halfLifes(iFitTrial); 

  

ret.frameIdx_dummy = frameIdx_local; 

ret.frameIdx = params.frameIdx; 

ret.firstValidFoiIdx = prevRet.firstValidFoiIdx; 

  

if fitStatus ~= 0 && prevRet.firstValidFoiIdx == 0 

    ret.firstValidFoiIdx = prevRet.frameIdx+1; 

end 

  

coeffs = coeffvalues(fitobject); 

I0 = coeffs(1); % estimated baseline amplitude (DC) 

I1 = sqrt(coeffs(2)^2+coeffs(3)^2); % estimated 

fringe amplitude (AC) 

freqW = coeffs(4); % estimated angular frequency 

"w" 

freq = coeffs(4) / 2 / pi;% estimated frequency "f" 

(unit:Hertz) 

  

ret.fitStatus = fitStatus; 

ret.fitoptions = opts; 

  

ret.I0 = I0; 

ret.I1 = I1; 

ret.freqW = freqW; 

ret.freq = freq; 

ret.time = dataX(end); 

  

%% Frequency outliers detection & correction 

...In the threshold period, correct the frequency 

artificially by using previous 
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% the following is especially useful in low uvIris 

when threshold 

% period is long and fluctuating, to identify the 

threhold correctly is 

% very important in the overall process parameters 

estimation 

% if (prevRet.fitStatus == 0) && ((ret.I1 < 

10)||(ret.freq < 0.05)) 

if (prevRet.fitStatus == 0) && (ret.I1 < 

Threshold_I1) 

    ret = prevRet; % use previous returned fitting 

    ret.fitgof.rsquare = 0; 

    ret.frameIdx_dummy = frameIdx_local; 

    ret.frameIdx = params.frameIdx; 

    ret.fitStatus = 0; 

    ret.fitoptions = opts; 

     

    % retrun DC (Direct Current) values 

    ret.I0 = mean(dataY((prevRet.frameIdx+1):end)); 

    ret.I1 = 0; 

    ret.freqW = 0; 

    ret.freq = 0; 

    ret.time = dataX(end); 

end 

  

% the following is especially useful in low uvIris 

when threshold 

% period is long and fluctuating, to identify the 

threhold correctly is 

% very important in the overall process parameters 

estimation 

if (prevRet.fitStatus == 0) && (ret.freq < 0.1) 

    ret.fitStatus = 0; 

end 

  

%--- in the curing period, if too noisy, use zero 

frequency directly. 

if (prevRet.fitStatus ~= 0) && (ret.I1 < 5) 

    ret = prevRet; % use previous returned fitting 

    ret.fitgof.rsquare = 0; 

    ret.frameIdx_dummy = frameIdx_local; 
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    ret.frameIdx = params.frameIdx; 

    ret.fitStatus = 40; % outlier frequency due to 

failed fitting 

     

    % retrun DC (Direct Current) values 

    ret.I0 = mean(dataY((prevRet.frameIdx+1):end)); 

    ret.I1 = 0; 

    ret.freqW = 0; 

    ret.freq = 0; 

    ret.time = dataX(end); 

end 

  
  

end 

 

2. Function: “Real_Time_ICM_processMeasureTimer.m”  

The function is used for real time ICM&M data acquisition (i.e., interferogram 

acquisition) and logging. The codes are as below. 

%% process measurement timer func 

function Real_Time_ICM_processMeasureTimer(vid, 

event, hObject) 

  

global hImage 

global g_all_frame 

global uv 

global g_uvStatus 

global hdvp 

global g_acquiring 

global g_mmf 

global g_frameIdx 

global g_tImaqStart 

global g_previewFrameIdx 

  

%% Communication variables 

global g_mmfWriteIdx 

  

handles = guidata(hObject); 

if ~isrunning(vid) 

    return 
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end 

  

%% Real-time Preview video  

% if user does NOT push the button to acquire and 

log AVI, just preview 

frame = getsnapshot(vid); 

g_previewFrameIdx = g_previewFrameIdx + 1; 

if g_previewFrameIdx == 1 

    hImage = imshow(frame, 'Parent', 

handles.Interferogram); 

else 

    set(hImage, 'CData', frame); 

end 

  

if g_acquiring == 0 || g_uvStatus == 0 

    return 

end;  

  
  

if g_mmf.Data(1).status(1) == 0 

    % capture stopped 

    fprintf('Timer get msg that capture is 

stopped!\n') 

    guidata(hObject, handles); 

    return 

end 

  

if g_mmf.Data(1).status(3) == 2 && g_uvStatus == 1 

    % shutdown uv 

    icm_set_uv_status(0,handles.cp.uvIris); 

     

    % display exposure time dynamically till UV 

closed 

    set(handles.ed_ExposureTime, 'string', 

toc(g_tImaqStart));  

     

    % Change button string 

    set(handles.pb_OpenCloseUV, 'String', 'Open UV 

Light'); 

    set(handles.pb_OpenCloseUV, 'Enable', 'off'); 

  

    % update the Interferogram Status Bar for info 
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set(handles.st_InterferogramStatusBar,'String','ON 

Target. Controller closed UV shutter. Click "Stop 

Acquisition" when ready.'); 

  

end 

  
  

%% now we are acquiring and uvStatus is 1 

if g_frameIdx == 0 

%     g_tImaqStart = tic; 

    fprintf('Measurement starts...\n') 

    disp(handles.cp) 

    g_mmfWriteIdx = 0; 

end 

  

%% Real-time acquisition:get latest frame and 

display 

% if user has started to acquire AVI, start 

acquiring and logging data 

% trigger(handles.video); 

% frame = getdata(handles.video,1); % takes 27ms, 

slower than "getsnapshot" 

% frame = getsnapshot(vid); % takes 7ms, much 

faster than "getdata" 

% tImaqStart = tic; % start time of imaq 

frameTime = toc(g_tImaqStart); % absolute elapsed 

time from start to current frame 

g_frameIdx = g_frameIdx + 1; 

  

%% process mmf 

% read status 

  

g_mmfWriteIdx = mod(g_mmfWriteIdx, 

handles.cp.maxNumCache) + 1; 

% fprintf('g_mmfWriteIdx=%d\n', g_mmfWriteIdx) 

  

% write frame 

fprintf('Writing frame %d to cache %d\n', 

g_frameIdx, g_mmfWriteIdx) 

if g_mmf.Data(g_mmfWriteIdx).frameIdx(1) ~= 0 
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    fprintf('Previous frame %d at cache %d is not 

processed yet!!!\n', 

g_mmf.Data(g_mmfWriteIdx).frameIdx(1), 

g_mmfWriteIdx) 

end 

g_mmf.Data(g_mmfWriteIdx).frame = frame; 

g_mmf.Data(g_mmfWriteIdx).frameIdx(1) = g_frameIdx; 

g_mmf.Data(g_mmfWriteIdx).frameTime(1) = frameTime; 

g_mmf.Data(g_mmfWriteIdx).uvIris(1) = 

handles.cp.uvIris; 

g_mmf.Data(g_mmfWriteIdx).snapTic(1) = tic; 

g_mmf.Data(g_mmfWriteIdx).uvStatus(1) = g_uvStatus; 

  

% update status 

g_mmf.Data(1).status(2) = g_frameIdx; 

set(hImage, 'CData', frame); 

g_all_frame(:,:,1,g_frameIdx) = frame; 

  

set(handles.st_DisplayedFrame,'String',sprintf('Fra

me %d',g_frameIdx)); 

  

% display exposure time dynamically till UV closed 

if g_uvStatus == 1 

    set(handles.ed_ExposureTime, 'string', 

frameTime);  

end 

  

set(handles.ed_ICM_MeasuredHeight,'String',g_mmf.Da

ta(1).avgTotalHeight(1)); 

set(handles.ed_Phase2Pi,'String',g_mmf.Data(1).avgT

otalPhase(1)); 

%% 

guidata(hObject, handles); 

  
 

3. Function: “icm_main_worker.m” 

The function is used for real time ICM&M data analysis, measurement and 

control computation. The codes are as below. 

function ret = icm_main_worker(cp) 
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disp('icm main worker thread starts'); 

  

%% init memory map file for gui session 

clearFile = 0; 

mmf = icm_init_mem_file(cp, clearFile); 

  

mmfReadIdx = 1; 

mmfMaxNumCache = size(mmf.Data, 1); 

fprintf('mmfMaxNumCache=%d\n', mmfMaxNumCache); 

  

%% init 

  

RunNo = 0; 

RunNo_uvClose = []; 

  

% nPOI-by-1 structure array of all points 

measurement   

nPOI = size(cp.POI, 2); 

MeasStruct = icm_init_measure_ret(cp); 

MeasureRet = repmat(MeasStruct,nPOI,1);   

for iPoint = 1:nPOI 

    % single point identification by coordinations 

(height, width) 

    MeasureRet(iPoint).PixelHeightWidth = cp.POI(:, 

iPoint); 

end 

  

lastReadFrameIdx = 0; 

nCache = 0; 

statPts = zeros(2, 5000); 

  

% tell GUI that worker is ready now 

mmf.Data(1).status(3) = 1; 

  

%% start parsing 

while mmf.Data(1).status(1) == 1 || 

lastReadFrameIdx < mmf.Data(1).status(2) 

     

    if lastReadFrameIdx >= mmf.Data(1).status(2) 

        % keep iterating until there's new frame 

coming 

        continue 
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    end 

     

    % If there's new frame, read it 

    cacheData = mmf.Data(mmfReadIdx); 

    nCache = nCache + 1; 

    frameIdx  = cacheData.frameIdx; 

    frameTime = cacheData.frameTime; 

    frame     = cacheData.frame; 

    snapTic   = cacheData.snapTic; 

    uvIris    = cacheData.uvIris; 

    uvStatus  = cacheData.uvStatus; 

     

    % fixme: preallocate 

    cacheDataVec(nCache) = cacheData; 

    frameTimeVec(nCache) = frameTime; 

     

    if frameIdx ~= nCache 

        warning('frameIdx %d should equal to 

nCache %d', frameIdx, nCache); 

    end 

  

    % update cache 

    mmf.Data(mmfReadIdx).frameIdx(1) = 0; 

    lastReadFrameIdx = frameIdx; 

     

    t = toc(snapTic); 

    fprintf('received frame %d from cache %d, 

t=%.3f\n', frameIdx, mmfReadIdx, t); 

    statPts(:, nCache) = [double(frameIdx); t]; 

     

    mmfReadIdx = mod(mmfReadIdx, mmfMaxNumCache) + 

1; 

  

    %% prepare fit data 

    for iPoint = 1:nPOI 

        % single point identification by 

coordinations (height, width) 

        h = cp.POI(1, iPoint); % height coordinate 

        w = cp.POI(2, iPoint); % width cooridnate 

         

        area = frame((h-2):(h+2), (w-2):(w+2)); % 

5X5 filter 



 376 

        dataY_foi = double(median(area(:))); 

        MeasureRet(iPoint).rawY = 

[MeasureRet(iPoint).rawY; double(frame(h, w))]; 

        MeasureRet(iPoint).dataY = 

[MeasureRet(iPoint).dataY; dataY_foi]; 

    end 

         

    if (frameIdx < cp.SamplesNumB4Measure) || 

(mod(frameIdx-cp.SamplesNumB4Measure, 

cp.MeasPeriodSamples) ~= 0) 

        continue 

    end 

     

    RunNo = RunNo + 1; % Run number of rolling 

fit&prediction 

    fprintf('Run rolling fit no. %d\n', RunNo); 

         

    dataX = frameTimeVec' - frameTimeVec(1); % time 

of each foi relative to start of measurement 

     

    % Curve fitting parameters 

    params.rSquare    = cp.GOF_rSquare; 

    params.FPS        = cp.FPS; 

    params.halfLife   = cp.HalfLife; 

    params.MHL        = cp.MovingHorizonL; 

    params.MeasPeriod = cp.MeasPeriodSamples; 

    params.f_max      = cp.f_max; 

    params.f_diff_max = cp.f_diff_max; 

  

    params.uvIris     = uvIris; 

    params.RunNo      = RunNo; 

    params.frameIdx   = frameIdx; 

    params.RunNo_uvClose = RunNo_uvClose; 

  

    %% point-by-poiont analysis 

%     for iPoint = 1:nPOI 

    parfor iPoint = 1:nPOI 

        % single point identification by 

coordinations (height, width) 

        h = cp.POI(1, iPoint); % height coordinate 

        w = cp.POI(2, iPoint); % width cooridnate 
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        fprintf('fitting point %d [%d %d]\n', 

iPoint, h, w); 

            

        MeasureRet(iPoint).dataX = dataX; 

         

        % time series of intensity data 

        dataY = MeasureRet(iPoint).dataY; % without 

missing data imputation 

         

        %% Curve Fitting 

        % Rolling fit with "fourier1" returns 4 

coefficients y=a0+a1*cos(px)+b1*sin(px) 

        % fitRollRet = icmFit(trainX, trainY, 

trainW); 

        % save the fitting coefficients, i.e., 

online estimates of parameters 

        prevFitRet = MeasureRet(iPoint).lastFitRet; 

%         fprintf('dataX %d dataY %d\n', 

size(dataX), size(dataY)); 

        fitRollRet = icmFit2(dataX, dataY, params, 

prevFitRet); 

        MeasureRet(iPoint).lastFitRet = fitRollRet; 

         

        % save the fitting coefficients, i.e., 

online estimates of parameters 

        coeffs = 

[fitRollRet.fitStatus,fitRollRet.fitgof.rsquare,... 

            fitRollRet.I0, fitRollRet.I1, 

fitRollRet.freqW, fitRollRet.freq,... 

            fitRollRet.movingHorizon, 

fitRollRet.halfLife]; 

         

        MeasureRet(iPoint).FittedCoeffs = 

[MeasureRet(iPoint).FittedCoeffs; coeffs]; 

        MeasureRet(iPoint).Freq_w = 

MeasureRet(iPoint).FittedCoeffs(:,5); 

        MeasureRet(iPoint).Freq = 

MeasureRet(iPoint).FittedCoeffs(:,6); 

         

        if isfield(fitRollRet,'fitobject') 
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            if (fitRollRet.fitStatus ~=0 && 

fitRollRet.fitStatus ~=3 && fitRollRet.fitStatus 

~=40)... 

                    ||(fitRollRet.fitStatus ==0 && 

fitRollRet.freq~=0 ) % small freq (<0.1Hz)in 

threshold acceptable 

                newFitY = 

feval(fitRollRet.fitobject, 

dataX( (prevFitRet.frameIdx+1):fitRollRet.frameIdx)

); 

                %                             

newFitY = feval(fitRollRet.fitobject, dataX( end-

cp.MeasPeriodSamples+1:end)); 

                MeasureRet(iPoint).fitY = 

[MeasureRet(iPoint).fitY; newFitY]; 

            else 

                newFitY = 

fitRollRet.I0*ones(fitRollRet.frameIdx-

prevFitRet.frameIdx,1); 

                MeasureRet(iPoint).fitY = 

[MeasureRet(iPoint).fitY; newFitY]; 

            end 

        else 

            newFitY = 

fitRollRet.I0*ones(fitRollRet.frameIdx-

prevFitRet.frameIdx,1); 

            MeasureRet(iPoint).fitY = 

[MeasureRet(iPoint).fitY; newFitY]; 

        end 

         

        % Mark the start of curing, i.e., the end 

of threshold 

        if  

(MeasureRet(iPoint).CureFlags.CureFlag_RunNo==0) && 

(fitRollRet.firstValidFoiIdx~=0) 

            

MeasureRet(iPoint).CureFlags.CureFlag_RunNo = 

RunNo; 

            

MeasureRet(iPoint).CureFlags.CureFlag_FrameIdx = 

fitRollRet.firstValidFoiIdx; 



 379 

        end 

        % Flag the runs of failed curve fitting, 

which has low R-square and may yield frequency 

outlier 

        if fitRollRet.fitStatus ~= 2 

            MeasureRet(iPoint).Idx_FailFit = 

[MeasureRet(iPoint).Idx_FailFit; RunNo]; 

        end 

             

        %% Height Estimation: growth by integration 

        T_Int = dataX(end)- prevFitRet.time; 

        % array of measurement time(s) per point, 

RunNo-by-1 matrix 

        MeasureRet(iPoint).Times = 

[MeasureRet(iPoint).Times;dataX(end)]; 

         

        MeasureRet(iPoint).Phase2Pi = 

MeasureRet(iPoint).Phase2Pi+T_Int*(fitRollRet.freq+

prevFitRet.freq)/2; 

        n_m_evolve = 

0.00041*(MeasureRet(iPoint).Phase2Pi)+1.49191;% 

calculate evolving refractive index with the model 

in thesis 

        z = cp.Wavelength/(2*(n_m_evolve-

cp.n_L))*MeasureRet(iPoint).Phase2Pi; % evolving 

refractive index 

        MeasureRet(iPoint).Heights = 

[MeasureRet(iPoint).Heights;z]; 

         
             

    end % end of point-by-poiont analysis 

     

    %% Evaluate the average height of a line 

profile 

    heightsALL =[MeasureRet.Heights]; 

    heights = heightsALL(end,:); 

    if length(MeasureRet) < 3 

        zNorminal = mean(heights); 

        meanPhase2Pi = mean([MeasureRet.Phase2Pi]); 

    else 
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        zNorminal_fit= 

robustfit(ones(length(heights),1),heights); 

        zNorminal = max(0, zNorminal_fit(1)); 

        meanPhase2Pi_fit = 

robustfit(ones(length([MeasureRet.Phase2Pi]),1),[Me

asureRet.Phase2Pi]); 

        meanPhase2Pi = max(0, meanPhase2Pi_fit(1)); 

    end 

  
     

    mmf.Data(1).avgTotalHeight(1) = zNorminal; 

    mmf.Data(1).avgTotalPhase(1) = meanPhase2Pi; 

  

    %% control after receiving new frame & Exposed 

Curing 

    % Real-time control:for target exposure time or 

target height 

    % Turn off UV immediately when measured time or 

height hits target 

  

    if uvStatus == 1 

        % Simple  control stopwatch time control 

        if cp.targetMode == 2 && ((cp.targetExpTime 

- frameTime) <= cp.MeasPeriodSamples*0.03) 

            sprintf('frameTime %.2f exceeds 

targetExpTime %.2f, sending msg to shutdown uv', 

frameTime, cp.targetExpTime) 

            mmf.Data(1).status(3) = 2;    

            R.targetExpTime = cp.targetExpTime;  % 

setpoint of epxosure time 

         

            tExpDuration_Ideal = frameTime;   

             

            %%---- Mark the end of exposed curing  

            frameIdx_uvClose_Ideal = frameIdx; % 

flag the frame number in acquired video when UV 

closes 

            RunNo_uvClose = RunNo; 

            if exist('MeasureRet','var') && 

~isempty(MeasureRet) 

                for iPoint = 1:length(MeasureRet) 
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                    MeasureRet(iPoint).zExposed = 

MeasureRet(iPoint).Heights(end); 

                end 

                % average using robustfit to remove 

outliers 

                if length(MeasureRet) < 3 

                    zExposedNorminal = 

mean([MeasureRet.zExposed]); 

                else 

                    zExposedNorminal_fit= 

robustfit(ones(length([MeasureRet.zExposed]),1),[Me

asureRet.zExposed]); 

                    zExposedNorminal = max(0, 

zExposedNorminal_fit(1)); 

                end 

            end 

  

        end 

         

        % Measurement feedback control 

        if cp.targetMode == 1 && 

(cp.targetCuredHeight*0.9-zNorminal <= 0.5) 

            sprintf('measured height %.2f exceeds 

targetHeight %.2f, sending msg to shutdown uv', 

zNorminal, cp.targetCuredHeight) 

            mmf.Data(1).status(3) = 2; 

            R.targetCuredHeight = 

cp.targetCuredHeight; % Save above already: 

setpoint of cured height 

             

            tExpDuration_Ideal = frameTime;   

            %%---- Mark the end of exposed curing  

            frameIdx_uvClose_Ideal = frameIdx; % 

flag the frame number in acquired video when UV 

closes 

            RunNo_uvClose = RunNo; 

  

            if exist('MeasureRet','var') && 

~isempty(MeasureRet) 

                for iPoint = 1:length(MeasureRet) 
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                    MeasureRet(iPoint).zExposed = 

MeasureRet(iPoint).Heights(end); 

                end 

                % average using robustfit to remove 

outliers 

                if length(MeasureRet) < 3 

                    zExposedNorminal = 

mean([MeasureRet.zExposed]); 

                else 

                    zExposedNorminal_fit= 

robustfit(ones(length([MeasureRet.zExposed]),1),[Me

asureRet.zExposed]); 

                    zExposedNorminal = max(0, 

zExposedNorminal_fit(1)); 

                end 

%                     % to-do: display the exposed 

cured height in GUI 

%                     

set(cp.ed_ExposedCuredHeight,'String',zExposedNormi

nal);  

            end 

        end             

        

    end 

    %%------------ End of control -----------------

--------- 

     

    %% ---------------- Dark curing ---------------

----%% 

    if uvStatus == 2 % display dark curing height 

    for iPoint = 1:length(MeasureRet) 

       MeasureRet(iPoint).zDark = 

MeasureRet(iPoint).Heights(end)- 

MeasureRet(iPoint).zExposed; 

    end 

     

    % average using robustfit to remove outliers 

    if length(MeasureRet) < 3 

        zDarkNorminal = mean([MeasureRet.zDark]); 

    else 
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        zDarkNorminal_fit= 

robustfit(ones(length([MeasureRet.zDark]),1),[Measu

reRet.zDark]); 

        zDarkNorminal = max(0, 

zDarkNorminal_fit(1)); 

    end 

%     % to-do: display the dark cured height in GUI 

%     

set(cp.ed_DarkCuredHeight,'String',zDarkNorminal); 

    end 

     
    

end 

  

%% Calculates latence time between acquiring and 

analyzing a frame 

statPts = statPts(:, 1:nCache); 

  

frames = statPts(1,:); 

meanDelay = mean(statPts(2,:)); 

  

R.rtFramesLatence = statPts; 

R.rtProcessedFrames = length(frames); 

R.rtMeanDelayAcqAnl = meanDelay; 

  

ret = MeasureRet; 

fprintf('icm main worker thread stops, processed %d 

frames, average delay %.3f\n', length(frames), 

meanDelay); 

  

clear mmf; 

  
 

%% Saving results 

if cp.isRT == 1 % Real-time 

     

    fn = strcat(cp.ResultFolder,... 

        

strcat('\RT_ECPL_ICM_',datestr(now,'yyyymmdd_HHMMSS

'),... 

        sprintf('_H%03d_W%03d', cp.POI(1, 1), 

cp.POI(2, 1)),'.mat')); 
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    fprintf('saving ret to file %s', fn); 

    R.MeasureRet = MeasureRet; 

     

    R.frameIdx_uvClose_Ideal = 

frameIdx_uvClose_Ideal; 

    uvStatusVec = [cacheDataVec.uvStatus]; 

    uvStatusVec_diff = diff(uvStatusVec); 

    frameIdx_uvClose = find(uvStatusVec_diff~=0)+1; 

    R.frameIdx_uvClose = frameIdx_uvClose; 

    R.tExpDuration_Ideal = tExpDuration_Ideal;  

    R.tExpDuration = 

frameTimeVec(frameIdx_uvClose); 

    R.RunNo_uvClose = RunNo_uvClose; 

     

    R.zExposedNorminal = zExposedNorminal; % 

average exposed height evaluated for the line 

    R.zDarkNorminal = zDarkNorminal; % average dark 

height evaluated for the line 

    R.zNorminal = zNorminal; % average height 

evaluated for the line 

    R.cp = cp; 

    R.dp = cacheDataVec; 

    R.imageTime = [cacheDataVec.frameTime]'; % 

image time which is required in offline ICM 

    save(fn, '-struct', 'R'); 

end 

  

%% Report results 

reportMeasureRet_RT(MeasureRet,RunNo_uvClose); 

 

4. Function: “icm_init_measure_ret.m” 

The function is to initialize the structure array of measurement result for the 

chosen POI. The codes are as below. 

function MeasStruct = icm_init_measure_ret(cp) 

  

%% Initialize the structure array of measurement 

result for the chosen POI 

    ...Will be used in the 

"Real_Time_ICM_processMeasureTimer.m" 
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% data structure for each point measurement with 

all the fields above 

MeasStruct = struct(... 

    'PixelHeightWidth',[],... % point coordination 

[height;width] 

    'dataX',[],... % point data: array of time (s) 

in curve fitting 

    'rawY',[],... % point data: time-series of 

pixel grayscale 

    'dataY',[],... 

    'fitY',[],... % fitted data using curve fitting 

    'FittedCoeffs',[],... % Curve fitting 

coefficients at initial run per point 

    'CureFlags', 

struct('CureFlag_RunNo',0,'CureFlag_FrameIdx',0),..

.% Flag the curing window, i.e., mark the beginning 

of curing 

...RunNo and frame index that mark the begin of 

curing 

    'Idx_FailFit',zeros(1,1),... % Flag the runs of 

failed curve fitting, which has low R-square and 

may yield frequency outlier Idx_FailFit = [failed 

RunNO] 

    'Times',[0],...% array of run time per point, 

will grow to be a RunNo-by-1 matrix 

    'Heights',[0],...% height estimation at initial 

run per point, will grow to be a RunNo-by-1 matrix 

    'zExposed',[],...% ICM Measured Cured Heights 

when UV closes 

    'zDark',[],...% ICM Measured Cured Heights 

after UV closes at the end of acquisition 

    'Freq_w',[],...% frequency of Im = I0 + 

I1*cos(wt+phi),Freq_w: angular frequency in 

Im=I0+I1*cos(W*t+phi) 

    'Freq',[],...%Freq: frequency = Freq_w/2/pi 

(unit:Hz) 

    'Phase2Pi',0,...%  the phase (unit: 2Pi), 

i.e.,time cumulative sum of frequencies to measure 

height 

    'lastFitRet', icm_init_fit_ret(cp)... 
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    ); 

  

5. Function: “icm_init_mem_file.m” 

The function is to initialize the memory map file for logging the real time data 

which can be fetched by the parallel thread of measurement analysis and controller 

computation. The codes are as below. 

function m = icm_init_mem_file(cp, clearFile) 

  

filename = fullfile(pwd, 'icm_comm.dat'); 

  

numFitter     = cp.numFitter; 

W             = cp.imW; 

H             = cp.imH; 

numImageCache = cp.maxNumCache; 

  

frame = zeros(H, W); 

frameIdx = 0; 

frameTime = 0.0; 

tic = 0; 

  

% global status, only use first one of the array 

%  (1): measurement status. 1: running, 0 stopped. 

%  (2): lastWriteFrameIdx 

%  (3): workerStatus. 0: not running, 1: started, 

2: targetReached 

status = [1 0 0]'; 

  

if clearFile && exist(filename, 'file') 

    disp(['remove file ', filename]) 

    delete(filename) 

end 

  

% Create the communications file if it is not 

already there. 

if ~exist(filename, 'file') 

    disp(['init file ', filename]) 

    [f, msg] = fopen(filename, 'wb'); 

    if f ~= -1 

        for i = 1:numImageCache 
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            fwrite(f, frame, 'uint8'); 

            fwrite(f, frameIdx, 'uint32'); 

            fwrite(f, frameTime, 'double'); 

            fwrite(f, 0, 'uint64'); % snapTic 

            fwrite(f, 0, 'uint8'); % uvIris 

            fwrite(f, 0, 'uint8'); % uvStatus 

            fwrite(f, 0, 'double'); % 

avgTotalHeight 

            fwrite(f, 0, 'double'); % avgTotalPhase 

            fwrite(f, status, 'int32'); 

        end 

        fclose(f); 

    else 

        

error('MATLAB:demo:send:cannotOpenFile', ... 

              'Cannot open file "%s": %s.', 

filename, msg); 

    end 

end 

  

% Memory map the file. 

disp(['creating memmapfile for', filename]) 

m = memmapfile(filename,... 

    'Writable', true,... 

    'Format', {... 

        'uint8', size(frame), 'frame';... 

        'uint32', size(frameIdx), 'frameIdx';... 

        'double', size(frameTime), 'frameTime';... 

        'uint64', [1 1], 'snapTic';... 

        'uint8', [1 1], 'uvIris';... 

        'uint8', [1 1], 'uvStatus';... 

        'double', [1, 1], 'avgTotalHeight';... 

        'double', [1, 1], 'avgTotalPhase';... 

        'int32', size(status), 'status';... 

    },... 

    'Repeat', numImageCache... 

    ); 

  

fprintf('init status = %d\n', m.Data(1).status); 

  

return; 
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6. Function: “icm_init_fit_ret.m” 

The function is to initialize the structure array of curve fitting result for one 

measurement cycle. The codes are as below. 

function fitRet = icm_init_fit_ret(cp) 

  

fitRet = struct(... 

    'fitobject',[],... 

    'fitgof',struct(),... 

    'movingHorizon',cp.MovingHorizonL,... 

    'halfLife',cp.HalfLife,... 

    'frameIdx_dummy',0,... 

    'frameIdx',0,... 

    'firstValidFoiIdx',0,... 

    'fitStatus',0,... 

    'fitoptions',fitoptions('fourier1'),... 

    'I0',[],... 

    'I1',[],... 

    'freqW',0,... 

    'freq',0,... 

    'time',0); 

 

7. Function: “icm_set_uv_status.m” 

The function is to display UV pattern on DMD, and to control UV lamp 

“On/Off”. The codes are as below. 

 

function icm_set_uv_status(onOrOff,uvLevel) 

  

% result folder 

global uv 

global g_tImaqStart 

global g_uvStatus 

global hdvp 

global DMDimage 

  

if onOrOff == 1 

    %% Prepare DMD as a 2nd monitor to display the 

upcoming image 
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    % Get monitors (including DMD which is also a 

monitor) information 

    % use get(0,'MonitorPosition') to get the 

locations and size of the monitors 

    % for details 

http://www.mathworks.com/help/vision/ref/vision.dep

loyablevideoplayer-class.html 

    % a = [Left-bottom width, Left-bottom height, 

screen width, screen height] 

    a = get(0,'MonitorPosition'); 

    hdvp = vision.DeployableVideoPlayer; 

    hdvp.Size = 'Full-Screen'; % this command set 

the video to be displayed in full-screen 

    hdvp.Location = a(2,1:2); % this defines the 

DMD location where the image should display. 

    % hdvp.Location = a(1,1:2); % this tests the 

code on primary monitor 

     

    %% Display DMD bitmap  

    step(hdvp,DMDimage); 

     

    %% UV lighting and exposure finally begins here 

    uv = UVConn('COM3'); 

    UVSetIrisLevel(uv, uvLevel); 

    UVShutterOpen(uv); 

    g_tImaqStart = tic; 

    g_uvStatus = 1; % flag UV light is on 

    disp('open uv') 

     

else 

    % Close UV Shutter 

    UVShutterClose(uv); 

     

    % flag UV light is off again after being "on", 

not "0" so that acquisition and measurement could 

go on to capture dark curing 

    g_uvStatus = 2;  

    disp('close uv'); 

     

    % Disconnect UV 

    UVDisc(uv);end     
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