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1. Introduction

1.1. Historical overview of imaging systems development
Image formation is the main application of traditional optical systems such as loupe,
telescope, microscope, camera, etc. In fact, lenses form images even if this is not their
intended purpose.
The history of optics and, in particular, imaging optical devices begins in ancient
Greece. The famous comic playwright Aristophanes mentioned the reflection of the
sun’s rays. Greek philosophers, such as Democritus and Aristotle, discussed the
nature of vision in their works. The well-known story of Archimedes who is reported
focusing the sun’s rays to burn Romans ships during a battle for Syracuse in 213 BC
seems to be only a legend, reported in the Middle Ages. However, in the Roman
Empire, the philosopher Seneca noted the magnification of objects observed through
transparent vessels filled with water. According to legend, his pupil, the Emperor
Nero, was the first one who used a monocle while watching fights in the arena.
Ptolemy of Alexandria, besides his astronomical and mathematical discoveries,
measured the refractive effect of water and discussed the refractive effects of the
atmosphere. At the beginning of the XI century, the famous Persian Alhazen
formulated the laws of reflection and refraction and researched reflection with
spherical and parabolic mirrors. The first imaging optical device was a camera
obscura used to form images on a wall in darkened room. In antiquity the camera
obscura, being a lensless device, formed image via a pinhole.
The first recorded analysis of the magnifying properties of lenses was made by Roger
Bacon in 1262. Around 1284 in Italy, Salvino D'Armate has been given credit for
inventing the first wearable eyeglasses which spread rapidly in Europe. A correct
explanation of their principle, was done only in 1604 with the publication of the work
of Johannes Kepler. About this time the camera obscura was upgraded by enlarging
the hole, which became possible after inserting a telescope lens.
Credit for the first compound microscope (multiple lenses) is generally given to
Zacharias Jansen of the Netherlands, in 1590. A Dutch spectacle maker Hans
Lippershey invented a simple single lens objective for a refractor telescope in 1608.
His contemporary, Galileo Galilei, also manufactured such telescopes that allowed
him to make remarkable astronomical discoveries.
The first achromatic lens was made by Eustachio Divinus around 1657. He invented a
telescope containing 19 lenses that "prevents discoloration of the image". In the year
1729 the Englishman Chester Moor Hall proposed the first achromatic doublet
designed from two different types of glass.
Nicéphore Niépce was the first who combined the camera obscura with photosensitive
paper as early as in 1816 and in 1826 he has got a permanent image. Works of Henry
Fox Talbot and Louis Daguerre at the middle of the XIX century established the
photography era and for more than hundred years the development of imaging devices
continued mostly in the areas of photography, microscopy and astronomy. Józeph
Miksa Petzval made his objective with extended aperture value in 1840. The Cooke
triplet,  the simplest lens system that allows - at the same time - the correction of third
order aberrations and chromatism, was designed in 1893 by Dennis Taylor.
Since the discovery of X-rays by Röntgen in 1895 imaging devices went beyond the
scope of visible optical range. Nowadays it is impossible even to mention all possible
applications of imaging devices. They are found in all forms of human life from
communication devices to astronomy, from medical endoscopes to quality and
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security control, from digital camera to DVD players.  These are only the most well-
known items from the long list of applications of modern optics.

1.2. Key issues in modern optical system design
Technologies based on computer microprocessors (chips) have penetrated in all kinds
of everyday things, from satellites to kitchen devices, toys and personal computers.
Chips fulfil different missions by design, but all processes in the chip are based on the
mathematical computations and logical operations prescribed by the algorithms.
Transistors in modern microprocessors are able to perform up to a few billions of
commands per second. In order to meet the needs of society the manufactures use
advanced tools to produce more and more chips and to increase their complexity. One
of the most important tools is a photolithographic machine which contains an imaging
optical system. According to World Semiconductor Trade Statistics, the world
economy productivity can be linked to 30% per year growth with integrated circuits
productivity, half of which is attributed to lithography improvements. The extension
of present optical lithography technologies in manufacturing smaller chip's features
allows to achieve this goal. Manufacturers employ the latest optical enhancement
techniques in order to extend resolution capability. Each new generation of the
lithographic machines faces new problems because of the use of new materials,
methods and technologies. As a consequence, the design of the optical lithographic
systems remains an extremely difficult process. Therefore, the design of these
lithographic optical systems can be considered as the most challenging problem in
modern optical design.
Nowadays optical designers possess highly advanced tools. Modern PCs are able to
trace several millions of rays in an optical system per second. Such a huge
computation speed helps to perform a fast analysis, but the development process is
still a very time-consuming issue. With modern software for optical design a designer
can start with a relatively rough sketch of the optical system and then software will
optimize that sketch to achieve a required design goal. This optimization algorithm
performs alterations of the starting system in order to satisfy certain conditions. In
common cases the program varies design parameters within some limits to obtain the
best image performance. This process becomes very complicated when the optical
system has many parameters, the dependence between parameters and image quality
is nonlinear and there are limitations defined by costs and manufacturing difficulties.
One can say that a good optimization engine is the heart of the modern optical design
software. Since optimization problems are also very important in other areas of
engineering, an improvement of optimization algorithms is a relevant research subject
in modern science.

1.3. Outline of the thesis
This thesis is mainly devoted to two issues. The first one is the problem of the spatial
dispersion in lithographic optical design, which was reported as a critical issue for
new generations of lithographic objectives. We will focus on the mathematical
description of this effect, on the analysis of issues caused by the effect in optical
design and on the possible solutions for the compensation of the spatial dispersion in
lithography.
The second issue is the global optimization problem. Our goal here is the
development of a new global optimization method, which is built on the recently
discovered regularities of the merit function landscape in optical design. This
algorithm should be integrated with optical design software in order to be used for the
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global optimization of optical systems. We expect that our new optimization approach
can also provide designers with a special tool for analysis of complex optical design
problems.
The outline of the thesis is as follows:
In Chapter 2 we give a short review of the lithographic imaging techniques. First we
briefly discuss the basics of integrated circuits including key points such as Moore's
Law and the International Technology Roadmap for Semiconductors. Then we give a
brief introduction in chip technology and show the importance of lithographic tools in
the manufacturing of chips. We also discuss the problem of resolution in optical
lithography which defines the critical dimension size for microprocessors. Finally we
show the evolution of the lithographic objectives since the 1960s to the near future.
In Chapter 3 we analyze the effect of spatial dispersion in crystals. We start from the
general relationship for birefringence in crystalline media and then we obtain the
expressions for the eigenpolarizations and the linear birefringence value in cubic
crystals for an arbitrary ray direction
Chapter 4 is devoted to the effect of spatial dispersion in optical system design. We
give a description of polarization effects in optical design and then we discuss the
consequences of spatially induced birefringence for deep ultraviolet (DUV)
lithography. We show that the presence of spatial dispersion may lead to severe image
contrast loss.
Several possible approaches to the compensation of the phase retardation induced by
spatial dispersion in lithographic objectives are discussed in Chapter 5. We discuss
possible strategies and offer a number of compensation methods including examples
of optical systems with compensated phase retardation.
In Chapter 6 we give an introduction to the problem of optical system optimization.
We start with a description of the optimization problem in general and then we
discuss the specific issues of the optimization in optics such as merit function
construction, constraints, etc. We also give a review of the present methods and
further we focus on some promising extensions of local optimization.
In Chapter 7 we discuss our approach to the global optimization problem. First, we try
to find some regularity by looking at the topography of the merit function landscape
with the help of the equimagnitude contours. Then we show the importance of the
saddle points in the merit function landscape. Focussing on the saddle points we prove
that they lead to the specific order in the lens composition. We show the existence of
networks of optical systems consisting of local minima of the merit function
connected via saddle points. Finally we present our algorithm of obtaining saddle
points and computing eigenvectors in the multidimensional merit function space.
We show several examples of optical system networks in Chapter 8. On the base of
our "saddle points" approach we explore the networks of optical systems for systems
of different complexity starting from a single lens to lithographic objectives.
We conclude this thesis with the final discussion of the results of this research and
short summaries in English and Dutch.
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2. Current state of lithography

2.1. Integrated circuits: a brief overview
The semiconductor industry started with the invention of the first semiconductor
transistor by William Shockley, John Bardeen, and Walter Brattain at Bell Labs in
1947 [1]. Despite its simplicity, the device performed its function of using an applied
voltage to switch and amplify electrical current quite well. This device was the parent
of all of the various semiconductor transistor devices produced over the years. The
new transistor started to replace vacuum tubes and opened new areas of use. In 1960
Jack Kilby and Robert Noyce made the next major step in semiconductors with the
invention of the first monolithic integrated circuit [2]. Their integrated device
consisted of many transistors that were placed on a single semiconductor substrate.
The ability to interconnect the devices internally allowed to perform more complex
functions by a single device. The "integrated circuit" gave rise to the modern
microelectronics era.
The semiconductor manufacturers have made a significant progress since 1960, when
device features were about 20 mm wide. Nowadays, semiconductor devices have
critical dimensions (the smallest circuit element) in the device as small as 0.09
micron. Drastic reduction of feature size allows to integrate more and more devices on
a single chip, which results in more functionally powerful products. It has to be
mentioned that while the feature size decreases and the number of elements in
integrated devices increases, the overall cost of producing a semiconductor device
remains reasonably constant. This leads to a dramatic increase in the function per cost
ratio for semiconductor devices. Reduction of critical dimension leads to dramatic
growth in the speed of microprocessors as well.
In 1965, just five years after the first monolithic integrated circuit was made, Gordon
Moore made his famous observation. Moore observed an exponential growth in the
number of transistors per integrated circuit and predicted that this tendency would
continue. Table 2.1.1 illustrates this tendency. Moore's Law still holds true today and
makes lithographers expecting that it will continue at least through the end of this
decade.

Table 2.1.1 Moore's Law for semiconductors.

Processor Year of introduction Clock speed Transistors
4004 1971 108 kHz 2,250
8008 1972 200 kHz 2,500
8080 1974 2 MHz 5,000
8086 1978 10 MHz 29,000
286 1982 12 MHz 120,000

386™ processor 1985 16 MHz 275,000
486™ DX processor 1989 25 MHz 1,180,000
Pentium® processor 1993 60 MHz 3,100,000
Pentium II processor 1997 300 MHz 7,500,000
Pentium III processor 1999 733 MHz 24,000,000
Pentium 4 processor 2000 1.5 GHz 42,000,000
Pentium 4 processor 2004 3.4 GHz 178,000,000
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2.2. Introduction in microprocessor technology
A microprocessor is the one of the most complex devices on earth. The manufacturing
of microprocessors comprises hundreds of steps. Microprocessors are formed by
multilayer structures built on a silicon wafer using diverse processes [3].

Figure 2.2.1 Patterning a layer above the silicon surface during photolithographic process
(objective is not shown).

For our research the patterning process i.e. creating an image in a photoresist layer
shown in Figure 2.2.1 is of interest. Patterning comprises silicon dioxide and
photoresist deposition, exposure, photoresist development and etching. Commonly in
the beginning of lithographic process, after preparation, the first layer of silicon
dioxide is grown on the wafer. Then the wafer is coated with a photoresist which can
be made soluble after exposing by light. In our research we assume the
photolithographic exposition process shown schematically in Figure 2.2.2. Through
the exposition process light from the source passes through a patterned mask which
then is projected via an objective onto the coated silicon wafer.

O bjective

Exposure
light

W afer

Source

M ask

Figure 2.2.2 Exposure process. Light emitted from the source is projected through mask on the
wafer via an objective.
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The mask shields certain parts of the wafer from being exposed. In such a way light
turns the exposed areas of the wafer into a gooey layer of photoresist which can be
dissolved by a solvent. Later on, the uncovered silicon dioxide can be etched away
with the help of chemicals. The unexposed areas protected by photoresist remain. At
the end of the patterning process the rest of the photoresist is deleted baring ridges of
silicon dioxide on the wafer.
Next, in order to create another structured layer, the pattering process is repeated and
a new layer of silicon dioxide is grown over the wafer base. In many cases it is
covered by polysilicon (conductive material used as an interconnect layer) and
another layer of photoresist. This second  layer of the microprocessor is exposed by
using a second mask with a different pattern and after etching the gate-forming
element remains. Through a process called ion implantation (or doping), ions are
implanted in the wafer in the exposed areas which are able to conduct electricity.
Another masking and etching stage leaves strips of a metal that form the electrical
connections. About 20 connected layers form the 3-dimensional geometrical structure
of a typical microprocessor circuitry based on the elementary transistor scheme.

a) b)    c)     d)

Figure 2.2.3 Building an elementary transistor on chip.  a) wafer with field oxide; b) making
polysilicon gate on thin oxide c) forming source/drain regions by ion implantation; d) forming
connectors.

2.3. International Technology Roadmap for Semiconductors
The International Technology Roadmap for Semiconductors (ITRS) is an assessment
of the semiconductor technology requirements [4]. The purpose of the ITRS is to set
the guiding lines for the development of the integrated circuits performance. These
reference points, all together called a roadmap, is a product of common effort of the
global microelectronics industry, research institutes and government organizations.
The ITRS shows the technological issues and requirements which will be encountered
by the semiconductor industry over the next 15 years. The characteristics, relevant for
our research are collected in Table 2.3.1.
In this table the Technology Node is the minimum half-pitch of custom-layout metal
interconnects. This is the most representative characteristic of the technology
capability enabling high-density integrated circuits. For each Node, the defined metal
half-pitch is taken from products having the minimum value. Nowadays, a Dynamic
Random Access Memory (DRAM) chip has the smallest metal pitch, therefore the
half of its pitch (smallest element) is taken as a reference. Other parameters shown in
Table 2.3.1 are important for characterizing integrated circuits technology as well. For
instance, in the case of microprocessors (MPUs), physical bottom gate length is most
representative of the leading-edge technology level required for maximum
performance. Each technology node generation reflects the achievement of significant
technology progress in metal half-pitch — about 70% of the previous node and 50%
of two previous nodes. Taking the ITRS roadmap as a reference we can expect that
the Moore's Law will remain valid at least in the near future.
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Table 2.3.1 Roadmap of chip lithography.

YEAR OF PRODUCTIONTechnology
Characteristics 2003 2004 2005 2006 2007 2008 2009

Technology Nodes (nm)
DRAM ½ Pitch 100 90 80 70 65 57 50

MPU ½ Pitch 107 90 80 70 65 57 50

MPU Printed Gate Length 65 53 45 40 35 32 28
MPU Physical Gate

Length 45 37 32 28 25 22 20

Chip Frequency (MHz)
On-chip local clock 2,976 4,171 5,204 6,783 9,285 10,972 12,369

Chip-to-board speed 2,000 2,500 3,125 3,906 4,883 6,103 7,629

Performance and Package Chips
# Mask Levels � MPU 29 31 33 33 33 35 35

# Mask Levels � DRAM 24
Maximum number wiring

levels on chip � maximum 13 14 15 15 15 16 16
Maximum number wiring
levels on chip � minimum 9 10 11 11 11 12 12

Lithographic-Field and Wafer-Size Trends
Lithographic field size

length (mm) 32
Lithographic field size

width (mm) 22

Wafer size (diameter, mm) 300

2.4. Resolution in optical lithography
As far as the technology node is the key parameter in the semiconductors technology
it is taken as a reference for all adjacent areas. For lithographic imaging systems it is
defined by critical dimension. The critical dimension of the patterns imaged on the
wafer is limited by the imaging characteristics of the lithographic objective.
In the case of an ideal optical system all infinitesimal points on the object can be
imaged as corresponding infinitesimal points on the image. However for a real system
due to the diffraction and aberrations each point is imaged as a finite spot. The
diameter of this spot and the distribution of light intensity within it can be reduced to
the theoretical diffraction limit with the help of advanced optical system design. For
lithographic objectives the strict respect of the orthoscopic condition, i.e. the rigorous
observation of dimensional proportions, is required as well. This demands a correction
of distortion and the maintaining of telecentricity of the beams in the image space.
There are many known characteristics of image quality, which can be described by
geometrical and wavefront aberrations, spot diagrams, Point Spread Function (PSF),
Modulation Transfer Function (MTF), Root Mean Squared (RMS) wavefront error
and Strehl ratio [5]. The PSF describes the distribution of the light intensity of the
image of the point source in the image plane. MTF is the spatial frequency response
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of the imaging system; it is the contrast at a given spatial frequency relative to zero
frequency. The Strehl ratio is the ratio of peak focal intensities in the real and in the
ideal point spread functions. It allows to characterize image quality for each field
point by only one number. The lithographic optical systems are diffraction-limited
and only PSF, MTF and Strehl ratio in combination with the distortion value and the
field curvature can describe their performance truthfully because these characteristics
take into account polarization effects which are very important for optical system with
high numerical aperture.
In optical projection lithography, the resolution δ of an objective (feature size) at the
diffraction limit is given by the expression

NA
k λδ 1= . (2.4.1)

In this equation λ is the wavelength, NA is numerical aperture of the objective, and k1
is an empirical constant. NA is defined by the formula

θsinnNA = , (2.4.2)
where θ is the half-angle of the image-forming light cone at the image side and n is
the index of refraction of the medium in image space. It is known from optics theory
that in the case of idealized conditions for two incoherent point sources, the Rayleigh
criterion implies that k1 = 0.61 and then δ is a distance between the central maximum
of the Airy distribution and its first minimum. In lithographic practice, this coefficient
depends on lens aberrations, illumination conditions (such a degree of coherence and
intensity distribution in the aperture plane), mask structure, resist properties, process
conditions, operator skills etc. It follows from the expression (2.4.1) that resolution
can be improved in three ways: by increasing the numerical aperture, by shortening
the exposure wavelength, and by decreasing the value of k1 [6].

DOF

Figure 2.4.1 Depth of focus of optical system. The depth of focus is defined by permissible spot
size at  the image plane.

Optical resolution depends also on the depth of focus (DOF), because with the
increase of NA the optical system becomes very sensitive to defocus. In common case
the depth of focus for diffraction limited optical system is defined as half the distance
along the optical axis between the central diffraction maximum and the first zero of
the Airy distribution and it is given by the approximate expression

2NA
DOF λ= . (2.4.3)

However in lithography an effective depth of focus is defined as

22 NA
nkDOF λ= , (2.4.4)
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where k2 is also an empirically determined constant (it is a specific lithographic
process-related factor as well) and n is the index of refraction of the medium in image
space. Eliminating NA from (2.4.1) and (2.4.4) we obtain

λ
δ

2
1

2
2

k
nkDOF = . (2.4.5)

In practice, the coefficients k1 and k2 are experimentally determined for each exposure
tool. At high numerical aperture, the formulae above have to be adopted [7].

2.5. Evolution of lithographic objectives
The first high-aperture UV optical systems were developed in the beginning of the
XXth century when the first monochromatic UV micro-objectives for ultra-high
resolution microscopy were introduced. These objectives had a NA value as large as
0.35, the working wavelength was at 280 nm (magnesium line) and lenses were made
from fused quartz.
The intensive research on lithographic optics design started in the 1960s together with
the integral circuits invention. The pioneers of lithography used photographic
objectives for the lithographic projection. However in the late 1960s companies like
CERCO, Carl Zeiss and IBM started developing ultraviolet reduction lenses for
production of masks and later for projection onto the wafer [8]-[10]. These schemes
were based on photographic objectives as well but they had a significant difference
required by the orthoscopic condition. Most of them were realized on the base of
classical Gauss-type objective with adding several correction components. One of
these objectives introduced by IBM in 1974 and called Lentar is shown in Figure
2.5.1. The materials for the lenses were glasses from the Schott catalog.

Figure 2.5.1 Lithographic objective Lentar (1974) with image side NA = 0.2,
image field size 15 × 15 mm², working wavelength 405 nm,  reduction ratio 0.2.

As it follows from equations (2.4.1) and (2.4.4) the resolution can be improved by
increasing NA, and by decreasing the factors k1, k2 and the wavelength. Since 1960s
lithographers have been developing technologies at progressively shorter
wavelengths. In the past, the used wavelengths were 436 nm (g-line), 405 nm (h-line)
and 365 nm (i-line). In the 1970s and early 1980s, optical exposure tools operated at
400 nm on average, and the feature sizes were always larger than the working
wavelength of the exposure tool. Currently, most systems use 248 nm and 193 nm.
The sources of radiation are a KrF excimer laser at 248 nm and an ArF excimer laser
at 193 nm. In the future, wavelengths could be shortened to 157 nm (F2 laser) or less.
At each step to lower wavelength and higher NA, besides other issues, lithographers
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should find solutions for the source, the lens material, and the required polishing
accuracy [11]. An example of an optical system working at a wavelength of 248 nm is
shown in Figure 2.5.2.

Figure 2.5.2 Lithographic objective from US Patent 5,805,344 (1998) with image side NA = 0.56,
image field size 15 × 15 mm², working wavelength 248 nm, reduction ratio 0.25.

The development of polishing and measurement techniques allowed a decrease of
number and of the size of components in the optical layout by using lens surfaces with
an aspherical shape (aspheres). The design possibilities were widened as well by using
catadioptric objectives, e.g. by combining reflective mirror surfaces and refractive
lens elements. In the system shown in Figure 2.5.3. the plane mirror allows to produce
a compact objective and the combination of a beam splitter and a concave mirror
allows a reduction of astigmatism and chromatic aberrations.

Figure 2.5.3 Lithographic objective from US Patent 4,953,960 (1990) with image side NA = 0.45,
image field size 15 × 15 mm², working wavelength 248 or 193 nm,  reduction ratio 0.25.

Recent breakthroughs in optical fabrication technology enable high-volume
production of ultra-high-precision glass optics. Fused silica, a glass produced by
melting crystal quartz, is the primary optical material used for 365-, 248- and 193-nm
lithography. Calcium fluoride is used as a companion material to fused silica for
achromatization at 193 nm and it is also used in areas of high flux because of its high
laser damage resistance. Only this material can be used for optical systems working at
157 nm because of the high absorption of fused silica at this wavelength. However,
usage of calcium fluoride is limited by its birefringence and inhomogeneity. These
difficulties reflected on the design solution shown in Figure 2.5.4, which has small
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number of lenses but has a disadvantage because of mirror obscuration. The induced
birefringence in CaF2 is a main subject of this thesis and discussed in Chapters 3-5.

Figure 2.5.4 Lithographic objective from US Patent 6,757,051 Embodiment 1 (2002) with image
side NA = 0.75, field size 20 × 20 mm², working wavelength 157 nm, reduction ratio 0.25.

It can be observed that, in parallel with the decreasing working wavelength, optical
designers are vigorously developing systems having higher numerical apertures (from
0.2 in 1970s up to 0.9 nowadays). An example of such a system with NA=0.8 is
shown in Figure 2.5.5. With the increase of NA and decreasing wavelength, different
design challenges are encountered; in particular because of the shallow depth of focus,
the distance between the surface of the last lens and the wafer should be controlled
with high accuracy. The field size is also currently increasing in order to produce
larger chips. This can be achieved either by optical design adaptation or by scanning
object and image through the highly corrected objective field.

Figure 2.5.5 Lithographic objective from US Patent 6,757,051 Embodiment 5 (2002) with image
side NA = 0.8, field size 15 × 15 mm², working wavelength 157 nm, reduction ratio 0.25.

The alternative for increasing NA is changing the refractive index of the medium in
front of the wafer as it can be seen from relation (2.4.2). This immersion technique
seems to be a very promising technology which can postpone or even make
superfluous the 157 nm lithography generation.
Lithographers are also working on decreasing coefficients k1 and k2. Nowadays tool
vendors and process developers are pushing k1 to the value of 0.3 (very close to the
theoretical value of 0.25) and k2 to 1, which is usually achievable with good-quality
objectives. Equation (2.4.5) shows explicitly that at the same NA and the same lens
resolution, a shorter wavelength gives a larger depth of focus. From the viewpoint of
lens resolution, this is the incentive for exploring shorter wavelengths, even when a
longer wavelength seems adequate. Another observation is that a smaller value of k1
increases the depth of focus quadratically. Since different resolution enhancement
techniques are used such as phase-shift masks, better photoresists, improved  process
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control and off-axis illumination schemes, it is possible to achieve a smaller k1  and
extend the depth of focus.
Currently immersion lithography generations are under development. The next
generation will be the Extreme Ultra Violet (EUV) lithography. This generation
operates with a wavelength in the range of 10 to 14 nm (Xe-laser). There is no
material that can be transparent at this wavelength and optical systems should consist
of mirrors only. The number of mirrors should be minimized because the value of the
reflectivity of a single reflector doesn't exceed 70%. In order to provide the designer
with enough parameters to correct aberrations these mirrors should be extremely high-
order aspheres. The example of this optical system is shown in Figure 2.5.6. The first
operational EUV system is expected around the year 2010.

Figure 2.5.6 Lithographic objective from US Patent 5,815,310 (1998) with image side NA = 0.25,
annular width of the field 1.5 mm, working wavelength 13 nm, reduction ratio 0.25.

Lithographers consider the possibility of X-ray lithography as well, but at the moment
it is difficult to predict its future.
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3. Spatially induced birefringence in cubic crystals, a
theoretical analysis

3.1. Overview of the research on spatially induced birefringence
The phenomenon of birefringence in certain types of crystals has been known for
more than three centuries. It was first discovered by Bartholinus, qualitatively
explained by Huygens and marvelously described quantitatively by Fresnel. A firm
foundation for the phenomenon of birefringence was obtained by applying Maxwell’s
laws to crystalline media with specific symmetry properties. In this classical
description, cubic crystals do not show birefringence and, indeed, for most purposes
they can effectively be considered as being isotropic.
It was Lorentz who first indicated the presence of anisotropy introduced by spatial
dispersion (dependence dielectric constant on the ray direction) in cubic crystals as
early as 1878 [12]. This observation was made again in Ref. [13] on the basis of a
microscopic investigation of quadripolar transitions in crystals, and in Ref. [14] on the
basis of macroscopic electrodynamics. The detailed analysis of this problem was
carried out in the first edition of Ref. [15]. It was shown, among others, that cubic
crystals possess seven optical axes (the three main crystallographic axes and the four
body diagonals of the cubic crystallographic lattice). In this respect cubic crystals can
be called heptaxial i.e. possessing seven optical axis.
A number of experimental and theoretical studies were carried out in the 1970’s on
the birefringence effect induced by spatial dispersion in semiconductors (see Ref.
[15], Section 4.6.2). Because of the very small magnitude of the effect and the
absence of any practical applications these investigations have not been done in much
detail. However, recent publications [16][17] demonstrate the great practical
importance of the phenomenon for the next generation of photolithography.
It was reported that the birefringence induced by spatial dispersion (BISD),
sometimes also called intrinsic birefringence, has been measured and calculated for
fluorides CaF2 and BaF2 in the ultraviolet part of the spectrum [16][17]. It was also
shown that the magnitude of the BISD in these crystals is sufficiently large to cause
serious problems when using CaF2 for precision UV optical systems at wavelengths as
short as 157 and perhaps 193 nm in the case of high numerical aperture.
The single-crystal fluorides such as calcium fluoride, barium fluoride and lithium
fluoride are the only materials with sufficient transmissivity at 157 nm. Calcium
fluorite CaF2 is the most robust and highly developed of the fluorides; barium and
lithium fluoride are highly hygroscopic and much more difficult to work. Moreover
CaF2 is a widely used material in optics because it is transparent in a very wide
spectral range (from 0.13 to 10 microns). Nowadays, calcium fluoride crystals are
grown by the so-called vacuum Stockbarger technique [18] in diameters up to about
350 mm and one crystal ingot for one lithographic lens needs about 90 days to grow.
The crystal lattice of fluorite is shown in Figure 3.1.1. It has a face-centered structure
of calcium ions with fluoride ions in every tetrahedral hole. Fluorides belong to cubic
crystal class m3m (International notation) or Oh ( Schoenflies notation).
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Figure 3.1.1 The crystal lattice structure of calcium fluorite.

3.2. Birefringence in crystalline media
The essence of the BISD phenomenon in cubic crystals is the dependence of the
dielectric constant ε not only on the wave frequency (the wavelength) but also on the
direction of the wave vector i.e. the direction of propagation of the rays in the media.
An alternative formulation is the following: the polarization induced at some point of
the space depends not only on the local field value in this point but also on the local
field induced at the neighboring points. This effect should be taken into account
especially when the wavelength is so short that the typical crystal lattice constant is
not negligible anymore as compared with the wavelength, because in this case the
anisotropic behavior of crystals, although still very small, becomes important. In other
words it is necessary to regard the BISD effect when we use the UV-range for those
crystals which can be considered isotropic in ordinary conditions. In practice, it leads
to the possibility of the appearance of a pair of polarized rays after refraction on each
surface, and the angular difference between them depends on the wavelength,
thickness and shape of the lens. To each ray from the pair of rays, a particular
refractive index of refraction should be attributed like in case of common
birefringence and the crystal refracts light differently depending on how the incident
light is polarized. Thus the index of refraction of the crystal depends on the light
polarization and direction of light propagation.
In addition to the BISD another effect having similar nature occurs [19],[20]. When
polishing crystal materials, such as calcium fluoride, the hardness of the material
depends on the crystal orientation, thus the pressure at different points of the glass
block is not constant. The stress produces an anisotropic and inhomogeneous optical
medium where the magnitudes of the refraction indices vary at every point. This
effect may result in a wavefront error and a change of the polarization state and it is
called stress-induced birefringence. For cubic crystals the stress-birefringence figure
is often a lobed structure with three high zones and three low zones when the crystal's
{111} plane is perpendicular to the optical axis of the element [19].
Our goal is to find a proper description of the polarization of the light, refracted by
cubic crystals, depending on the direction of propagation. We shall obtain the
relationship for the polarization state of two bifurcated rays and the difference
between their refraction indices. We will use the macroscopic electrodynamic



Spatially induced birefringence in cubic crystals, a theoretical analysis
23

approach [15] to analyze the birefringence in crystals. The macroscopic Maxwell
equations for the electromagnetic field quantities in a medium are written as

extctc
jDB π41rot +

∂
∂=

extπρ4 div =D           (3.2.1)

tc ∂
∂−= BE 1rot 

0 div =B .

Here E is the electric field strength, D and B are the electric and magnetic induction.
The quantities extj and extρ  are the external current and charge densities which are
sources of the external electromagnetic field. These equations are supplemented by
the relation between the electric induction D and the electric field E. This material
equation can be written in the framework of macroscopic electrodynamics in the
following general form

( , ) d d ( , ) ( , )
t

i i j jD t t t t E tε
−∞

′ ′ ′ ′ ′ ′= − −� �r r r r r ,       (3.2.2)

where ),( rtijε  is the dielectric tensor of the medium, and the Einstein summation
convention has been used.
Here we have used the principle of causality according to which the induction at time
t is only determined by the present field and the field at previous times tt ≤′ .
We Fourier transform the Eqs. (3.2.1) and (3.2.2) assuming that

� �
−= kkr kr d d),(),( )( ωω ωti

ii eEtE . (3.2.3)
For the other quantities we use the same notation as well. Then we obtain

( )),(),( kBkD ω
ω

ω ×−= ck , (3.2.4)

0),( =⋅ kωDk , (3.2.5)

( )),(),( kEkkB ω
ω

ω ×= c , (3.2.6)

0),( =⋅ kωBk , (3.2.7)
and

),(),(),( kkk ωωεω jiji ED = , (3.2.8)
where summation over the index j, appearing twice, is assumed.
We can also introduce the inverse dielectric function matrix ),(1 kωε −

ij and write

),(),(),( 1 kkk ωωεω jiji DE −= . (3.2.9)
Writing Eqs. (3.2.4)-(3.2.7) we have used the fact that in our case external current and
charges are absent. The spatial dispersion is determined by the parameter ka  or by
the somewhat more descriptive parameter λa , where a is a characteristic dimension
(the radius of "the region of influence", radius of molecular action, etc.) and λ is the
length of the electromagnetic wave. In a condensed non-metallic medium the radius a
is about the order of the lattice constant. Therefore, the parameter λa  is very small,
even in the optical or ultraviolet range of the electromagnetic spectrum.
Eliminating the magnetic induction B from the Eqs. (3.2.4) - (3.2.7) we obtain the
expression
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( )[ ] ( )[ ]EkkEEkkD ⋅⋅−=××−= 2
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kcc
ωω

, (3.2.10)

and, substituting the Eq. (3.2.8) into (3.2.10), we find
2
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k E

c k
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If we use the matrix ),(1 kωε −
ij  we obtain
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�
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These homogeneous systems of algebraic equations have nontrivial solutions
0),( ≠kωE  and 0),( ≠kωD , only if the corresponding determinants vanish
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ji
ijij δωεω k ,  (3.2.13)

and

0),(1
2

2
2

2

=�
�

�
�
�

� −− − kωεδδω
lj

li
ilij k

kk
k

c
. (3.2.14)

The dispersion equations (3.2.13) and (3.2.14) give the relation between ω and k for
the electromagnetic normal waves (or eigenwaves) in a given medium for ( )l lω ω= k ,
where the subscript l corresponds to the given normal wave. For these normal waves,
we can write the wave vector k in the form

ssk ),(ωω n
c

= , (3.2.15)

where s is the unit vector in the direction k and ),( sωn  is the corresponding refraction
index. The dispersion equation (3.2.13) can be conveniently written in the form

( ) ( )[ ] 0),(,),( 242 =+−−=�
�

�
�
�

�−− ijjiljillljiijjiijijjiij nssssnssn
c

ssn εεεεεεωωωεδω sss . (3.2.16)

This is the fundamental equation of crystal optics. In classical crystal optics
)(ωεε ijij =  and (3.2.16) becomes quadratic with respect to 2n  and this reduced form

is frequently called Fresnel’s equation.
For our purpose, it is more convenient to investigate the dispersion equation (3.2.14)
because we can use the property that the electric induction D is always transverse for
normal waves. This means that we can choose the coordinate system whose z-axis is
directed along s and then the vector D will have only two components xD and yD . By
setting 021 == ss  and 13 =s  the wave equation and the dispersion equation have the
following form

βαβα ε DDm 12 −= , (3.2.17)

( ) ( ) 0 21
12

1
22

1
11

21
22

1
11

412 =−++−=− −−−−−− εεεεεεδ αβαβ mmm , (3.2.18)
where we introduced the notation

2
2

1 m
n

= ;  2 ,1 , =βα . (3.2.19)

The dispersion equation (3.2.18) has two roots for the quantity 
2m

( ) ( )21
12

21
22

1
11

1
22

1
112

2,1 4
2
1

2
−−−

−−

−−±
+

= εεεεεm . (3.2.20)
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and, consequently, we are led to two mutually orthogonal vectors 1D  and 2D . As is
well known from Ref. [15] and [21], the existence of two values of the refractive
index n for a given direction of the wave vector k is the origin of the appearance of
the birefringence effect. The dispersion equation (3.2.18) has a multiple root 2

2
2
1 mm =

if
( ) ( ) 04 21

12
21

22
1

11 =−− −−− εεε (3.2.21)
and the birefringence is absent in this case. Also, it is well known from Ref. [15] and
[21] that in the case of classical crystal optics, i.e., for )(ωεε ijij = , the multiple root
for m exists for every direction of k only in the case of cubic crystals. For all other
crystals with a lower symmetry, birefringence is absent only for the wave with the
wave vector k oriented along the principal optical axis. For hexagonal, tetragonal or
trigonal crystals there is one such axis and these crystals are called uniaxial. For the
three remaining crystal systems, namely the orthorhombic, monoclinic and triclinic
ones, there are two privileged normal wave directions for which there is no
birefringence and the crystals are called biaxial. As shown in what follows, the
situation is more complicated when the spatial dispersion is taken into account, i.e., if
the dielectric function matrix depends on both the frequency ω and the wave vector k.

3.3. Spatial dispersion of cubic crystals
We first write the inverse dielectric matrix for cubic crystals in the case of small
spatial dispersion in the form

( ) ( ) mlijlmijijij kk)(, 11 ωβδωεωε += −− k , (3.3.1)

or as

( ) ( ) mlijlmijijij ssn
c

2
2

2
11 )(, ωωβδωεωε += −− k

. (3.3.2)
The fourth-rank tensor ijlmβ  has only three independent and non-zero components for
cubic crystals with symmetry classes O, Td and Oh [15],[22]. These are

zzzzyyyyxxxx ββββ ===1 , (3.3.3)

yyzzxxyyzzxxzzyyyyxxxxzz βββββββ ======2 , (3.3.4)

zxzxyzyzxyxy ββββ ===3 . (3.3.5)

Using these expressions the matrix elements of 1−
ijε  can be written as
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yxxy ssn
c 3
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c 3
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The factor two in the expressions for 1−
xyε , 1−

xzε  and 1−
yzε  is due to the summation in Eq.

(3.3.1). Equations (3.3.1)– (3.3.11) allow us to write the expression for the inverse
dielectric matrix in the form

2 2 2
1 1 2 2 2 2

2 32 2 2( , ) ( ) 2ij ij i ij i jn n n s n s s
c c c c
ω ω ω ωε ω ε ω β δ β δ β− −� �

= + + +� �
� �

s � ,  (3.3.12)

where
1 2 32β β β β= − −� . (3.3.13)

The first term in the right hand side of Eq. (3.3.12) is the isotropic contribution, the
second one is anisotropic, but it is expressed in  terms of a diagonal matrix; the last
term is purely longitudinal. If we rewrite the wave equation (3.2.14)

( ) 0),(),(
),(

1
2 =�

�

�
�
�

�
−− − ss

s
n

c
Dn

c
ss

n jljliil
ij ωωωωεδ
ω
δ

(3.3.14)

it follows after some simple algebra that the longitudinal part of 1−
ijε  disappears from

this equation due to the prefactor ( )liil ss−δ , because the multiplication of this
prefactor with the longitudinal part yields zero.
We will solve Eq. (3.3.14) with the aid of perturbation theory and rewrite this
equation as

( ) jijjij DDLL δωρ ),(10 s=+  (3.3.15)
and

),()(),( 10 ss ωρωρωρ += ,   (3.3.16)
where

),(
1),( 2 s

s
ω

ωρ
n

= (3.3.17)

is the eigenvalue of this equation which should be calculated up to the first order
perturbations described by the perturbation operator L1. L1 has the form

( )
2 2

2 2 2 3
1 2 2( , ) ( , )i ij i jij

L n s n s s
c c
ω ωω β δ ω β= −s s� � . (3.3.18)

In the framework of perturbation theory, we can change the value ),(2 sωn  in Eq.
(3.3.18) into )(2

0 ωn  defined by the zero-order approximation. This zero-order
perturbation is defined by the equation

( ) 0
0

0
0 )( ijij DDL ωρ= , (3.3.19)

where 

( ) ( )jiijij ssn
c

L −��
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+= − δβωωε 2

2
02

2
1

0 )( (3.3.20)

and, consequently, Eq. (3.3.19) for the zero-order approximation can be written as
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By using Eq. (3.2.5) this equation reduces to the wave equation for isotropic media,
which has the multiple root for )(0 ωρ  equal to

2
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0 )()(
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1)( βωωωε
ω

ωρ n
cn

+== − . (3.3.22)

Moreover, in the framework of macroscopic electrodynamics we can neglect the
second term in the right part of (3.3.22) because there are no possible experiments

which can help us to distinguish the terms )(1 ωε −  and 2
2
02

2

)( βωω n
c

. This means that

for the refraction index )(0 ωn  in the zero-order approximation we can write
)()(2

0 ωεω =n , (3.3.23)
where

( ) 11 )()( −−= ωεωε . (3.3.24)

The existence of the multiple root of )(0 ωρ  in the zero-order approximation tells us
that the system of equations (3.3.15) and (3.3.16)  has a degenerate kernel [23] and we
should use for the calculation of the first order correction to ),(1 sωρ  a so-called
secular equation. This equation will give also the two correct values of 0 ( , ( , ))iD nω ω s�

resulting from the removal of the degeneracy due to the perturbation operator L1. If
we write the first order correction ),(1 sωρ  as

2
2

1 0 12( , ) ( ) ( )n
c
ωρ ω ω βρ=s s� � , (3.3.25)

the secular equation will have the form
( )2 3

1( ) ( ) ( )i ij i j j is s s e eδ ρ− =s s s� , (3.3.26)

where we introduced the unit vector e in the direction of 0 ( )D s� . The pair of
eigenmodes ( )(1 se , )(2 se ) has been chosen in such a way that in this basis the 2 × 2
matrix associated with the operator L1  becomes diagonal. Because the vector 0 ( )D s�  is
orthogonal to the vector s, when the matrix is computed, the contribution of the terms

3
i js s  vanishes and Eq. (3.3.26) can be replaced by

2
1( ) ( ) ( )i i is e eρ=s s s� . (3.3.27)

Because of its complexity, the computation has been done by using computer algebra
software. The two solutions for 1( )ρ s�  i.e. the diagonal element of the matrix
mentioned above turn out to be the roots of the quadratic equation

2 2 2 2 2 2 2 2 2 2
1 1( ) 2( ) ( ) 3 0x y x z y z x y zs s s s s s s s sρ ρ− + + + =s s� � . (3.3.28)

These solutions are
(1,2) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 ( ) ( ) ( ) 3x y x z y z x y x z y z x y zs s s s s s s s s s s s s s sρ = + + ± + + −s� . (3.3.29)

Note that the equation for 1( )ρ s�  has only one solution for the seven directions of the
propagation vector s, mentioned above, i. e., the three main crystallographic axes and
the four body diagonals of the cube.
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We can also obtain the expression for the eigenmodes of Eq. (3.3.27). The
components of the eigenmode )(2 se , which correspond to the eigenvalue (2)

1 ( )ρ s� , the
one with the minus sign in front of the square root, have the following form
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where r is given by
2222222222 3)( zyxzyzxyx sssssssssr −++= . (3.3.33)

For certain directions s zero denominators appear and then these expressions cannot
be used directly. When Eqs. (3.3.30)-( 3.3.33) must be used for a direction which
leads to zero denominators, use of a non-singular direction very close to the singular
one gives sufficient accuracy for practical purposes. Analytical expressions can also
be derived for these special cases. For instance, for 0>xs  and 0>ys , but xs  is very
small we obtain
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The components of the eigenmode )(1 se  corresponding to the eigenvalue (1)
1 ( )ρ s�  can

be obtained from the equation
sss ×= )()( 21 ee . (3.3.35)

Our first order correction to the eigenvalue 1( )ρ s�  coincides with that obtained by
Burnett et al in [17]. An alternative approach that leads to relations that are equivalent
to Eqs. (3.3.30-35) is discussed in [24].
If we define the variation of the birefringence with propagation direction according to
Eq. (22) in [17] as

(1) (2) 2 2 2 2 2 2 2 2 2 2
1 1 1( ) ( ) ( ) 2 ( ) 3x y x z y z x y zs s s s s s s s sρ ρ ρ∆ = − = + + −s s s� � � , (3.3.36)

this value will have the same sign for every direction. The origin for a possible change
of the sign of the birefringence variation shown in Figure 3.3.3 is related to the
behavior of the eigenmodes )(2,1 se . This fact can be easily understood from Figure
3.1.1.
Here and below we introduce a notation used in crystallography implying that:
•  (hkl) - parenthesis designate a crystal face or a set of parallel planes throughout a

crystal lattice.
•  [uvw] - square brackets designate a direction in the lattice from the origin to a

point.
•  {hkl} - braces designate a set of faces that are equivalent by the symmetry of the

crystal. The set of face planes results in the crystal form. For instance {100} in the
cubic crystals includes (100), (010), (001), and opposite ( 100 ), ( 010 ) and ( 001 ).
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•  <uvw> - angle brackets designate a group of symmetry equivalent directions.
<100> in the cubic crystals includes [100], [010], [001] and opposite directions;
<110> includes [110], [101], [011] and opposite directions.

[010]

[001]

[110]

[111]

ϕ

  θ

x

z

 y

s

[100]

 e2

   e1

s′
1e′ 2e′

Figure 3.3.1  Behavior of the eigenvectors in the ( 110 ) -diagonal plane
of an elementary cubic cell.

In Figure 3.3.1 we show the behavior of the eigenmodes )(2,1 se  for two propagation

directions in the diagonal plane ( 110 ) of the cubic cell containing the [001], [111]
and [110] directions. We can see that the eigenmode )(1 se  corresponding to the larger
value of 1( )ρ s�  lies in the plane ( 110 ) for the directions above the axis [111]. The
eigenmode )(2 se  is normal to this plane. The situation is reverse for the directions
below the axis [111]. Here the eigenmode )(2 s′′e  lies in the plane ( 110 ). This means
that, if we consider the difference of the refraction indices between one wave
polarized in the ( 110 ) plane and on other normal to this plane, this difference will
have an opposite sign for directions above and below axis [111].

Figure 3.3.2 Distribution of the BISD in the cubic crystal.
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The directional distribution of the BISD magnitude in the cubic crystal is shown in
Figure 3.3.2. It can be seen that the birefringence in the cubic crystal has 12 maxima
in <110> directions and 14 minima in <100> and <111> directions i.e. the cubic
crystal has seven non-birefringent axis and can be called heptaaxial.
Finally the value of linear birefringence in spherical coordinate system shown on
Figure 3.3.1 can be written as

( ) ( )22 4 4 2 21 1 1( , ) ~ sin cos 7 cos4 sin 2 cos sin 2 cos4 5
16 4 4

n ω θ θ φ φ θ φ φ∆ + + + −k .  (3.3.37)

[001] [111] [011]

θθθθ

∆∆∆∆n

Figure 3.3.3 Behavior of the linear birefringence in ( 110 ) plane.

Figure 3.3.3 shows the behavior of the linear birefringence in the distinctive case of
( 110 ) plane. In this case we show the difference of the values indices of refraction for
the polarization normal to the ( 110 ) plane and lying in the ( 110 ) plane depending on
the value of θ. It can be seen that birefringence value has a main maximum in the
<110> directions and secondary maximum between the <001> and <111> directions
(in the <211> direction). A sign change occurs when the propagation direction passes
through the <111> direction.

3.4. Conclusions
In this chapter we have derived an expression for the eigenpolarizations and the linear
birefringence value in the case of BISD in cubic crystals for an arbitrary ray direction.
From this expression it followed that cubic crystals possess seven optical axis with
respect to the BISD effect. The angular dependence of the magnitude of the effect has
been analyzed. These data, supplemented with the reported measured magnitude of
the effect, cause a serious anxiety regarding the use of cubic crystals in DUV
lithography. This concern should be further investigated in more detail by modeling
the BISD effect in the optical design software, which allows us to estimate the
damage of the effect for the optical resolution.
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4. Analysis of spatial dispersion in optical design

4.1. Description of polarization in optical design
The state of polarization is one of the most important characteristics of an optical
beam because many processes involving light depend on its polarization. If light
propagates through a medium, the state of polarization is very sensitive to the optical
properties of the medium as well. The fact that the optical properties of media may
affect polarization offers great opportunities in many areas including biology,
chemistry, physics and materials science, but it can also cause undesirable effects. For
this reason, in optics it is important to precisely determine the state of polarization and
its evolution on propagation through an optical system.
The state of polarization can be specified by the relative amplitudes of two orthogonal
polarization components and the phase difference (retardation) between them. We
limit ourselves here to fully polarized light.
When we consider optically anisotropic materials, such as crystals, the phase velocity
of propagation generally depends on the direction of propagation and on the
polarization state. The propagation directions for which the phase velocity is
independent of the state of linear polarization are called optical axes. For any other
propagation direction the polarization of a wave is defined with the aid of two
orthogonal eigenaxes perpendicular to the propagation vector. These eigenstates of
polarization are linear states which have refractive indices determined by the
propagation direction and the crystal's dielectric tensor. Light polarized in an
eigenstate propagates through an anisotropic material with unchanging polarization,
but light having any other polarization state changes its polarization state with
distance during the beam propagation. When the direction of light propagation
coincides with an optical axis, the eigenpolarizations are degenerate, and an optical
beam with any state of polarization propagates with refractive index on . For light
propagating in other directions, one eigenpolarization has refractive index on  and for
other propagation directions refractive index takes on values between on  and en
according direction of propagation (for classical anisotropy see [25] and [26], for
spatially induced anisotropy see Chapter 3).
The propagation of a monochromatic electromagnetic wave through an anisotropic
material implies the propagation in the form of two eigenstates ′D  and ′′D , linear and
orthogonal, whose orientations are determined by the previous considerations.
Propagation through the medium introduces the phases δ′ and δ′′, respectively equal
to λπ dn′2  and λπ dn′′2 , where ′n  and ′′n  are the principal refraction indices along
the direction of the propagation, d is the thickness of the material traversed along the
same direction and the difference ′′−′=∆ nnn  corresponds to a linear birefringence.
In terms of linear algebra the traversal of the material is described by an operator
which acts on the incident vectors iD′  and iD′′ , and it supplies us with the outgoing
vectors tD′ and tD′′  such that:
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The states of polarization tD′ and tD′′ are respectively identical to the states iD′  and

iD′′ , they simply have a phase difference.
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Two allowed orthogonal linearly polarized waves propagate with differing phase
velocities for a given incident wave vector k. Generally, one of the two possible
waves exhibits "extraordinary" behavior and the wave vector and ray (Poynting)
vector directions differ. In addition, the phase velocity vp, polarization orientation,
and ray vector of each wave change with the wave vector direction. For each allowed
wave, the electric field E is not parallel to the displacement vector D (which defines
polarization orientation) and, therefore, the ray vector S is not parallel to the wave
vector k as shown in Figure 4.1.1. The angle between D and E is the same as the
angle between k and S. Furthermore, for each wave D ⊥  k ⊥  H and E ⊥  S ⊥  H,
forming orthogonal sets of vectors. The vectors D, E, k, and S are coplanar for each
wave. Here and below we consider the  orthogonal vector pair (D, k). The phase
advance of the wave along the vector k then has to be projected on the ray direction S.

D

E

H , B
S

s
k

vp

vr

Figure 4.1.1 Relationship between various vectors used in the discussion of the propagation of
light in an anisotropic medium. The Poynting vector S is orthogonal to both E and H because H is
normal to the plane formed by D, E and k. However, unlike the case of an isotropic medium, S is
not parallel to k.

It was shown that the BISD value can be calculated for any specified ray direction.
The effect can be integrated through the entire optical system by use of the so-called
Jones calculus [27]. For each ray along its path the Jones rotation and retarder
matrices can be defined. A two-element Jones vector is the column vector formed by
the two electrical vector components xD  and yD
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where yx δδ −=∆  is the phase lag.
The Jones matrix is a 2×2 transfer matrix used for transferring Jones vectors. The
retarder matrix is a Jones matrix which is used to modify the optical phase of the two
orthogonal field components due to the different indices of refraction in the two
directions, ′∆n  and ′′∆n . If the addition in phase for each component given by the
retarder matrix is RĴ , then

    JJJ R
ˆ=′ . (4.1.3)

The Jones matrix for a linear polarization element of thickness d is
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where ′′−′=∆ nnn  is the linear birefringence in the plane perpendicular to the
direction of propagation of the beam, and
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λ
πδ nd∆= 2 (4.1.5)

is the retardation (the phase difference).
If an optical element is rotated by an angle θ about the optical axis, a new Jones
matrix J ′ˆ  is derived from the original matrix Ĵ  by applying 2×2 rotator matrices
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Note that

)()( )( 2121 θθθθ += RRR . (4.1.8)
In general, a linear retarder has the Jones matrix
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For the optical system with k components we have

JJJJJ k
ˆˆ

1

==′ ∏
k

. (4.1.10)

How to calculate the phase retardation on the base of a Jones matrix? First we have to
carry out the ray tracing and to obtain the Jones matrices for each ray crossing each
element. Then we can build the Jones matrices Ĵ  for each ray i.e. for each point in the
pupil plane. The retardation value )ˆ(JRET  for this pupil point can be obtained by the
polar decomposition of the Jones matrix Ĵ .
It is known from linear algebra [28] that for any complex square matrix M there is
exist nonnegative definite Hermitian matrices H and H′  and a unitary matrix U, such
that

UHUHM ′== . (4.1.11)
This is known as the polar decomposition of M. Matrices U, H and H′  can be
uniquely determined by

MHMHU 11 −− ′== , MMH *2 = , *2 MMH =′ ,    (4.1.12)
where * denotes the conjugate transpose (Hermitian conjugate). However, U is not
uniquely determined for a singular matrix M.
Applying the polar decomposition to a Jones matrix we have

RDDR JJJJJ ˆˆˆˆˆ ′== , (4.1.13)

where RĴ  is a retarder (unitary) Jones matrix and DĴ  and ′
DĴ  are diattenuator

(nonnegative definite Hermitian) Jones matrix. The diattenuation defines the
dependence of the polarization element’s transmittance on the incident polarization
state. The retardance shows the dependence of the polarization elements optical path
length on the incident polarization state. Therefore any polarization element described
by a Jones matrix can be interpreted as a couple of a retarder and a diattenuator.

Matrices DĴ  and ′
DĴ  can be diagonalized by unitary matrices, applying the singular

value decomposition
*ˆ VDWJ = , (4.1.14)
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where D is a diagonal matrix having the singular values of Ĵ  as diagonal elements,
V and *W  are unitary matrices. Thus we can obtain

*ˆ WDWJ D = ,  *ˆ VDVJ D =′ ,  *ˆ VWJ R = . (4.1.15)
From the polar decomposition described above we can define the retardation of an
arbitrary polarization element Ĵ .
It can be shown [29] that with our definitions the retardation can be found even
without polar decomposition as
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If the Jones matrix is written as
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with rj  and ij  the real and imaginary elements, we can determine the RĴ  and DĴ
matrices by using Eq. (4.1.16)
The Jones matrix for each ray traversing each component can be described by ray
coordinates on the specific surface X and Y (or pupil coordinates ρx and ρy), and by
the direction cosines L, M and N for each intersection ray-surface. For the specified
field point in the image plane L, M and N also can be defined by the pupil coordinates
ρx and ρy. For an optical system with k components we are now allowed to write
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If the incident ray on the first surface is linearly polarized in the azimutal direction θ
as measured from the x-axis, then the Jones vector J is given by ( )θθ sin,cos
independently of the beam path. Then the following equation gives the complex
amplitude transmittance of the optical system at the exit pupil decomposed into its
orthogonal-polarization components
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Since J ′  is a function of the pupil coordinates, it is possible to calculate the image
quality taking into account the polarization effects only as a function of the position

),( yx ρρ  in the exit pupil [30].

4.2. BISD in optical design
The presence of the BISD effect in crystals at short wavelengths was a surprise for the
lithography industry that has caused considerable difficulties for 157 nm lithography.
Lithography equipment manufacturers were already familiar with stress-induced
birefringence in calcium fluoride (induced by technological machining) and they were
prepared to compensate it with relatively complex lens designs. But intrinsic
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birefringence is able to inflict several times more birefringence than allowed, creating
fuzzy images at the wafer.
In optical system design, BISD leads to the appearance of multiple polarized rays
during refraction. There are two basic effects depending on crystal orientation,
wavelength, thickness and shape of the lens. The first BISD consequence is the
appearance of an optical path-length difference between the two orthogonally
polarized components corresponding to a ray. This path-length difference, resulting in
a phase retardation, can be visualized in pupil maps for arbitrary field points. An
example of such a pupil map is shown in Figure 4.2.1.

phase diff

0.0000

180.00

90.000

Retardance Pupil Map

mean RET=85.172978
standard deviation RET=53.263508
Points: 25 X 25

<RET>=85.17 σ=53.26

Figure 4.2.1 Retardation pupil map produced with Code V. The dark tone indicates regions with
low phase retardation and light tone indicates ones with high phase retardation. <RET> is the
average retardation value and σσσσ is the standard deviation over the pupil.

The second consequence of BISD is a small angular difference in ray paths. In an
optical system with N components, for each incident ray on the first surface there are
2N outgoing rays at the image plane. For instance, in an optical system containing two
birefringent elements there are four branches in the network. One set of rays is in the
ordinary polarization mode in both the first and the second birefringent elements
(fully ordinary ray). A second set is ordinary in the first and extraordinary in the
second. The third set is extraordinary in the first and ordinary in the second, and the
fourth set is extraordinary in both elements. Such multiple ray sets produce
transmitted wave fronts, which may or may not substantially overlap in the exit pupil
and in the image plane (see Figure 4.2.2).

Figure 4.2.2 Ray splitting in optical system. On each surface each ray may split into two. (The
birefringence effect is exaggerated for demonstration purposes)

The bifurcation of the rays leads to an angular difference in ray path between ordinary
and extraordinary rays after each refraction, which results in a ray deviation at the
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image plane. Thus, instead of one ray there is a full cone of outgoing rays and the
opening angle of this cone can be called the maximal angular deviation.
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Figure 4.2.3 Image contrast loss due the BISD-caused phase retardation. In the graph on the left
side the BISD is not considered; in the right-hand drawing the BISD is included. Image size of the

shown area is about 1××××1µµµµm.

The polarization phase shifting and the ray bifurcation induce undesirable effects for
the image formation. The degradation of the image quality caused by phase
retardation is shown in Figure 4.2.3.
The first issue in optical system design considering BISD is the calculation of the
effect itself. Only one commercial optical design program (Code V®,   Optical
Research Associates) supports the calculation of the effect within a given
approximation and analysis of the image quality, taking into account the phase
retardation caused by BISD. For each lens the maximum of linear birefringence value

eo nnn −=∆  (i.e. in <011> direction) and the crystal orientation can be specified. For
CaF2 and BaF2, the n∆  value was measured by John Burnett et al [17] and it amounts
at 157 nm to 7108.11 −×−=∆n  for CaF2 and 71034 −×=∆n  for BaF2.
In general any crystal orientation can be described by three Euler angles. To this
purpose we use two polar coordinates ϕ and θ  shown in Figure 3.3.1 for the
definition of the optical axis direction and a pupil angle ψ for crystal orientation
around this optical axis. In order to define some intermediate positions it is convenient
to introduce the notation where in addition to crystal orientations we define the
orientation of the pupil map (angle ψ counted in a clockwise direction) as <crystal
orientation>-ψ e.g. <001>-0°,  <100>-45°, <111>-0°, <111>-60° etc (see Figure
4.2.4). The value of these angles for some characteristic crystal orientation can be
observed in Table 4.2.1. However for computation of cubic crystal intrinsic
birefringence Code V requires six angles for the Y and Z cubic crystal axis to specify
the crystal orientation [31]. Obviously three of these angles are superfluous because
their values can be defined through ϕ, θ  and ψ  as follows:
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Figure 4.2.4 Designation of the orientation of pupil maps.

Moreover Code V has limitations in computing, e.g. the arbitrary choice of the crystal
orientation during optimization is not supported; the ray bifurcation and its
consequences on energy transmission are not included (only specified one ray from
cone generated by multiple bifurcations can be computed at the same time i.e. a ray
with defined ordinary-extraordinary ray selection, thus reducing the result to one
combination from 2N outgoing rays).

Table 4.2.1 Direction angles for characteristic crystal orientations.

Crystal
orientation

ϕ θ ψ

<001>-0° 0 0 0

<001>-45° 0 0 4π
<011>-0° 0 4π 0

<111>-0° 4π 2arctan 0

<111>-60° 4π 2arctan 3π

In the case of the BISD the phase retardation is a function of the angle between the
ray and the optical axis of the crystal. Depending on the crystallographic direction
chosen as an optical axis, different types of distribution of the phase retardation over
the pupil can be observed. The directions with circular symmetry are shown in Table
4.2.2. Here we show the retardation dependence for one optical element, i.e. one of
single lens in Figure 4.2.2.
It can be observed from this table that, the <001> direction has a minimum for the
axial point if this direction is chosen along an optical axis, and four maxima around
forming a square-like distribution, i.e. it has 4-fold (90°) symmetry. For the <111>
direction we have a similar distribution with zero retardation at the center of the pupil
and three maxima at the edge, i.e. the <111> direction exhibits a 3-fold (120°)
symmetry.  Finally, for the <011> direction we have almost circularly symmetrical
distribution around the maximum at the center of the pupil. However, there is a very
important nuance; because the <111> direction is not symmetric with respect to the
center of pupil, we have to be careful of the change of sign of the angle between the
incident ray and the optical axis when we use a <111> crystal orientation because in
this case the orientation <111> - 0° becomes <111> - 60°, and vice versa i.e. the same
component may have turned pupil maps for different beams.
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Table 4.2.2 Directional dependence of the BISD for single lens.

 Chosen
optical

axis

The phase retardation
dependence over the pupil The projections of eigenvector states on the pupil

<100>

<110>

<111>

Table 4.2.3 Accuracy of BISD calculation with various numbers of rays.

Number of rays 5 13 24 49 89 481 973

Computation time,
sec 0.5 0.9 1.5 2 4 16 34

Mean retardation 154.32 149.68 151.17 148.95 151.54 151.04 151.11Low
BISD
Value Standard deviation

of retardation 11.174 10.717 12.075 12.235 13.546 14.136 14.103

Mean retardation 28.176 86.253 76.489 88.437 82.043 85.119 84.729High
BISD
value Standard deviation

of retardation 35.734 59.455 41.456 49.023 51.595 49.944 49.791

The second important design issue is the speed of computation. For an adequate
estimation of BISD it is necessary to trace through the system at least 50 rays taking
into account their polarization properties (see Table 4.2.3). According to our
experience the accuracy of the computation of retardation should nor exceed ±5°. For
a lithographic lens with about 50 surfaces this requirement drastically increases the
time of image quality estimation. The computation of all possible ordinary-
extraordinary ray combinations of splittings only for one ray takes a week on the
modern PC with Pentium IV processor.
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4.3. Image quality in the presence of BISD
Another issue is to identify a relevant characteristic of the image quality for BISD in
DUV systems. In optical design it would be very convenient to define the influence of
BISD on the image quality by one number. We found that the standard deviation of
the retardation over the pupil is a good indicator of the BISD influence. This quantity
shows a very good correlation with the image quality loss due to the phase retardation.
This is confirmed by the calculation of BISD in optical systems with and without
BISD compensation (see Table 4.3.2). It is obvious that not only the value of Strehl
ratio but also the standard deviation of the retardation indicates adequately the loss of
image quality caused by BISD. Therefore, by taking the standard deviation of the
retardation into the merit function we can optimize an optical system with respect to
the BISD correction.

Table 4.3.1 Image quality in an optical system with and without BISD compensation.

BISD uncompensated BISD compensation

Field
#

Strehl ratio
(in the

absence of
BISD)

Strehl
ratio mean

retardation

standard
deviation of
retardation

Strehl
ratio mean

retardation

standard
deviation of
retardation

1 0.841016 0.2348 93.8879 51.0658 0.7889 18.8005 7.56805
2 0.838666 0.2444 93.7125 51.0096 0.7950 23.2214 10.8823
3 0.835668 0.2440 93.7175 50.0968 0.7670 34.5270 14.3829
4 0.836719 0.2465 94.0004 48.2277 0.7177 45.5730 17.0637
5 0.830060 0.2852 90.2522 45.2942 0.6973 55.7135 16.4321

The reader might be surprised to see the relatively low values of the Strehl ratio in the
first column, for our very well corrected optical systems such as lithographic
objectives. For the explanation of this fact we will obtain the expression for Strehl
ratio in the case of polarized beams.
The Strehl ratio for an ideal aberration-free optical system with high NA can be
defined by two expressions
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where ρ is the lateral position on the exit pupil sphere relative to the pupil rim, ϕ is
the azimuth in the pupil and ),( ϕρA  is the pupil function defined as

)],(exp{),(),( ϕρϕρϕρ ikWBA = . (4.3.3)
In the last expression ),( ϕρB  is the amplitude distribution and ),( ϕρW  is the
wavefront aberration. The first definition according to S1 is the general one, the
second definition (4.3.2) is used when ),( ϕρA  has the property that 1),( ≡ϕρB . In
the case of an aberration-free high-NA optical system, the "effective" amplitude part
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of the pupil function ),( ϕρA  is not uniform but shows a more complicated behavior
[32] in ρ according to the expression
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In the function )(ρB , both the polarization effects in a high-NA systems have been
incorporated and the amplitude distribution adaptation at high-NA that is found in a
system that obeys the sine condition. A more detailed analysis of the Strehl ratio
definition when the image space itself is anisotropic can be found in [33]
The first factor of )(ρB  takes into account the polarization effect and after averaging
over an annular area the amplitude distribution is
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The second  factor of )(ρB  is specific for the amplitude distribution on the exit pupil
sphere of the optical system in terms of the lateral coordinate ρ on that sphere
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Carrying out the integrations with the substitution nNA=θsin  according to the
definition in Chapter 2.4, where n is the refractive index in the image space, we obtain
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Definition (4.3.1) leads to a much smaller high-NA effect and is physically more
consistent; a defect-free optical system produced a Strehl ratio close to unity. For
instance, Code V computes the Strehl ratio in two analysis modes: Wavefront
Analysis (WAV) and Point Spread Function (PSF). In the WAV-mode Code V uses
the following relationship

2)2( πσ−= eS , (4.3.9)
where σ is the root-mean-square (RMS) wavefront error. This relationship is quite
accurate for RMS < 0.1 waves. In the PSF-mode the actual PSF data are available to
calculate the Strehl ratio numerically. The PSF is computed as a sum of contributions
from each point in the pupil, a separate summation is made in which the contributions
from each point in the pupil have no phase aberration - i.e. the second summation is
made while setting the aberration to zero. This second sum represents the value that is
used to compute the perfect lens peak value. Because of the way in which this term is
computed, the perfect lens value does account for vignetting (it uses the real pupil
shape). It also inherently computes the peak at the best focus for the ideal lens.  The
peak for the actual lens is computed by evaluating the PSF at each point in the image
plane (i.e. the plane tangent to the image surface at the point where the principal ray
intersects the image surface.). The WAV- and PSF-based Strehl values may differ
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somewhat due to their different principle, different grid size and other factors but the
PSF calculation is generally more accurate [34].
The values of the Strehl ratio for different θ in the case of an ideal system are shown
in Table 4.3.2.

Table 4.3.2 Strehl ratio values for an ideal optical system illuminated by a linearly polarized
incident beam.

θ, degrees NA in air S1 S2 Code V
0 0 1.00000 1.00000 1
5 0.087156 1.00000 1.00000 0.998109

10 0.173648 1.00000 1.00002 0.992541
15 0.258819 1.00000 1.00010 0.983593
20 0.342020 1.00000 1.00031 0.971731
25 0.422618 1.00000 1.00077 0.957429
30 0.500000 0.99999 1.00160 0.935929
35 0.573576 0.99999 1.00300 0.924210
40 0.642788 0.99999 1.00517 0.906846
45 0.707107 0.99998 1.00838 0.889721
50 0.766044 0.99996 1.01295 0.872998
55 0.819152 0.99989 1.01926 0.857365
60 0.866025 0.99976 1.02778 0.842727
65 0.906308 0.99948 1.03906 0.830679
70 0.939693 0.99891 1.05377 0.820619
75 0.965926 0.99774 1.07273 0.812145
80 0.984808 0.99531 1.09697 0.806401
85 0.996195 0.99002 1.12775 0.801787
90 1.000000 0.97524 1.16667 0.800620

Table 4.3.3 Dependence of the Strehl ratio on aperture value when polarization effects are taken
into account.
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The dependence of Strehl ratio on NA is remarkable. It is seen that in the case of high
NA the value of Strehl ratio cannot exceed some certain NA-defined limit even in
case of an ideal optical system once the polarization of the light is taken into account.
Table 4.3.3 shows the value of Strehl ratio for different cases depending on
incorporation of the BISD-effect, coating issues and the value of NA.

4.4. Analysis of the phase retardation
It was shown that the phase retardation caused by BISD leads to a loss of image
contrast. As it follows from Eq. (4.1.5) the magnitude of the phase retardation value
of a single component depends on the thickness and the linear birefringence of the
medium. In turn linear birefringence depends on the angle between the direction of
the ray and on the crystal optical axis, i.e. on the incident angle, shape of the lens and
on the position of the component in optical system.
It is not only the magnitude of the phase retardation which is important for an analysis
of the total phase retardation but its orientation as well. After refraction into a lens,
this orientation can be defined as the orientation of the projection of the fast
eigenvector onto the pupil plane.  Figure 4.4.1 illustrates the value of the phase
retardation.  The magnitude of retardation in degrees is shown in Figure 4.4.1 a), it
changes within the range of 0…180°. The orientation of the retardation is shown in
Figure 4.4.1 b) where vertical lines have retardation orientation of 0º and coincide
with a vertical fast axis. The value of the orientation of the phase retardation is within
the range of -90…90°. Multiplying the values in a) and b) yields the line graph
retardation representation shown in Figure 4.4.1 c).
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Figure 4.4.1 Visualization of the retardation value: a) pupil map of retardation magnitude; b)
pupil map of retardation orientation; c) line graph of the lens retardation where the length of
each line represents the retardation magnitude and orientation indicates the fast-axis orientation.

We will show that it is very useful for our investigation to determine the contribution
of separate components in the cumulative phase retardation of an objective for
lithography. For this purpose, we classify optical components according to their
contribution to the cumulative phase retardation. The phase retardation for each
component was computed and normalized to the maximum value for each case. In
order to define the maximal possible contribution, the computations were made with a
marginal ray for the crystal orientations <001> and <111>. Because the phase
retardation distribution is monotonic, only one ray needs to be traced for these
directions. For the <011> direction, however, the difference between center and edge
of the pupil must be computed, because both have non-zero retardation value. In this
case at least two rays, the marginal one and the ray along the optical axis, have to be
traced. It should be pointed out that for the <011> direction the distribution be
inverted when the retardation at the edge is higher than the retardation in the center of
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the pupil. This happens, for instance, in biconcave lenses, when the edge thickness is
much larger than the center thickness.
An optical system with components gray-scaled according to their phase retardation
contribution is shown in Figure 4.4.2. (The specifications of this system were taken
from Ref. [35].) It can be seen that for the <001> and <111> orientations only a few
components contribute significantly to the cumulative retardation. For the <011>
direction, several components have a significant contribution because in this case  the
phase retardation contribution mostly depends on the lens thickness.
Figure 4.4.3 shows the distribution of the cumulative phase retardation over the pupil
depending on the crystal orientation for the optical system shown in Figure 4.4.2 In
this case all components in the optical system are oriented along the same direction.
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Figure 4.4.2 Contribution of separate components to the cumulative phase retardation depending
on the chosen crystal orientation (all components have the same orientation shown below). A
light tone indicates components with high contribution. For the <011> direction, the elements
with inverted retardation value distribution (with highest retardation value at the edge) are
partially hatched.
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Figure 4.4.3 Cumulative phase retardation pupil maps depending on different crystal orientation
for the optical system shown in Figure 4.4.2. The graphs on the right side represent the
orientation and the retardation magnitude like in Figure 4.4.1: a) all components are oriented
along <100> direction; b) all components are oriented along <110> direction; c) all components
are oriented along <111> direction.
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4.5. Analysis of ray bifurcation
Although a certain number of the researches claim that the magnitude of the ray
deviation caused by BISD is very small and that a single path approximation for the
ray tracing is sufficient, we will pay some attention to this effect. In particular, in
reference [36] it was shown that the phase error introduced by the ray bifurcation
cannot exceed several nanometers even in the case of a long track in material.
However, in order to illustrate the birefringence properties we want to discuss the
easiest way to compute possible ray deviation. This research may also be helpful to
analyze the ray propagation in other media with weak birefringence.
When a single ray propagates through a birefringent optical element, two distinct rays
are transmitted. Thus, as it was mentioned above, in an optical system containing N
birefringent elements, each ray incident upon the entrance pupil can result in as many
as 2N rays at the exit pupil. If we consider a single ray propagating from object to
image, we can observe multiple ray bifurcation at the image plane similar to a
scattering mechanism. For the estimation of the bifurcation effect, a ray deviation
similar to the geometrical transverse aberration can be computed. This ray deviation
can be defined as the maximum distance in the image plane between two rays having
the same origin before the first bifurcation. For preserving good image quality this
deviation should not exceed the resolution limit. A more appropriate method would be
to analyze the corresponding 2N wavefronts that exit from the pupil of the system, but
computational load is prohibitive. We will show some examples of "bifurcated"
wavefronts further on in this section.
It is not a trivial task to select from 2N possible ray combinations the ray with
maximum deviation in the image plane. We offer the following algorithm for this
purpose:
1. For each birefringent component we define a binary code "0" or "1" depending on

which ray is computed: the ordinary or the extraordinary one. The number of
digits in the code shows the number of birefringent components in the optical
system. Thus each ray from 2N has its own binary code. For instance a code
"100000100110001" indicates that there are 15 birefringent components and from
all possible combinations we select the extraordinary ray after the refraction on
components 1, 7, 10, 11, and 15, and the ordinary ray after refraction on the
remaining components. This binary code can be easily converted to decimal
numeration and then the ray with code 0 is "fully ordinary" and the ray with code
2N-1 is "fully extraordinary".

2. The contribution of each single component to the total ray deviation is computed,
i.e. a ray with only a single "1" in its code. The fully ordinary ray is taken as a
reference. As in the case of the phase retardation, it is useful, for further analysis,
to classify components in the optical system according to their contribution to the
cumulative ray deviation value. The same optical system as before with its
components colored according to the magnitude of their contribution is shown in
Figure 4.5.1. From a comparison with Figure 4.4.2 it turns out that the
contribution of separate components in the cumulative ray deviation effect does
not substantially differ from the phase retardation contributions. The difference
can be explained by the observation that the optical power of a lens plays a role
for the ray deviation and it has no influence on the phase retardation.

3. The maximum ray deviation is computed. Because the contribution of the effect
for a single component is very small, it is possible to obtain the total ray deviation
in the image plane by adding corresponding contributions from each component.
This observation is confirmed by direct computation of all possible combinations
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of rays for a marginal ray in the lithographic system. In all cases, observed by us,
the deviation value obtained by adding component contributions and the one
obtained by ray tracing are the same.
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Figure 4.5.1 Contribution of separate components to the cumulative ray deviation depending on
the chosen crystal direction. A light tone indicates components with high contribution.

Interestingly, the maximal absolute deviation is found not for the fully extraordinary
ray (ray with all "1" in the code) but for one of the rays collecting all partial
deviations with the same sign. Thus the maximum ray deviation is the difference
between positions of two rays collecting all partial deviations of the same sign. The
second consequence is that instead of computing 2N rays for obtaining the maximal
deviation value it is enough to compute just N+1 rays. This observation is valid not
only for BISD ray bifurcation but for any ray bifurcation consisting of reasonably
small contributions e.g. stress-induced birefringence.
Unfortunately mutual compensation of ray deviation is not possible in general,
because there are always two rays that absorb all positive or negative contributions. It
is only possible to redistribute all contributions in such a way that the difference for
fully ordinary and extraordinary rays is null. In this case the modulus of two sums for
all partial deviations of the same sign should be equal. Thus there is only one
approach for minimization of the ray deviation - to minimize the final value of
deviation by minimization of partial contributions.
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It is important to know how the ray deviation is distributed between maximum and
minimum values. In order to investigate this problem, 5000 random samples of rays
for the same system presented in Figure 4.5.1 and partial contributions of components
were taken and a statistical analysis was done. As it is seen from Figure 4.5.2 the ray
deviation is almost normally distributed between the maximum and minimum
deviation value and the mean value is about the average between them. If we suppose
that the ray deviation corresponds to a normal distribution, 70% percent of the rays
are within a confidence interval defined by the value of the standard deviation σ.
Thus, on the basis of computed limits of deviation it is possible to estimate the energy
distribution in the luminous spot in the image plane (all within the framework of
geometrical optics). The relative importance of ordinary and extraordinary rays in
each lens medium has not been included.
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Figure 4.5.2 The distribution of the ray deviation obtained on the base of 5000 random ray
samples for the optical system shown in Figure 4.5.1. A best-fitting normal distribution has been
shown for comparison.
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Figure 4.5.3 Ray deviation pupil map depending on different crystal orientations in the optical
system shown in Figure 4.5.1. The map has been calculated for an on-axis object point using 441
rays (square grid 25××××25): a) for <100> direction; b) for <011> direction; c) for <111> direction.

As it follows from Figure 4.5.3, the distribution of the ray deviation over the pupil
depending on crystal orientation differs from the corresponding phase retardation
distribution. Usually the ray deviation has almost circular distribution and may just
slightly resemble the corresponding retardation pupil maps. The minimum mean
deviation is observed for <100> direction.
The total value of the ray deviation for the entire system depends mainly on the
amount of cubic crystals in the optical system and it changes for different basic types
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of optical systems. The average value of the ray deviation grows with the amount of
crystal material in the optical system.

4.6. Conclusions
In this chapter we made an analysis of the influence of the spatially induced
birefringence in lithographic optical design. First we discussed the method and
approaches in physical optics which can be used to describe the polarization effect
and its influence on the image quality. The expression for the Strehl ratio in the case
of a high NA optical system including polarization was derived.
From this chapter we have also seen that the spatial dispersion effect in lithographic
projection systems includes two basic effects: the phase retardation and the ray
bifurcation. The first effect can be computed on the basis of polarization ray tracing
with the help of Jones matrices. We examined the possibilities for the BISD analysis,
offered by modern software tools such as Code V. The accuracy of the effect
computation and some program settings were discussed as well. For the estimation of
the retardation value, the standard deviation of the retardation over the pupil is useful.
The analysis we made allows to conclude that the magnitude of the phase retardation
is high enough to cause serious problems for obtaining the required resolution and that
it must be reduced.
For the second BISD consequence - the ray bifurcation and deviation - a special
method for computation of the maximum ray deviation was offered. If the magnitude
is sufficiently large, this second effect has a much less regular character, cannot be
corrected and can be evaluated by computing the maximum ray deviation. The
method described here can be a starting point for future independent verifications of
the statement that, once the phase retardation is compensated, ray bifurcation has a
negligible effect on the imaging quality of DUV lithographic systems.
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5. Compensation of phase retardation

5.1. Compensation of phase retardation: Basics
The basic idea of the phase compensation is the following. It is not possible to avoid
the spatial birefringence effect completely (that would require zero angles between
rays and an optical axis of the crystal), but it is possible to achieve a certain
distribution of the retardation magnitude and retardation orientation in the pupil plane.
Since the contribution of components (or group of components) to the total phase
retardation is additive, it is possible to combine two predefined distributions of the
phase retardation with the same magnitude but orthogonal orientation. Summation
these two distributions can cancel each other (see Figure 5.1.2). The different methods
proposed for obtaining desired phase distribution are discussed in this chapter.

Figure 5.1.1 Simple optical system for modeling of the BISD compensation
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Figure 5.1.2 Basic compensation of the phase retardation. Two components with the same
distribution of the retardation magnitude but orthogonal retardation orientation give much
smaller resulting retardation magnitude.

According to our experience the effect can be considered as compensated if the value
of the standard deviation of the residual phase retardation does not exceed 10-20°,
depending on specifications of the objective. In this case the contrast loss caused by
the BISD-effect is smaller than the image deterioration caused by aberrations and
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other unavoidable polarization effects induced by high-NA, coating, residual stress-
induced effects i.e. [38], [39].
There is not too much difference between phase compensation for 193 and 157 nm
objectives, because the character of the effect remains the same and only the
magnitude of the linear birefringence scales up with lowering the wavelength.
For investigation of the phase retardation we will first use the model shown in Figure
5.1.1. This is the simplest optical system possessing high NA where all components
give the same contribution to the total retardation value.

5.2. Crystal Axis Clocking
One of the major obstacles for the BISD compensation is the possible effect of
asymmetry of the pupil map around the center of the pupil. For preserving the
symmetry only three types of directions <001>, <110> and <111> can be selected as
an optical axis. The directions <001> and <110> have an advantage over <111>
because for them the pupil map of the phase retardation distribution does not change
sign as a function of the angle between the ray and the optical axis, but along <110>
we have a maximum of the effect. Generally it is possible to select an arbitrary
direction [uvw] as an optical axis but in that case both the BISD compensation and the
technological issues may be much more difficult.
From the point of view of crystal production the components oriented along the
<111> direction are preferable because for this direction the residual stresses are
minimal. Crystals grown along <100> and <011> require additional effort from the
industry.
The regular nature of the BISD may lead to the "clocking" solution, which is widely
used today in 248 and 193-nm lithography in order to adjust for aberrations caused by
deviations of the lens surfaces [40]-[45]. Clocking adjusts the lens elements by
rotation in a plane perpendicular to the system axis. However, using clocking for the
compensation of phase retardation limits the possibility of using clocking later on to
adjust for the unavoidable defects of the lens elements. Nowadays the UV-lithography
tools have  objectives, which use mostly the wavelength of 193 nm. They consist of
more than twenty lenses, and about one third of the optical components are made of
calcium fluoride. The assembling of an objective is a tedious task, because the tuning
operation is very difficult. The stress-induced birefringence effect and local deviation
of the surface profile should be estimated for every lens component and the
assembling is done only after the mutual compensation is realized.
The references, mentioned above, discuss the compensation approach for certain types
of optical systems. We will summarize all approaches and describe the general
strategy of the compensation of phase retardation in what follows.
The first step is the creation of a circular distribution of the phase retardation over the
pupil. As it can be observed from Table 4.2.2, different crystal orientations along the
system axis have different angular symmetry of the retardation distribution. It is thus
possible to tune the separate components to achieve the desired distribution of the
retardation over the pupil by adjusting of the phase retardation contributions of
several components. So, by combining lenses with orientations <001>-0° and <001>-
45° for the <001> direction or <111>-0° and <111>-60° for the <111> direction, we
can achieve almost circular distributions of the phase retardation magnitude (see
Figure 5.2.1 and Figure 5.2.2). It is seen that regions in the pupil with low phase
retardation overlap with those having a high phase retardation value. These two
rotated components (or groups of components) with overlapping pupil maps should
give the same contribution.
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Figure 5.2.1 Obtaining a circular distribution of the phase retardation for the <001> direction.
The resulting magnitude of the phase retardation has a circular distribution and tangential
orientation.
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Figure 5.2.2 Obtaining a circular distribution of the phase retardation for the <111> direction.
The resulting magnitude of the phase retardation has a circular distribution and the radial
orientation.
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Figure 5.2.3 Obtaining a circular distribution of the phase retardation for <011> direction. The
resulting magnitude of the phase retardation has a circular distribution and radial orientation.
This approach requires four components. The intermediate cumulative pupil maps have cross-
like retardation distributions.



Compensation of phase retardation 53

phase diff

0.0000

180.00

90.000

Retardance Pupil Map

mean RET=31.633116
standard deviation RET=10.227209
Points: 25 X 25

+ 

phase diff

0.0000

180.00

90.000

Retardance Pupil Map

mean RET=38.043962
standard deviation RET=12.277496
Points: 25 X 25

 = 

phase diff

0.0000

180.00

90.000

Retardance Pupil Map

mean RET=9.7672275
standard deviation RET=4.1116575
Points: 25 X 25

<RET>=31.63 σ=10.22 <RET>=38.04 σ=12.28 <RET>=9.77 σ=4.11

+ 

 

= 

        <001>-0°+<001>-45°        <111>-0°+<111>-60°      Σ Total

a)

phase diff

0.0000

180.00

90.000

Retardance Pupil Map

mean RET=25.595552
standard deviation RET=7.6588219
Points: 25 X 25  

+ 

phase diff

0.0000

180.00

90.000

Retardance Pupil Map

mean RET=31.152679
standard deviation RET=10.819823
Points: 25 X 25  

= 

phase diff

0.0000

180.00

90.000

Retardance Pupil Map

mean RET=4.9791699
standard deviation RET=1.8836892
Points: 25 X 25

<RET>=25.60 σ=7.65 <RET>=31.15 σ=10.82 <RET>=4.98 σ=1.88

 

+ 

 

= 

<001>-0°+<001>-45°        <011>-0°+<011>-90°+     Σ Total

       <011>-45°+<011>-135°

b)

Figure 5.2.4 Nulling the phase retardation by crystal axis "clocking". Two sets of components
with the same distribution of the phase retardation but having opposite orientation result in a
very small total retardation value. a) (<001>-0°°°°+<001>-45°°°°)+(<111>-0°°°°+<111>-60°°°°) combination;
b) (<001>-0°°°°+<001>-45°°°°)+(<011>-0°°°°+<011>-90°°°°+<011>-45°°°°+<011>-135°°°°) combination
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It is seen from the figures that, as a result of the combination of <001>-0° and <001>-
45°, we have tangential orientation of the phase retardation for any pupil point, and
for the couple <111>-0° and <111>-60° we have radial orientation of this value. It
should be pointed out that for two plates <111> and <001> with equal thicknesses the
magnitude of the phase retardation for the <111> direction is lower, i.e. the path
length in glass for this components should be larger in order to obtain the same
contribution as for the <001> direction.
It is also possible to obtain a circular distribution for the <011> direction (see Figure
5.2.3). However, in this case at least four components should be used for obtaining a
circular phase retardation distribution but the resulting magnitude is about 20% less
than in case of the <001> direction. In principle, the shown pupil maps allow to
combine them in any way in order to obtain desired phase retardation distributions.
The second step is the nulling of the phase retardation. By inspecting the phase
retardation pupil maps shown in Figure 5.2.1, Figure 5.2.2 and Figure 5.2.3 it can be
seen that the resulting orientation of the retardation for the <001> clocked pair is
orthogonal to the orientation for the <111> clocked pair (or the orientation for the
<011> clocked quartet). That means that the retardation has opposite sign for these
combinations. Thus when the magnitude of the retardation is also equal then
combining these lens blocks consisting of two or four lenses can be used to reduce or
null out the total retardation value. The results of this compensation can be seen in
Figure 5.2.4.
We can also find the initial value of thickness of the <111> (<011>) and <001> plates
in Figure 5.1.1 for such a compensation. These thicknesses should have the same ratio
as the mean retardation values of the two sets of components. For instance, for the
<111> and <001>,  this ratio is 1.5 and this value can be further optimized. The exact
values obtained after optimization are  1.82001111 =ΣΣ d/d for the <111>-<001>
compensation scheme and 08.4001011 =ΣΣ d/d  for the <011>-<001> scheme. However
this coefficient is not a constant and for real systems should be determined
numerically for each type of optical system.

5.3. Crystal clocking applied to a practical system
We will now apply the crystal axis clocking approach to the optical system shown in
Figure 4.4.2. In the first stage, we compute the phase retardation contribution of
components for the three basic crystal orientations and then we classify the
components according their values (see Table 5.3.1 and corresponding grayscale maps
in Figure 4.4.2). In this case we use a combination of <111> and <001> directions.
In the next step, for forming a circular distribution, we define the crystal orientation of
certain components. As it is seen from Table 5.3.2 we were able to achieve equal
cumulative retardation value for two directions in each of the two couples of the
<111> and <001> directions. The ratio between the cumulative retardation values for
the <111> and <001> directions is chosen to null the total retardation. Finally, the
components are oriented along the direction shown in the last column of  Table 5.3.1.
We note that in this example system some components, close to the spherical mirror,
are used double pass and should have the same crystal orientation in both directions.
Moreover for the <111> direction, the components which have pupil maps rotated
over 180°, because of opposite angle between marginal ray and optical axis, are
shown as well (between brackets we show the orientation entered into the software).
The result of this compensation is shown in Figure 5.3.1. The presented pupil map
shows that the phase retardation is very well balanced and the image of the 2D test-
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object is drastically improved. For comparison, we also show the image of the 2D
test-object for the same objective in the absence of the BISD-effect. If a further
improvement is required then it is possible to adjust the thickness of components. In
this case the merit function for optimization should be extended by adding the value
of the standard deviation of retardation.

Table 5.3.1 Phase retardation contribution of the separate components in the example system

Component
#

Surface
#

Phase
retardation
contribution
for <001>
direction

Phase
retardation
contribution
for <111>
direction

Crystal
orientation of
the component

1 46 59.32751 89.97305 111-0°°°°
2 44 40.50317 68.84210 001-0°°°°
3 12 24.87031 50.15022 111-60°°°°
4 9 24.21614 49.53407 111-60°°°°(as #12)

5 40 20.76436 37.54656 001-45°°°°
6 42 8.123430 23.39501 001-45°°°°
7 35 4.667793 15.98327 001-45°°°°
8 14 3.341908 20.71335 001-45°°°°
9 7 2.976251 19.91663 001-45°°°°(as #14)
10 25 2.056147 15.77146 001-0°°°°
11 5 1.338430 1.991897 001-45°°°°
12 31 1.325586 2.469966 001-45°°°°
13 16 1.313316 2.550029 001-45°°°°(as #5)
14 29 1.286954 3.685012 111-60°°°°
15 23 1.121591 16.89479 111-0°°°°(111-60°)
16 33 0.813918 6.257399 111-0°°°°(111-60°)
17 38 0.544681 10.22191 001-0°°°°
18 27 0.474838 13.69446 001-0°°°°
19 2 0.086460 9.325174 111-60°°°°(111-0°)

Table 5.3.2 Combining components with different crystal orientation for forming a circular
distribution of the phase retardation and its compensation

Orientation 001-0°°°° 001-45°°°° 111-0°°°° 111-60°°°°
2.056147 1.33843 16.89479 9.325174
0.474838 2.976251 6.257399 49.53407
0.544681 3.341908 89.97305 50.15022

40.50317 1.313316 3.685012
1.325586
4.667793
20.76436

Contribution
of

Components

8.12343

� 43.57883 43.85107 113.1252 112.6945

The BISD compensation for off-axis points is more difficult, because the distribution
of the birefringence is not symmetric, but in general the behavior for such a field point
is comparable to that of the axial point. In all cases we studied the compensation for
the axial point helps the compensation for the off-axis points. In order to demonstrate
this, we show the pupil map for the off-axis (with image height 16.4 mm) point for the
compensated on-axis system discussed above. It is seen that in spite of increasing the
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mean retardation value the standard deviation and the image quality are acceptable.
For off-axis points it would be useful to have software support for the arbitrary choice
of the crystal orientation during optimization.
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Figure 5.3.1 Results of the phase retardation compensation (ray bifurcation is not included in the
simulation): a) optical system with compensated phase retardation (the crystal orientation of the
components is shown); b) pupil map for the compensated system; c) simulated image of the test-
object for the uncompensated system; d) simulated image of the test-object for the compensated
system; e) simulated image of the test-object for system without including the BISD-effect.
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Generally speaking each type of lithographic objective requires a specific
compensation approach. For instance, the optical system shown in Figure 2.5.4 [46]
consists of eight optical components and it has a relatively small total track in glass.
However, the approach discussed above cannot be applied  because the phase
retardation given by different components have different order of magnitude. The
small number of components is not sufficient for the use four basic crystal
orientations (<001>-0°, <001>-45°, <111>-0°, <111>-60°) which should have the
same order of magnitude of the phase retardation in order to correct it.
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Figure 5.3.2 Results of the phase retardation compensation for off-axis image point: a) pupil
map; b) image of the test-object for the optical system compensated with clocking approach.

For the compensation of phase retardation in this optical system another approach was
applied. It turns out that for this system the contributions of separate components are
of the same order of magnitude if they are oriented along <011> directions. Moreover
most components are situated in the part of the system where the marginal ray angle
with the optical axis is not large and the pupil maps of certain components possess
only the central zone of the typical pupil maps for the <011> directions in Figure
4.4.3. It is seen from this figure that in the region, close to the optical axis, the
orientations of the phase retardation for crystal orientations <011>-0° and <011>-90°,
are orthogonal. Thus we can use only one clocked crystal orientation in order to
compensate the phase retardation. The selection of the orientation of the components
in the optical system was done on the basis of the method, described above, with
classification by the single component contribution in the cumulative phase
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retardation. The orientation of the components, cumulative pupil maps for <011>-0°
and <011>-90° and the final compensation result are shown in Figure 5.3.3
As in the case of the first example, such an arrangement allows compensation the
effect without or with minor additional optimization and does not break the
geometrical aberration correction. In all cases the final compensation can be done by
adjustment of the lens thicknesses.
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b)
Figure 5.3.3 Compensation of the phase retardation in a DUV lithographic system with small
number of components. a) Optical system layout [46]; b) phase retardation pupil maps of
cumulative retardation for <011>-0°°°° and <011>-90°°°° directions and total retardation value.

On the basis of our experience we propose a general strategy with the following steps:
•  Computation of the pupil maps for basic crystal orientations (<001>, <111>,

<011>) for each component assuming that this component is the only one with the
phase retardation.

•  Classification of components according to their contribution to the cumulative
phase retardation.

•  Select a compensation strategy depending on number and position of components,
thicknesses, balance contributions, total track in glass etc.

•  Apply this compensation strategy to the optical system.
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Final optimization including rotation of crystals, adjustment of lens thickness and
curvatures.

5.4. Correction of the phase retardation with the aid of stress-induced
birefringence

Another compensation approach describes the use of a photoelastic effect for the
BISD compensation [47]. It was already mentioned that the stress-induced
birefringence has a similar nature [19], [20]. The stresses applied for obtaining stress-
induced birefringence can be caused by tension, pressure, changing thermal gradients
in crystals or by ion diffusion.
By analogy with Eq. (3.3.1) we can write that in the case of the photoelastic effect the
impermeability tensor 1−

ijε  has an additional stress-induced contribution

( ) ( ) lmijlmijijij q σωδωεσωε )(, 11 += −− , (5.3.1)
where ijlmq  is the piezo-optical coefficient matrix, and lmσ  is the stress tensor.
However from Eq. (3.3.1) we have

( ) ( ) mlijlmijijij kk)(, 11 ωβδωεωε += −− k . (5.3.2)

Thus the complex variance of 1−
ijε  can be written as

mlijlmlmijlmij kkq βσε +=∆ −1 . (5.3.3)
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Figure 5.4.1 Compensation of the phase retardation by stress-induced birefringence. In the left
picture the total phase retardation of the system without applied stress is shown. In the middle
we see the phase retardation pupil map of the compensator. In the right hand picture, the total
phase retardation distribution is presented.

This effect can also be modeled and analyzed with the help of modern optical
software such as Code V [47]-[50]. For modeling stress-induced birefringence in
Code V, two files should be supplied for each optical element [31]. The first one
represents the magnitude of the birefringent index difference as a function of the
position on the surface and is in units of nm/cm i.e. the data represents the increase in
optical path of the slow component as compared to the fast component per unit length.
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The second file represents the orientation, in degrees, of the crystal axis of the
medium (i.e., the direction of the stress vector) with respect to position on the surface.
In Figure 5.4.1 we show the example of compensation of the phase retardation for the
optical system shown in Figure 2.5.4. In this case we apply stress to the component
situated near the system stop because in this case the contributions for all field
positions are similar. As it is seen from the drawings, the effect can be very well
compensated. However, in practice it is very difficult to correct the large retardation
value without risk of destroying the components. It is also unclear how to change the
orientation of the phase retardation when tensions or stresses should alternate within
one component. The sharp separation between orientation of the  phase retardation in
the neighboring pupil positions should be avoided as well. In our view this method
can be successfully applied for the compensation of the residual phase retardation
remaining after clocking.

5.5. Correction of the phase retardation with birefringence compensator
Some references suggest the use of the natural crystal anisotropy for the correction of
spatial dispersion [51]. There are media, transparent in the deep UV range, which
have a too large birefringence value to be used as lenses, but thin compensator plates
produced from such a material can contribute a small birefringence value. Examples
of these materials with natural birefringence are uniaxial crystals such as SiO2 (crystal
quartz), Al2O3 (sapphire), MgF2 (magnesium fluoride), LaF3 (lanthanum fluoride).

One-plate retardation compensator
A simple phase retardation compensator can be produced with one plate. For the
radially symmetric distribution of the phase retardation the optical axis of the crystal
should be oriented along the system axis. The example of this one-plate compensator
for the point object on the optical axis is shown in  Figure 5.5.1.
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Figure 5.5.1 One plate retardation compensator: a) one-plate compensator, b)  theoretically

computed retardation pupil map; c)  pupil map obtained with optical design software.

In this case the phase retardation value is defined by the expression
2

22
20
0

2 ( ) sin
sin1

e on n d

n n

π αδ
λ α
−=

−
, (5.4.1)

where α is the angle between the ray and the optical axis and d is the plate thickens.
The circular distribution of the phase retardation distribution suggests to use it for the
compensation of the circular distribution of the phase retardation obtained with
<001>-0° and <001>-45° or <111>-0° and <111>-60° combinations (see Figure 5.2.1
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and Figure 5.2.2). In this case the first "retardation ring" in the distribution shown in
Figure 5.5.1 b) can be superimposed with the ring obtained by clocking. The position
for the compensator in the optical system can be chosen near the object point (for
adjustment of the retardation value for different field points) or near the system stop.

Two-component compensator
In this compensation approach we use two plates. One of them is made from a cubic
crystal material and the other from a crystal with natural birefringence, transparent in
the deep UV (SiO2, Al2O3, MgF2, LaF3). The indices of refraction should be as close
as possible. The outer surfaces of these plates are plane and the inner surfaces are
identical and separated by a thin air space. Therefore this thin-plate construction
doesn't actually influence the ray path but has a great impact on the state of
polarization and consequently on the phase retardation of the rays. The inner surface
profile can be optimized in order to minimize the total phase retardation of the
objective. This plate construction can be positioned e.g. in the stop of the optical
system.

SiO2

CaF2

Figure 5.5.2 Two-component compensator.

By changing the shape of the inner profile it is possible to obtain various retardation
pupil maps (Figure 5.5.3). More complex distributions or combinations of the shown
maps are possible.
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Figure 5.5.3 Phase retardation pupil maps obtained with different inner profiles of the two-plate
compensator. The shape of the surface was modeled with the aid of Zernike polynomials.

In principle, this approach offers the widest possibilities for compensation because the
shape of the surface can be tuned in order to adjust it to the phase retardation
distribution to be compensated.

5.6. Conclusions
We have discussed three basic approaches for the compensation of the phase
retardation. All concepts assume the presence in the optical system of two groups of
components contributing with almost the same distribution of the retardation
magnitude but with the orthogonal retardation orientation.
The first concept (clocking) uses the different dependence of the phase retardation for
different crystal orientations. It was shown that by combining them in a certain way it
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is possible to reduce the image quality loss significantly. Several approaches for this
combination of the crystal orientation were discussed.
It is also possible to use the photoelasticity effect for the phase retardation
compensation. It this case it is possible to introduce stress or tension in the crystal
body to achieve the desired distribution of the retardation. This approach can be quite
successful but has "mechanical" limits.
The last approach exploits natural crystal birefringence for compensation. The results
of the compensation are also promising; for instance, the retardation distribution can
be asymmetrical with respect to the center of the pupil, which is difficult to realize
with the clocking strategy.
The main conclusion of this chapter is that the phase retardation effect in deep UV
lithography can be compensated. This compensation requires an additional effort from
the optical designer and limits certain other possibilities if the optical design; but in
our view the birefringence effect can be reduced to a sufficiently low level.
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6. Optimization

6.1. General optimization problem
In our competitive world, only the best feature (safest, cheapest, fastest, etc) is good
enough. This is why optimization is very frequent in application. Optimization is the
problem of finding the best set of admissible conditions to achieve the objective,
formulated in mathematical terms. The solution of this task is a necessity in many
areas, such as transportation logistics, packing and other object arrangement
problems, potential energy models in computational physics and chemistry,
classification and visualization, model fitting to data (calibration), forecasting in
economics and finance etc [52]-[55].
The quality of a solution is measured by a single number, a value of the error
function, sometimes also called merit function (MF), )f(x  which can be of any nature
(price, distance, energy etc). In this case ),...,( 21 nxxx=x  is the set of optimization
parameters varied to achieve the goal and n  is a dimensionality of the problem. Thus
x defines a point in an n-dimensional variable space X, which is composed of all
possible combinations of variables n   , i xi  ...,,2,1= . In general case we are
interested in finding the extremum of )f(x , but without loss of generality, we can
limit our discussion to a minimization problem, because a maximization problem can
always be transformed into minimization problem by negating the error function.
Often the range of optimization variables is limited by boundary conditions and the
additional relationships between variables are required. These optimization constraints
are expressed as a function of parameters that must be strictly equal or less some
defined limit.
Depending on whether the variables take discrete or continuous values we can classify
optimization problems as follows:
•  Continuous problems: x is a vector of continuous variables;
•  Discrete problems: x is a vector of discrete variables, where each component xi

can take discrete and finite values, for instance integer numbers (pieces).
•  Mixed-integer problems: some variables take discrete values while others take

continuous ones.
Mathematically the problem of optimization can be formulated as

) f(x minimize
subject to 0 )(gi ≤x , ),...,( ,0 21 ni xxx ) (h == xx  (6.1.1)

where )f(x  is an error function that we want to minimize, mhhh  ..., ,, 21  is a set of m
equality constraints, and kggg  ..., ,, 21  is a set of k inequality constraints. The
minimum is an unconstrained stationary point when

0..., ,,)(
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nx
f

x
f

x
ff x ,   (6.1.2)

where )(xf∇  is gradient of )f(x . This is a vector field that, for a given point x, points
the direction of greatest increase of )f(x .
Generally there are three ways for implementing constraints during optimization.
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1. Eliminating constrains
The simplest way to satisfy constraints is to eliminate certain variables using
constraint equations and solve a reduced problem of minimization of *)(xf . However
it is not possible if the dependence is highly nonlinear as it mostly happens.
2. Penalty function
Consider, for simplicity, a problem with one equality and one inequality constraint. In
this case a new minimization function is constructed in the following form

2 2( ) ( ( ) ( ))f p h g+ +x x x ,   (6.1.3)
where 1>>p  and the inequality constraint ( )g x  is taken into account only when it is
violated. In this case the minimization function increases rapidly, forcing the
optimization routine to solutions where the constraint is not violated.
3. Lagrange Multipliers
This is the advanced way for implementing constrains. With one equality constraint,
in order to satisfy the constraint the solution should lie on the surface 0=)h(x . At the
constraint minimum )(xf∇  is parallel to )h(x∇  i.e.

)()( xx hf ∇=∇ λ .   (6.1.4)
In the case of n-constrained optimization the following relationship is required

nn hhhf ∇++∇+∇=∇ λλλ ...)( 2211x ,   (6.1.5)
where the scalar values nλλλ ,...,, 21  are called the Lagrange multipliers. This
technique can be generalized for inequality constraint as well [56].
 In general case the dependence )f(x  is non-linear and it is not possible to predict its
behavior everywhere in the domain permitted by constrains. The optimized function
may also posses many maxima and minima. The maxima and minima of )f(x  can
either be global (the highest or lowest value within the whole variable space X) or
local (the highest or lowest value within some certain region around the given initial
point). Accordingly we can classify any optimization strategy as local optimization
(which finds from the starting point one of the nearest local minima) or global
optimization (which finds the global minimum). Normally the local optimization is an
iterative process performing step by step a descent to the local minimum.

Local optimization methods
The most well-known local optimization strategies can be listed as follows [57]:
1. Bracketing a minimum
A region in the X space containing an expected local minimum is bounded by a group
of points: in 1D by two points (a line segment), in 2D by three points (a triangle), etc.
After that a direction of a decreasing function is found and the new estimation region
is defined.
2. Downhill Simplex Method (Nelder-Mead)
This method assumes to enclose the local minimum inside an irregular volume
defined by an n-dimensional convex figure called a simplex. The simplex is bounded
by (n-1)-dimensional hyperplanes and defined by n+1 linearly independent corners,
e.g. a tetrahedron for 3D. The simplex dimensions is continuously changing and
mostly decreasing and finally it is small enough to enclose the minimum with the
required accuracy. The operations of changing the simplex optimally with respect to
the function values found at the corners of the simplex are called contraction,
expansion and reflection, each of them determines new simplex corner points by
linear combinations of existing corner points.
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3. Newton�s Method
There is a well-known Newton quadratic approximation method for finding a
minimum of a function of one variable, which generates a sequence of second degree
Lagrange polynomials, and uses them to approximate where the minimum is located
[58]. It is assumed that near the minimum the quadratics approximates the shape of
the error function with sufficient precision. The resulting sequence of minimums of
the quadratics produced a sequence converging to the minimum of the objective
function. Newton's search method extends this process to functions of n independent
variables. Starting at an initial point, a sequence of iterations can be constructed
recursively according the formula

1
1 [ ( )] ( )i i i iHf f−
+ = − ∇x x x x ,     (6.1.6)

where )(xHf  is the Hessian matrix of )f(x  i.e.

ji
ij xx

fHf
∂∂

∂=
2

)]([ x . (6.1.7)

If the objective function is well-behaved and the initial point is near the actual
minimum, then the sequence of minimums of the quadratics will converge to the
minimum of the optimized function.
4. Gradient Descent Method (Steepest Descent)
This method starts at an arbitrary point xi and moves, as many times as needed, from
point xi to the point xi+1 minimizing along the line from xi in the direction ig of the
local downhill gradient )( if x∇−

)(1 iiiiiii f xxgxx ∇−=−=+ αα , (6.1.8)
where the parameter iα  changes to find the lowest point on the trajectory of the
downhill gradient (see Figure 6.1.1). Moving in this way we always move along
orthogonal directions perpendicular to the corresponding equimagnitude contours (i.e.
the contours along which the function has a constant value). The multidimensional
problem in this case is reduced to the one dimensional minimization along the
gradient direction.

Figure 6.1.1 Converging to the local minimum in the case of Steepest Descent Method. The search
directions are orthogonal to each other and to the corresponding equimagnitude contours.

5. Conjugate Gradient Method
This method is based on the gradient descent method but upgraded with an idea of
conjugate directions - directions which are independent of each other so that
minimizing along each one does not move away from the minimum in the other
directions. The conjugate gradient relies on selecting the successive direction vectors
as a conjugate version of the successive gradients obtained as the method progresses.
The first step is performed as in the case of the steepest descent method and then the
next direction for the line search is constructed to be conjugate to the previous
gradient direction, i.e.

1i i i iα+ = −x x d , (6.1.9)
where

  0 0( )f= ∇d x . (6.1.10)
Each next direction is determined as
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If we minimize along each of a conjugate set of n directions we will get closer to the
minimum efficiently. If the function has an exact quadratic form, one passing through
the set will get us exactly to the minimum. Otherwise we must repeat the cycle a
number of times [59].

6. Method of orthogonal directions
This method suggests obtaining conjugate directions without computing the
derivative. Sometimes it is not convenient to estimate the gradient )(xf∇  to obtain
the direction in a steepest descent method. As the first guess, it is then suggested to
minimize )f(x  along one first axis, then along second etc. Using minimization along
the search direction, move along the first direction to its minimum, then from there
along the second direction to its minimum, and so on, cycling through the whole set of
directions as many times as necessary, until the function stops decreasing ( see Figure
6.1.2).

Figure 6.1.2 Converging to the local minimum using the method of orthogonal directions. The
search directions are orthogonal to each other and parallel to one of the coordinate axes.

7. Method of Levenberg-Marquardt (Damped Least Squares)
In many cases, in particular in optical design, the error function is defined as a sum of
squares of operand functions, which have to be minimized i.e.

2

1
( ) [ ( )]

m

i i
k

F w f
=

=�x x , (6.1.12)

where iw  are some weight factors.
The damped least squares algorithm makes use of this specific definition of the error
function to arrive at a solution to the minimization problem. If we assume that the
changes in the operand functions are linearly proportional to the changes in the
variables, we can use the following equation to describe the error functions

( ) ( ) ( )J x+ ∆ ≈ − ∆f x x f x f x , (6.1.13)
where ( )Jf x  is Jacobian of ( )f x  and 1 2( , ,..., )mf f f=f

[ ( )] i
ij
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fJ
x
∂=
∂

f x (6.1.14)
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The method uses a search direction defined by ∆x  that is a solution of the linear set of
equations

( ( ) ( ) ) ( ) ( )T TJ J I Jλ+ ∆ = −f x f x x f x f x , (6.1.15)
where I is the identity matrix and λ is the non-negative damping factor, which is
adjusted at each iteration [60].

Global optimization methods
The problem of local optimization is well-developed and usually can be efficiently
solved, because there are a number of reliable algorithms. However the problem of the
global optimization is not trivial and in the general case does not have a standard
solution. Some sophisticated global search strategies are not strictly mathematical but
they assume a lot of empirical decisions based on tradition, previous experience and
intuition.
Global optimization methods can be divided into deterministic and stochastic methods
[61],[62]. Deterministic approaches include analytic and decomposition methods that
are usually problem-oriented and cannot be applied to the general case. Analytic
methods can find a solution in some simple cases of constrained optimization. The
decomposition methods are enumerative methods, they assume a decomposition of a
large problem into smaller subproblems that can be easier solved. These methods
cannot be applied when constraints are highly nonlinear and cannot be linearized.
Finally, decomposition methods are computationally expensive, because they have to
enumerate all possibilities of the solution.
Stochastic methods explore a multidimensional space according to some probability
distributions. Depending on the dimensionality of the problem and the way of
obtaining the best solution, stochastic methods may at best converge to the global
minimum with probability one when time approaches infinity. When a certain
solution, not necessarily the best one, must be found in finite time, stochastic methods
may be better than enumerative methods because they may find a good solution with
high probability.
A number of general optimization techniques have been developed that can be applied
to a wide range of problems. At the same time, many specific optimization methods
have been proposed for different global optimization problems. As in the case of local
search we list the most known methods according to Ref. [62]. Note that the items in
this list are not necessarily mutually exclusive.
I. Exact approaches
1. Simple  Strategies
This group includes the most well-known sequential or passive (simultaneous)
methods of global optimization, for instance, uniform grid search, space covering
sampling and even pure random search. These methods are universal, but they can be
used only for simple problems, because they are extremely ineffective in the case of
high-dimensional problems.
2. Complete (Enumerative) Search Methods
These approaches are based on a complete enumeration of the possible solutions and
can be mostly applied to combinatorial problems, or to some structured problems.
3. Successive Approximation or Relaxation Techniques
Here the original optimization problem is replaced by several more relaxed
subproblems which have a simpler solution. Successive improvement of subproblems
to approximate initial problem, for instance by cutting planes, diverse minorant
constructions, nested optimization, decomposition strategies etc.
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4. Homotopic and Trajectory Approaches
These methods have the aim to sequentially visit (enumerate) in certain way the
stationary points of the error function obtaining possible solutions. This group
includes path-following search strategies, fixed point methods, pivoting algorithms,
differential equation model based, etc. One of these strategies applied to the optical
system design has been developed as a part of this thesis and is discussed in Chapters
7 and 8.
5. Adaptive Stochastic Algorithms
This is spacious class of approaches, based upon random sampling in the
multidimensional space. Basically, it includes various random search strategies that
are convergent upgraded with parameter adjustment, clustering and deterministic
solution refinement, statistical stopping rules, etc.
6. Bayesian (Partition) Methods
These methods are based upon some a priori information, which enables a stochastic
description of the function-class modelled. After each optimization step, the problem-
instance characteristics are adaptively estimated and updated.
7. Branch and Bound Strategies
These methods have been developed for an exact solution of the global optimization
problem. They assume adaptive partition, sampling, and subsequent bounding
procedures. These procedures are iteratively applied to the collection of solutions,
bounding good 'candidates' remaining within the solution space. Branch and bound
methods integrate many specific approaches and may be implemented in many cases.
These are methods typically based on a priori knowledge about the problem, e.g. how
rapidly each function varies or whether an analytic formulation of all functions is
available.

II Heuristic approaches
1. �Globalized� Extensions of Local Search Methods
In this case the preliminary estimation of the good solution is performed on the base
of the experience, analogies or intuition and then the local search is used. These are
partially heuristic algorithms, often successful in practice. The starting points for the
local optimization are placed in ‘promising’ domains and even this task should be
done in the clever way, in order to allow convergence to different solutions. Very
often, sophisticated algorithm enhancements are applied to the basic optimization
strategy (see section 6.3 for example).
2. Genetic Algorithms, Evolution Strategies
These approaches heuristically resemble biological evolution (the ‘survival of the
fittest’ idea and the process of natural selection). They use an adaptive search
procedure based on a ‘population’ of candidate solution points. Each optimization
cycle includes a competitive selection that drops the worst solutions. The promising
competitors having ‘good health’ recombine with each other. Also a ‘mutation’
strategy is used by introducing a small random change to a single component of a
candidate. The recombination and mutation modifications are applied successively, to
generate new solutions exploring new good regions in the multidimensional space.
Different approaches, based on these evolution idea, can be constructed.
3. Tabu Search
The basic idea of this method is to prevent the optimization to move to points already
visited in the search space, at least for the upcoming several steps. This enforces
optimization to move far away from the starting point. In tabu search, the optimization
can temporarily neglect some constraints or accept new conflicting solutions, to avoid
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paths already investigated. This approach leads to exploring new regions of search
space.
4. Approximate Convex Global Underestimation
This strategy attempts to estimate the global convexity characteristics of the error
function based on directed sampling in search space.
5. Sequential Improvement of Local Optima
These strategies usually operate on adaptively constructed auxiliary functions, to
assist the search for gradually better optima. This general heuristic principle includes
tunneling, deflation, and filled function approaches (see section 6.3 for example).
6. Simulated Annealing
These methods are based upon the analogy of crystal structure which being cooled
spontaneously attempts to become in stable equilibrium configuration (local minimum
of potential energy). Mathematically simulated annealing is a generalization of a
Monte Carlo method. The approach is based on the manner in which liquid freezes or
metal crystallizes during process called annealing. In this process a liquid media,
initially at high temperature and disordered, is gradually cooled in the way that the
system at any time is near thermodynamic equilibrium. In the cooling process, the
media becomes more ordered and finally approaches a "frozen" ground state at zero
temperature. However if the melting temperature of the system is not high enough or
cooling is performed insufficiently carefully the system may have forming defects or
freezing out in metastable states (bad local minima).
The major difficulty in implementation of this method is that there is no always
obvious analogy for the temperature T with respect to a free parameter in the certain
optimization problem.
7. Continuation Methods
These techniques replace the original error function with a rougher but smoother
function which then has less local minima, and then use a local minimization
procedure to get in the vicinity of the global solution (see section Escape function in
section 6.3).

6.2. Optimization in optics. Specifics.
In our days the optical system designer uses highly sophisticated software tools [5].
The personal computer on your desktop is able to trace several million ray-surface
intersections per second. However, growing computation speed does not affect
proportionally the development time, because the most important part of the design is
creative approach. This observation remains true also for other optimization
applications.
Nowadays the design of an optical system often starts with the search of similar
existing designs because thousands of designs have been created and can be found in
the patent literature and lens databases. Alternatively, the designer can start with a
rough sketch of an optical system and then the optical software optimizes that sketch
to the specific design goal. However, in any case, a good optimization routine is the
kernel of modern optical program. The choice of the starting point is extremely
important because it defines whether a successful solution can be obtained in certain
period of time. This choice is based upon the designer’s experience and his insight
into the purpose of the optical system.
Most often an optical system, as an object of design, has to satisfy certain
specifications (field of view, aperture, wavelength range etc) and must possess the
necessary image quality. The optimization merit function in this case is a sum of
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weighted values of geometrical or wavefront aberrations by analogy with (6.1.12)
[5],[31],[63],[64]. In order to define an error function it is also possible to use the
squared differences between current and desired MTF values at certain spatial
frequencies. However the MTF optimization converges much slowly and may be used
only on the last optimization stage. Another example of the MF construction in optical
design is in the optimization of the multilayer coating structure where the minimum
(or sometimes the maximum) of the reflectance must be achieved [63].
Generally the optimization of optical systems can be classified as a mixed-integer
problem. Usually the parameters of this optimization are the positions of the
components in optical system, the optical features of these components that are
defined via surface parameters (curvatures, aspheric coefficients etc) and the
characteristics of refractive media (refraction indices and dispersion). Most of the
variables are continuous, but some of them (e.g. refractive indices and binary
coefficients) can be discrete. Normally a number of geometrical constraints and
required paraxial characteristics (focal length, magnification, pupil positions, image
distance etc) are also introduced. It often happens that the global minimum obtained
with global optimization is not acceptable because it may be very sensitive to the
tolerances and cannot be produced for affordable price. In this case some compromise
between the required image quality and the manufacturability of the optical device
should be found.
Most optical design programs use different modifications of the DSL algorithm for
local optimization [5],[63],[64]. These methods are very well developed and mostly
reliable. Some of global search methods discussed above can be applied to the
optimization of optical systems [65]-[70]. However, optical system design software
such as Code V® or Zemax® use their own global optimization routines which are
usually kept secret. One exception from these (commercially justified) "hidden"
approaches is the Global Explorer, an escape function approach, which is
implemented into OSLO® optical software [71]. This approach is discussed in more
details in section 6.3. The most reliable results in the global optimization of optical
systems are obtained with Global Synthesis which is a proprietary global optimization
algorithm implemented in Code V [31]. Although little is known about the type of
algorithm, it is used by many lens designers and it has proven to be a very powerful
global optimization algorithm capable of generating multiple local minima and
hopefully also the global minimum.

Optimization of lithographic systems
The issue of optimization of the lithographic objectives is probably the most difficult
in optical system optimization. Usually a modern DUV lithographic objective has
more than twenty components having aspheric surfaces. That results in more than one
hundred optimization variables. The most important constraints are the magnification,
total track and telecentricity. The degree of the aberration correction is defined by the
resolution limit required by ITRS. For lithographic objectives the strict respect of the
orthoscopic condition, i.e. the rigorous observation of dimensional proportions, is
required as well. That means that the distortion should be strictly corrected for the
whole field [9],[10].
The optical systems for extreme UV lithography have only several components
(mirrors) which, all of them, are high-order aspheres. However the NA value and the
field size are much smaller, so the aberration balance is different. In the optimization
of EUV projection objectives the additional difficulties are related with the occurrence
of obscuration [72].
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6.3. Local optimization strategies to escape from poor local minima
The presence of multiple local minima during optimization is one of the major
challenges of optical system design. Achievements in global optimization give the
optical designer a very powerful tool to escape from poor local minima. These
methods tend however to be very time-consuming and therefore designers often
attempt to improve solutions converging to unsuccessful local minima by using local
optimization strategies. Here we describe three very useful strategies that can be used
for local optimization.

Modifying the merit function
One of the empirical strategies to "tunnel" out of bad local minima (or to escape from
stagnation) is to modify the conditions under which local optimization algorithms
operate. This can be achieved by changing, for instance, the system parameters, some
parameters of the local optimization algorithm, or the merit function.
Many computer programs allow an easy switch between MFs based on transverse and
wavefront aberrations. Although occasionally successful, this strategy is limited by
the fact that when system parameters change the behavior of these two merit functions
is often very similar. The experience shows that the chances of success increase when
the "old" and "new" MFs both tend to zero for ideal systems but differ sufficiently
from another.      
A new type of merit function that may be a useful switch partner for the standard
merit functions in intermediate stages of optimization can be defined as follows:
Consider an arbitrary ray ( ′′ IA in Figure 6.3.1) that has in the image space the
direction cosines L and M with respect to the x and y axes, respectively. The two
components of the transverse aberration of the ray (defined with respect to the chief
ray) are denoted by δx and δy. The ray intersects in ′I  the image plane and in ′A  a
sphere centered in the intersection point I of the chief ray with the image plane. The
radius R of the sphere should be chosen larger, but still of the same order of
magnitude as the length I ′I of the transverse aberration vector. The length ′R  of the
segment ′′ IA  is then given by

...8/2/11/ 2bbabaRR −−+=−+=′ , (6.3.1)
where we have used the abbreviations

( ) RyMxLa /δδ += (6.3.2)
and

( ) ( )22 2 2/b x y L x M y Rδ δ δ δ� �= + − +
� �

. (6.3.3)

Since for ideal imaging ′R  tends to R , the quantity 1/ −′ RR , averaged over all rays
for a given field point, can be used as an intermediate stage merit function (the
"radius" MF). The power series expression should be used instead of the exact
expression in order to avoid abnormal termination when for certain rays that have
large aberrations b becomes larger than 1.
In order to test it we implemented the "radius" MF as a user defined merit function in
CODE V. Figure 6.3.2 shows the evolution of the "radius" MF as well as the root
mean square (RMS) spot size and RMS wavefront during an optimization driven by
the "radius" MF. It can be observed that, while the "radius" always decreases, the
other two MFs actually increase beyond point A. Moreover, the RMS spot size and
RMS wavefront appear to be strongly correlated i.e. they increase or decrease at the
same time. In many other tests we have found that the behavior of the transverse
aberration along trajectories in the parameter space is much stronger correlated with
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that of the wavefront that with that of the "radius". Therefore, the "radius" may be a
more successful switch partner for the RMS spot size than the RMS wavefront.

A

A'

I

I'

R

R'

δy

Figure 6.3.1 The definition of the "radius" merit function

number of cycles

log(MF)

A

Figure 6.3.2 The evolution during optimization of the merit functions based on the "radius"
(thick line), transverse aberration (thin line) and wavefront aberration (dashed).

In fact, switching back and forth between the RMS spot size and the "radius" MFs can
sometimes lead to the much better solution even when we start from very
unsuccessful  initial configuration. For instance, a configuration very close to the
well-known Double Gauss objective was obtained by starting from plane-parallel
plates (that have a solve on the last surface to keep the required focal length).

Escape function
The basic idea of this approach is to upgrade the initial error function with an escape
function in order to prevent the convergence to unsuccessful local minimum [73].
This escape function can be defined as
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1exp)(x , (6.3.4)

where xLMi is the position of the local minimum from which the design is to escape, wi
are weights for design parameters, H and W are height and width of the escape
function as shown in figure in Figure 6.3.3.
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For a successful escape, the escape parameters H and W have to be determined.
However, the choice for these parameters is difficult and they are found by trial and
error since the size and shape of the regions of attraction are unknown.

Figure 6.3.3 Usage of an escape function to find a new local minimum. The local optimization
converges towards a certain local minimum. To escape from the region of attraction of this
minimum, an escape function is added to the error function. The old local minimum then
disappears and the local optimization can now escape towards in a minimum.

This algorithm is not as deterministic as it might appear at first sight. The first step of
the local optimization starts at the position of the old local minimum. In this point, the
gradient of the escape function is also zero (the old minimum is now a local
maximum) and all directions are now downward directions. Hence, the direction of
the first step will be unpredictable. At the same time constraints can be well satisfied
as the algorithm makes use of local optimization.

Over-designing
A different potentially useful strategy to escape from poor local minima is to
temporarily over-design the system. The essence of this approach is to make available
for optimization more system parameters than a designer may use for the given
aperture and field specifications. For instance, it is possible to temporarily relax some
requirements for system specifications or change the balance of components of the
MF by changing weights of their contributions.
A simple example of this idea is shown in Figure 6.3.4, where the Cooke Triplet is
obtained by starting from plane-parallel plates. Using the default Code V RMS spot
size and starting in point O (plane parallel plates with a solve on the last curvature to
keep the desired focal length) the solution reaches the local minimum A, but the MF
in this point is still high. In this point the MF is modified by reducing the off-axis
field weights to values close to zero. Thus, between the points A and C the
optimization uses all variables only to correct on-axis aberrations of different orders
(over-designing). Because off-axis aberrations are (almost) neglected by the
optimization algorithm, the transverse aberration in point B becomes very large.
Despite this fact, when in point C the MF is switched back to default, the system
easily reaches the standard Cooke Triplet shape (D) where the imaging quality is
considerably better than in point A. Note, that along the entire trajectory the standard
merit functions based on transverse and wavefront aberrations are strongly correlated.
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Figure 6.3.4 Evolution of the standard merit functions based on transverse aberrations (thin line)
and wavefront aberrations (dashed) as well as the evolution of a merit function with very small
off-axis field weights (thick line), in the process of obtaining the Cooke Triplet.  Between O and A
and between C and D the driving merit function is the standard transverse aberration. Between A
and C the driving merit function is the one with reduced field weights.

This strategy turns out to work well also for poor local minima of more complex
systems. In more general situations, if the system should have only spherical surfaces,
a similar over-designing effect is sometimes achieved by temporarily making the
surfaces aspheric, including the aspheric coefficients in the optimization, and then
reducing them gradually back to zero. The temporary increase of the dimensionality
of the variable space often creates new opportunities for descent directions at the
location of the poor local minimum.

6.4. Conclusions
It this chapter we discussed the general optimization issue and its peculiarities
applying to the optical system design. A number of local and global optimization
approaches were discussed. The Damped Least Square algorithm is usually credited
as  the most efficient local optimization algorithm in optics. However, the principle of
the most reliable global optimization engine among those presently in use in optics is
unknown. Thus it is necessary to provide the optical community with more insight
into this problem.
Finally, three optimization strategies based on the local optimization in order to
escape from a local minimum are discussed. The first strategy is to radically modify
the error function. The old and new error function should both tend to zero for ideal
systems but must differ sufficiently from another. The second strategy assumes an
upgrade of the MF in order to get out from the undesired local minimum. The third
strategy is to temporarily over-design the system, i. e. to make available for
optimization more system parameters than a designer would normally use for the
given aperture and field specifications.
We have also observed that, when switching between the merit functions, within a
certain range on the trajectory, this switching is much more successful than in others.
This leads us to the idea that there are points in the MF landscape which, if slightly
perturbed, may converge to the different local minima. This fact will be investigated
further in the next chapter.
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7. Optimization via saddle points

7.1. Topography of the MF space
A characteristic feature of present-day global optimization methods is that they find
local minima only as isolated points in the parameter space of the system, with no
information about the MF topography around the separate local minima or in the
space between them. The strategies presented in Chapter 6 suffer from the drawback
that their success depends to a large extend on serendipity. It is very hard to predict
when they will work and when not. Therefore, in this chapter we will discuss a very
different strategy, that also offers a deep insight into the peculiarities of the specific
design case. We will show that, with some enhancement of the local optimization
algorithm, it is possible to move from one local minimum to a neighboring one by
locating a saddle point between them. An important issue to be examined is the
following: if we are in the vicinity of a given local minimum (in its basin of
attraction) can we somehow feel the presence of a neighboring local minimum?
Let us first start with a simple mountain-landscape analogy. A tourist wants to walk
from one valley of the landscape to a neighboring one, and spend the least amount of
effort in his travel. The optimal path would then be one that passes through a
mountain pass. A mountain pass is in fact an intuitive example of a saddle point.
Returning to optimization, the strategy we propose is the following: for finding a
neighboring local minimum we find first a saddle point that leads to it. It is very
difficult to find some order in the topography of nonlinear merit function. In our view
the saddle points are the necessary element for understanding the MF structure. In this
chapter we show that, when certain quite general conditions are satisfied, the MF
landscape has a remarkable property, which we could not find mentioned in earlier
literature. The local minima then form a network in which all nodes are connected via
links that contain a special type of saddle point. On the other hand, it is known for
several decades that a way to find a new local minimum is to identify a saddle point
on the boundary of its region of attraction [74],[75].
Figure 7.1.1 shows a two-dimensional saddle point. As for local minima the gradient
of the merit function vanishes at the saddle point. However, while in one direction the
saddle point is a minimum, in the other direction it is a maximum.

 
a) b)

Figure 7.1.1 a) Saddle point in a two-dimensional solution space. At the saddle point, the merit
function has a minimum in one direction and a maximum in the direction perpendicular to the

first one. b) The equimagnitude contour plot together with the gradient plot.
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7.2. Saddle points: Morse index
In our discussion we consider for simplicity a global optimization problem with
continuous variables, having no constraints or only equality constraints, and assume a
MF of the form
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where ai are image defects computed with ray tracing, wi the corresponding weights
and the tilde denotes the target values for the corresponding ai. A point in the solution
space is described by the vector x = (x1, x2,..., xN) whose components are the N
optimization variables. The critical points in the N-dimensional solution space are
those points for which the gradient of f vanishes
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In this section we will focus on the behavior of the equimagnitude surfaces of f, which
are N-1 dimensional hypersurfaces in the solution space along which f is constant. In a
small neighborhood around a critical point, the equimagnitude surfaces are given by

ˆ ˆ[ ( )]ij i jHf x x const=� x , (7.2.3)
where the circumflex denotes the values of the optimization variables in a translated
coordinate system that has its origin at the critical point, and where )(xHf  is the
Hessian matrix of )f(x  defined according (6.1.7).
As known from linear algebra, the coordinate system can be rotated in such a way that
the quadratic form on the left-hand side of Eq. (7.2.3) contains only squares of the
variables (denoted below by a bar) in the new coordinate system. The equimagnitude
surfaces around the critical point now become

 2
i ix constλ =� . (7.2.4)
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Figure 7.2.1 In a small neighborhood around a local minimum or maximum, the equimagnitude
surfaces are ellipsoids having their axes oriented along the eigenvectors of the matrix A.

The axes of the new coordinate system are then oriented along the eigenvectors of
)(xHf , and the factors λ i in Eq. (7.2.4) are the corresponding eigenvalues. Thus, as

shown in Figure 7.2.1, in the case of local minima or local maxima the equimagnitude



Optimization via saddle points 77

surfaces around these points are ellipsoids with axes oriented along the eigenvectors.
The way to perform the rotation of the coordinate system will be discussed in more
detail in this chapter.
An important characteristic of critical points for which the Hessian of f has a nonzero
determinant is the number of negative eigenvalues of the Hessian (the so-called
Morse, or Hessian, index) [76]. A negative eigenvalue means that along the direction
defined by the corresponding eigenvector of the Hessian the critical point is a
maximum. Thus, local minima have Morse index 0 (all eigenvalues are positive),
maxima have Morse index N (all direction are downward), and for saddle points the
Morse index has values between 1 and N-1. Equimagnitude surfaces around a saddle
point with MI=1 consist of one surface for MF values higher than that of the saddle
point while they consist of two separated surfaces for equimagnitude values lower
than that of the saddle point (see Figure 7.2.2). Note that equimagnitude surfaces
having some value f=f0 of the MF encircle regions in the solution space for which
f<f0. If for instance f0 is the MF of a local minimum then the equimagnitude surface
(or the part of it situated near the minimum) reduces to one point, the minimum itself.
For slightly larger values of f0 (a part of) the equimagnitude surface encircles a small
ellipsoidal region around the local minimum. If the value of f0 continues to increase
then the encircled volume also increases.

a) b)  c)
Figure 7.2.2 Typical behavior around a saddle point having a Morse index of one. The merit
function value at the saddle point is fsp. a) for f<fsp, we have two surfaces. b) for f=fsp the two
surfaces only touch at the saddle point and encircle the surfaces drawn in a). c) for f>fsp one
surface encircles the saddle point and all other surfaces with smaller equimagnitude values.

As will be shown below, if we are interested in the detection of local minima, the
saddle points with a Morse index of one (SPMI1) play a special role. For the present
discussion it is sufficient to keep in mind that a SPMI1 is a maximum in one direction
(the downward direction), and a minimum in a N-1 -dimensional hyperplane
orthogonal to that direction. If, for instance, N = 2, then every saddle point is a
SPMI1. Intuitively, in the case of many dimensions, the downward directions of a
SPMI1 are similar to the downward direction of a two-dimensional saddle point, and
each of the N-1 upward directions is similar to the upward direction of a two-
dimensional saddle point.
Figure 7.1.1 b) and the enlarged detail of Figure 7.2.3 show the contour plot of the
merit function in the neighborhood of a two-dimensional saddle point. Close to the
saddle point, the equimagnitude contours are hyperbolas, whereas for the value of the
MF corresponding to the saddle point itself the equimagnitude contours degenerate
into a pair of straight lines (the asymptotes of the hyperbolas).
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Figure 7.2.3 Two local minima and a saddle point. In the enlarged detail, light gray indicates
lower and dark gray indicates higher values of the merit function (obtained by two-dimensional
cut through the 5-dimensional merit function landscape of a Cooke triplet).

7.3. Networks of local minima
We will now show in an intuitive way that the local minima within an arbitrary
equimagnitude surface form a connected network, i.e. that there is a well-defined path
from any local minimum to any other local minimum in the solution space.  Consider
first the situation shown in Figure 7.2.3, two local minima in an N-dimensional
solution space. We assume the existence of a surface with f0 = fa  that encircles both
minima (the thick dashed curve). Then, for a sufficiently small value f0 = fb < fa (for
instance for fb slightly larger than the largest of the two MF values corresponding to
the local minima) the equimagnitude surface consists of two separate parts (the thick
dotted curves), whereas for f0 = fa we have only one encircling surface (thick dashed).
Assuming that the MF landscape is free of pathologies, for some value fS  with fb < fS
< fa  we will encounter the limiting case when the two separate parts of the encircling
surface will touch each other in one point S. We now show that the split point S is in
fact a saddle point with MI=1. If we consider a value of the MF ′= BB ff  slightly
lower than fS, the corresponding equimagnitude surface will be split. Let then B  and
′B  be the two points on the separate parts of the equimagnitude surface for which the

length of the segment ′BB  is minimal. (See enlarged detail in Figure 7.2.3.)
Obviously, along the line ′BB  the split point S is a maximum. We now consider an
equimagnitude surface with a MF ′= AA ff  slightly larger than fS. Since this
equimagnitude surface encircles the one with f0 = fS, any line perpendicular to ′BB
and passing through S will intersect it in two points, denoted by A  and ′A  in Figure
7.2.3. Along ′AA  the point S is then a minimum. Since this is valid for any choice of
the line ′AA  in a N-1 dimensional hyperplane orthogonal to ′BB , S is a minimum in
N-1 directions, and is thus a saddle point with MI=1. If we now choose the points B
and ′B  as starting points, local optimization will generate two paths in the solution
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space that will lead to the two minima. Together with the saddle point, these two paths
form the link between the two local minima.
Assume now that we have an equimagnitude surface with some (large) value of f0  =fa
that encircles an arbitrary number p of local minima. (In Figure 7.3.1. where p=3, this
is the outermost contour.) If we decrease f0, at some value fS1 < fa the encircling
surface will split into two surfaces that will now encircle p1 and p-p1 local minima,
respectively. (In Figure 7.3.1. we have p1=1.) Using the same reasoning as above, it
can be seen that the point S1 in Figure 7.3.1 is also a saddle point with MI=1. By
starting local optimizations at a pair of points obtained be slightly perturbing the
saddle point on both sides along the eigenvector with negative eigenvalue, we obtain a
link between one local minimum in the group of p1 encircled local minima, and one in
the group of p-p1 local minima. By further decreasing f0, we obtain successive splits
of the encircling surfaces. Each such split generates an additional link between two
local minima situated in the two different groups resulting from the split. When f0 has
reached a value that is lower than the MF of the lowest MI=1 saddle point (S2 in
Figure 7.3.1) all local minima encircled by the equimagnitude surface with f0  =fa are
linked together in a network via links that contain each a MI=1 saddle point.
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Figure 7.3.1 Several local minima and the saddle points between them (obtained by two-
dimensional cut through the 5-dimensional merit function landscape of a Cooke triplet).

We have thus shown that the local minima encircled by an arbitrary equimagnitude
surface (without critical point on it) form a connected network In some special
situations, it may be useful to modify this statement. If we have for instance a positive
MF that decreases to zero when any variable (or linear combination of them) tends to
infinity, then, in addition to the "usual" local minima we also have a continuum of
minima at infinity. For practical purposes we may be interested in a network in which
the links between "usual" local minima do not pass through infinity. Such a network is
formed for instance when a pair of equimagnitude surfaces exists such that both
surfaces encircle the "usual" local minima, and when the surface having the larger
value of the MF also encircles the other one.
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For our purposes, it is important to know whether in typical situations occurring
during optical system optimization we can always find such equimagnitude surfaces
that encircle all (useful) local minima. At the time of printing this thesis, we have
examined only a limited number of situations and further research is certainly
necessary. However, our results, presented in the next chapter, make us believe that
either this desirable property of the landscape of the MF (7.2.1) is satisfied
automatically, or that it can be achieved by modifying the optimization problem
adequately (e.g. by using inequality constraints). It is well known to optical designers
that outside some useful regions in the solution space the optical system
configurations tend to suffer from ray failure because some rays either miss surfaces
or suffer from total internal reflection. Close to ray-failure situations, the incidence
angles of those rays at the critical surfaces are large, therefore the aberrations and the
MF (7.2.1) of the given optical system configuration tend to be large. Therefore, close
to the ray failure borders we can expect in the solution space equimagnitude surfaces
having a large value of the MF. The local minima encircled by these surfaces form
then a network. The possibility of enforcing the desirable properties of the MF
landscape when these properties are not automatically satisfied should be further
researched.
It is important to note that this linking network is independent of the exact shape of
the equimagnitude surfaces and the dimensionality of the MF space. From a
topological point of view, two surfaces are considered equivalent if there exists a
continuous deformation that transforms one surface into the other one. Therefore, the
network of minima represents changes in the topology of the MF landscape. However,
we only consider topological changes for which the equimagnitude surfaces are split
for decreasing MF values (saddle points with MI=1) and topological changes for
which equimagnitude surfaces vanish (local minima). Other topological changes,
which might be of interest for other purposes, occur at critical points having a Morse
index higher than 1.

7.4. Locating saddle point: simple example
In order to illustrate a simple method for locating saddle points, let us first examine
the equimagnitude contours of the two-dimensional function shown in Figure 7.4.1.
This function has three local minima, A, B and C. It was already shown that in a very
small neighborhood of a local minimum the equimagnitude contours are always
ellipsoids. We can take one of them, as a reference, and call this ellipse the "reference
ellipse" for the given minimum. If some scale parameter is used (e.g. one of the half-
axes) it is possible to rescale the reference ellipse to any desired size, by keeping its
shape unchanged. The dashed lines in Figure 7.4.1 show the reference ellipse of the
minimum A, rescaled to four different sizes.
Let us now compare the shapes of the real equimagnitude contours with those of the
reference ellipses. The point S in Figure 7.4.1 is a saddle point. We observe that far
away from saddle points the shapes of the equimagnitude contours are close to those
of the ellipses. Close to the saddle point however, the shapes of the equimagnitude
contours deviate strongly from the ellipses. Our working assumption is that the
deviation of the shape of an equimagnitude contour from the reference ellipse is
maximal in the direction of a saddle point. A closer inspection of Figure 7.4.1 reveals
that there where this deviation of shape is maximal, the MF along the reference ellipse
has a minimum. Therefore, the simple method to sense the direction of a saddle point
would be to compute the minimum of the MF along rescaled reference ellipses. This
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means basically to do local optimization by imposing the reference ellipse as an
equality constraint.
If we are in the local minimum A and compute the MF along the smallest dashed
ellipse in Figure 7.4.1 we obtain the results shown in Figure 7.4.2. Since we are on an
ellipse, for each value of one Cartesian coordinate (e.g. x) we obtain two different
values of the other coordinate (y) and therefore two values for the merit function. The
two MF curves form together the closed curve shown in Figure 7.4.2. Note that we
have a minimum of the MF in the right part of the lower curve. The pair of
coordinates that corresponds to this local minimum is plotted in Figure 7.4.3 as the
right large dot. We observe that this dot points, as expected, in the direction of point
B.

A

B

C

S

Figure 7.4.1 The deviation of the shape of the equimagnitude contours (continuous lines) from
(properly rescaled) reference ellipses (dashed lines) is maximal in the direction of saddle points

(S).

It is sometimes possible to find several local minima around reference ellipses, which
then point towards different saddle points. For instance, by slightly increasing the size
of the reference ellipse around point A in Figure 7.4.3, it becomes possible to sense
the presence of point C (left large dot). Similarly, when we started in the local minima
B and C and optimized around (sufficiently large) reference ellipses we could sense
the presence of the two other minima, while still being in the basin of attraction of the
start minimum.

MF

             X

Figure 7.4.2 The two merit function curves corresponding to the upper and lower half ellipse
form together a closed curve.
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Once the direction of the saddle point has been determined, the saddle point itself can
easily be found. Figure 7.4.4 a) shows a two-dimensional landscape of the default
CODE V MF (which is based on the transverse aberration). The local minimum M1
corresponds to the triplet shown in Figure 7.4.5 a). The optimization variables are the
curvatures of the 3rd and 5th surfaces.

C

A

B

Figure 7.4.3 Sensing the directions of the saddle points that lead to the local minima B and C
from the neighborhood of the local minimum A.
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a) b)
Figure 7.4.4. a) Two-dimensional merit function landscape for a triplet, with two local minima M1
and M2 and the saddle point S between them. The two variables are the curvatures of the 3rd and
5th surfaces.   b)  Bar chart indicating the values of the merit function for M1 , M2 and S.

We determine first the direction of the saddle point as discussed previously (the small
dot closest to M1). Then we track this minimum by gradually increasing the size of the
reference ellipse and reoptimizing after each step (the succession of small dots
between M1 and S). At each step (small dot) we compare the value of the minimal MF
with the minimal MF at the previous step. As long as the minimal MF increases from
one step to another, we keep increasing the ellipse. When the MF starts to decrease,
we have passed the saddle point. Then we are already in the basin of attraction of the
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new local minimum and if we remove the ellipse constraint and optimize as usual we
obtain the new local minimum M2, which in this case is the well-known Cooke Triplet
(Figure 7.4.5 c)). The system corresponding to the saddle point S is shown in Figure
7.4.5 b).
In the bar chart shown in Figure 7.4.4 b) the bars represent the default CODE V merit
function for the starting local minimum, the saddle point and the final Cooke Triplet.
The difference between the heights of the first two bars (shown in dark) indicates the
height of the MF barrier that must be tunneled.
This basic strategy can be generalized and extended to a multidimensional parameter
space as is discussed in the next section.

    a  b          c
Figure 7.4.5 The triplets corresponding in Figure 7.4.4a) to the points M1 (a), S (b) and M2 (c).
The 3rd and 5th surfaces, whose curvatures are the optimization variables, are shown with thick
black lines. The 6th surface, which is controlled by a solve, also changes and is shown with a thick
gray line.

7.5. General algorithm for detection of the saddle points
A first practical utility of the discussed network structure is for global optimization.
This generally very difficult task can now be divided in three separate steps (see
Figure 7.5.1):
1. For a given local minimum, detect the MI=1 saddle points that connect it with the
neighboring local minima,
2. Starting from some arbitrary local minimum, find the rest of the network
3. When the network is known, select the best solution(s) or identify entire branches
along which the imaging performances of the nodes are satisfactory.
This procedure for global optimization is essentially different from other global
optimization strategies as the search for the global minimum is now split in two
distinct stages: a local minimization from saddle points and a local saddle point search
from minima (i.e. a search for the saddle points connected to the given minimum).
Ideally, repeated use of these two stages would find all Morse index one saddle points
and all minima. We thus try to find all minima in a structured manner where we only
consider direct connections between minima and saddle points. For a given minimum,
we only need to detect those saddle points for which the optimization paths lead
towards that minimum. Other saddle points can then be located from the other
minima. In Figure 7.3.1 it is thus not required to find S2 while using M1 as initial point
for the saddle point detection. It is sufficient to find S1 so that the local optimization
from S1 results into the location of M2. However, while initiating a search from M2, it
is required to find both S1 and S2.
In this section, we discuss our attempt to develop a global optimization method based
on this strategy. First, we will focus on the first step, the saddle point detection.
Fortunately, we have to detect only the saddle points with MI=1, while those with a
higher Morse index, which are more difficult to be detected, can be safely ignored for
the present purpose. For shortness, in the rest of this thesis a MI=1 saddle point will
be referred to as a "saddle point".
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Detect the saddle points
with MI=1 connected to

the current minimum

Initiate a local
optimization from
an arbitrary point
and find a local

minimum

Saddle point
detection performed

for all minima?

Perturb all newly found
saddle points and

optimize on both sides

Select lowest minimum

Yes

No

Pick new unexplored
minimum

Start

Figure 7.5.1 Flow chart for saddle point based global optimization

Although we may safely ignore saddle points having a Morse index higher than one,
detecting all saddle points that connect a given minimum to the rest of the network
remains a challenging task. Due to the high dimensionality of the optical MF space
and the non-analytical form of the MF, methods that require the frequent computation
and inversion of the Hessian matrix are not well suited, as they are too intensive
computationally. Furthermore, the frequent usage of constraints in optics requires an
algorithm for saddle point detection that is capable of efficiently dealing with (in-)
equality constraints.
As it was shown, the local minima within an encircling equimagnitude surface are all
connected through optimization paths generated from the saddle points that have a
Morse index of 1. Starting from such a saddle point, two distinct local minima can be
obtained by means of local optimization only. By detecting the saddle points that
connect a given minimum with the remainder of the network, we can in principle
systematically detect the complete network of minima (in practice, this strategy works
when the number of local minima is not exceedingly large). Once the complete
network has been detected, not only the global minimum is known but also the
relation between the various minima. A basic algorithm for the detection of the
complete network of minima is presented in Figure 7.5.1. Algorithms for finding new
local minima based on saddle point detection that have some similarities with our
method can be found in papers by Barkema and Mousseau [77]-[79] and by D. Wales
[80],[81] where the energy landscape of many atoms is studied.
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Search method
We have developed an algorithm for saddle point detection that is based on
constrained local optimization. First, a new coordinate system is defined with the
origin at an arbitrary local minimum M. In order to detect the saddle points that
connect this local minimum with neighboring local minima, we define a set of
directions, each characterized by an unit direction vector s. (Possible ways to define
these directions are discussed further.) For each such direction, we consider the set of
hyperplanes orthogonal to s

 1 1 2 2ˆ ˆ ˆ... N Ns x s x s x t+ + + = ,  (7.5.1)
where t gives the distance between the hyperplane and M along the normal that passes
through M. For a given value of t we compute the constrained minimum of merit
function in the hyperplane given by (7.5.1). Then for an appropriate choice of s, these
constrained minima form a continuous path connecting the saddle point with the
minimum as shown in Figure 7.5.2. Let ( )ˆ tsx and ( )F ts  be the position vector and the
value of MF corresponding to this minimum, respectively. Then the points on a given
trajectory are uniquely defined by the requirement that the gradient of MF is parallel
to s for all ( )ˆ tsx . Consider now a trajectory ( )ˆ tsx  generated with a minimum as

initial point. At a minimum, any direction s leads initially to an increase of ( )F ts . For
a given direction, if we start from the position of M at t=0 and increase t gradually, at
the beginning ( )F ts increases. A neighboring saddle point is detected when ( )F ts

reaches a maximum for some value tmax, provided that ( )ˆ tsx is continuous for the
range 0 < t < tmax (i.e. no jumps have been observed during the gradual increase of t).
This procedure is illustrated in Figure 7.5.3 where the hyperplanes are shifted into an
arbitrary direction. It is important to note that not all such searches lead to saddle
points; some of them will terminate in dead ends.

Figure 7.5.2 Paths between a local minimum and a saddle point generated by means of a
constrained local minimization orthogonal to a direction s. Each of these paths is defined with a
different search direction. Due to the local minimization in a plane orthogonal to s, the gradient
direction is constant and parallel to s for all points on a given path. The arrows indicate the
direction of the gradient for some points on the paths.
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However, a saddle point can only be reached if s is such that the saddle point is a
maximum into the direction of s while it is a minimum orthogonal to that direction.
For a saddle point with a given Hessian matrix )(xHf  the search is successful and
( )ˆ tsx  passes through the saddle point only if

 ˆ ˆ[ ( )] 0
i jij s sHf x x <� x . (7.5.2)

If this condition is not met, the path becomes discontinuous and does not lead to a
neighboring saddle point. However, new local minima (situated further away in the
network) can still be discovered in this way.

tmax
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LMLMLM
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Figure 7.5.3 Saddle point detection by using constrained local minimization. Starting at a local
minimum, ( )F ts  increases until it reaches a maximum at a saddle point. Although xs(t) may be a
complicated trajectory through the design space, the saddle point detection is now effectively a
one dimensional maximization problem for ( )F ts .

Search directions
One of the most important aspects for successful saddle point detection is a proper
initialization of the algorithm. The number of searches performed at each minimum
has to be determined as well as the search directions. We will show that choosing
search directions randomly is not an optimal solution because the resulting trajectories
will be initially concentrated in a narrow cone around the eigenvector with smallest
eigenvalue. We first discuss the appropriate choice of search directions and after that,
the required number of searches will be considered.
Since the equimagnitude ellipsoids in the immediate vicinity of the point M are often
strongly elongated, a useful set of search directions s can be determined on the basis
of the eigenvectors of the Hessian matrix computed at M. We will show that if we
start with an uniformly distributed set of directions s (Figure 7.5.4 a), for most
directions s the corresponding vectors ( )ˆ tsx , following the MF landscape, will then
be concentrated in a narrow cone around the first eigenvector (Figure 7.5.4 b). We
also show that if the directions s are oriented along eigenvectors the algorithm escapes
from this cone and  can explore different  regions of the solution space.
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a )                        b)
Figure 7.5.4 a) Uniform angular spread of search directions s around a local minimum. b) The
corresponding search trajectories ( )ˆ tsx  for small values of t in the case of elongated
equimagnitude surfaces. The search trajectories are oriented in the direction of the
corresponding s only if s if oriented along eigenvectors (thick lines), otherwise they tend to be
concentrated in a narrow cone along the longest axis of the ellipsoid.

Without prior knowledge of the location of the connecting saddle points, any direction
of search may be defined for starting the search at a minimum. However, by initiating
multiple searches from a given minimum, we want to explore different regions of the
MF space. The probability of detecting all connecting saddle points can then be
maximized by generating paths with a maximum spatial separation. To study the
spatial separation between paths generated with different directions of search, we
consider the quadratic region around a minimum where the equimagnitude surfaces
may be approximated by ellipsoids. In this region, the behavior of the MF is
completely determined by the Hessian matrix at the minimum. For a given Hessian,

)(xHf , the gradient is then given by
x∆xx∆xxM Λ==+∇ )()( Hff , (7.5.3)

where the diagonal matrix Λ  contains the eigenvalues of the Hessian matrix and the
components of the vector x   are measured along the directions of the eigenvectors of
the Hessian matrix.
The minimization orthogonal to s ensures that all points on a path generated with a
given direction of search have a gradient direction given by s. Hence, these points are
given by

sx 1)()( −Λ= tts γ , (7.5.4)
where γ  is a scaling factor depending on the distance, t as defined in Eq. (7.5.1). In
the eigenvector basis, the components of the path vector are then given by

 N,isttx iiis  ..., 2 ,1   ,)()( 1 == −λγ . (7.5.5)
Note that when some eigenvalue is very small, the component of the path vector along
the corresponding eigenvector tends to be much larger than the other components.
In the two-dimensional example shown in Figure 7.5.5, a search direction s is defined
with an angle α  with respect to the first eigenvector, i.e. the eigenvector with
smallest eigenvalue. The corresponding search path ( )ˆ tsx  is now given by (7.5.4) and
this path makes an angle θ  with respect to the first eigenvector.
With these definitions we have

                       
1

2tan,tan
s
s

x
x

1

2 == αθ . (7.5.6)
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Figure 7.5.5 Path ( )ˆ tsx  generated with an arbitrary direction s. The angles αααα and θθθθ are defined
with respect to the eigenvector with smallest eigenvalue (the longest axis of the ellipse).

Figure 7.5.6 Paths generated for a set of directions s defined with an angular separation of 30
degrees between them. The arrows indicate the direction of search. Note that most paths are

concentrated around the eigenvector with smallest eigenvalue.

It follows then from (7.5.5) that the two angles are related through

α
λ
λθ tantan

2

1= , (7.5.7)

where λ1 and λ2 are the eigenvalues of the Hessian matrix at the local minimum. It
follows from Eq. (7.5.7) that for very elongated ellipsoids (i.e. λ1<<λ2) most paths
tend to concentrate in a narrow cone around the eigenvector with smallest eigenvalue
(see Figure 7.5.6). However, we can use the direction of the second eigenvector of the
Hessian matrix (thick horizontal arrow) to escape from the narrow cone around the
first eigenvector in order to explore different regions of the MF space. For each
eigenvector two searches in opposite directions can be performed so that we have a
total number of four independent searches in two dimensions.
In general it follows from Eq. (7.5.5) that by defining the search directions such that
they correspond with the directions of different eigenvectors of the Hessian matrix the
paths are independent of the eigenvalues of the Hessian matrix. The paths then
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initially follow the directions of the eigenvectors and they are mutually orthogonal. In
the case of an N-dimensional design space, we can thus define N directions of search
corresponding with the directions of the eigenvectors. For each of the eigenvectors,
the search can be performed in opposite directions so that the total number of searches
is given by 2N. As will be shown below, the directions of the eigenvectors at a
minimum can be determined by means of local optimization.
Although a number of only 2N searches might seem insufficient when compared to
the number of saddle points that can be encountered in a typical design problem, it
should be realized that these 2N searches are performed at each minimum. As noted
earlier, at each of these minima, only those saddle points having a direct linkage with
the minimum need to be detected. According to our present experience with optical
system optimization, most saddle points have been detected several times indicating
that 2N searches are usually sufficient. If more than 2N searches are desired, Eq.
(7.5.5) can also be used to maximize the separation between these paths by taking into
account the eigenvalues at a minimum. However, for complex optimization problems,
it might be more efficient to use less than 2N search directions. As the main
difference between the Hessian matrix at a minimum and at a saddle point with a
Morse index of 1 is the sign of one of the eigenvalues, it might be sufficient to use
only those eigenvectors for which the eigenvalues are relatively low as we can expect
that those eigenvectors have a higher probability of becoming negative. In our
algorithm we use two searches in opposite directions for each eigenvector, i.e. a total
of 2N independent searches for each local minimum.

Original approach to the computation of eigenvectors
As discussed above an important step of the saddle point detection process is the
computation of the eigenvectors of the matrix given by Eq. (6.1.7) for the given local
minimum, i.e. the orientation of the axes of the ellipsoid shown in Figure 7.2.1. Since
this goal must be achieved within an optical design program, we have chosen a
technique based on local optimization. We have therefore transformed into a
computer algorithm a mathematical idea that is usually used to describe the rotation of
axes (shown in Figure 7.2.1) that diagonalizes the matrix )(xHf  [23].

′
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Figure 7.5.7 Computation of the eigenvectors based on local minimization.
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Consider around the local minimum M a hypersphere whose radius r = MQ is
sufficiently small so that the equimagnitude surfaces that intersect it are ellipsoids
given by Eq. (7.2.3) (see Figure 7.5.7). We first compute the direction of the
eigenvector that has the smallest eigenvalue, i.e. the direction of the longest axis of
the ellipsoids.  Since smaller ellipsoids have smaller values of f0, for the MFs of the
points P , P1 and P2 in Figure 7.5.7 we can write  f(P2)>f(P1)>f(P) . Therefore, a local
minimization of the merit function, constrained on the hypersphere of radius r, will
produce as a result one of the two points in which the inscribed ellipsoid (thick curve)
touches the hypersphere. Each of these two points can be used to define the direction
MP of the eigenvector. In order to improve the precision in our algorithm we find
both of these points. First we find one direction (MP) and then we take an opposite
direction (PM) as the first iteration in the hypersphere optimization in order to find an
independent estimate of the direction of the second half-axis. In order to compute the
remaining eigenvectors, we use the fact that they are all orthogonal to each other. We
will now use a coordinate system having its origin in M. Thus, if P has the coordinates

1 1 1
1 2ˆ ˆ ˆ, ,... Nx x x , the other eigenvectors must be situated in the N-1 dimensional

hyperplane orthogonal to MP, which is given by
1 1 1
1 1 2 2ˆ ˆ ˆ ˆ ˆ ˆ... 0N Nx x x x x x+ + + =  (7.5.8)

(In two dimensions, Eq. (7.5.8) is the equation for the direction MQ in Figure 7.5.7)
Adding Eq. (7.5.8) as a second constraint and reoptimizing along the hypersphere we
obtain the direction of the second eigenvector. By adding for each newly found
eigenvector an additional constraint similar to Eq. (7.5.8) and reoptimizing, all
eigenvectors are found one after the other.

7.6. Two-dimensional plots of merit function landscape
In this chapter we focused on the topography of the merit function landscape. Two-
dimensional MF plots of equimagnitude contours can be widely used for the analysis
of the behavior of the merit function. These plots can provide an additional
information about features of MF landscape, such as pathologies (e.g. MF
discontinuity), and can explain stagnation regions, SP stability, etc. However it is not
trivial to visualize a multidimensional landscape in two dimensions. For this purpose
we developed a special tool for generating two-dimensional cuts trough N-
dimensional space.
We compute the MF in the plane containing the most important points within the
certain region of the merit function landscape. It is known from geometry that each
plane can be defined via three points. In our case these three points can be two
neighboring local minima (M1 and M2) and the corresponding saddle point (S) via
which they are connected (see Figure 7.6.1). Sometimes, it is also useful to take a
local minimum (LM) and two close points (S1 and S2) on opposite sides of a saddle
point connected to LM. In this case another local minimum may not be shown. Each
point is defined by the set of coordinates like S(x1,x2,…,xn).
First of all we define two vectors 1 1V M S=

��

 and 2 2V M S=
���

 (see Figure 7.6.1a).
Because the length of these vectors can differ substantially, in order to increase
precision, the length of the smaller vector should be normalized to the length of the
long one (Figure 7.6.1b):

2 2 1 2/V V V V′ =
��� ��� �� ���

. (7.6.1)
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Figure 7.6.1 Definition of the coordinate system for the two dimensional MF plot: a) tree points
defining a plane; b) normalizing small vector; c) obtaining orthogonal components; d) introduced
coordinate axes.

Sometimes it turns out that directions defined by two vectors are almost collinear and
it is useful to choose a new coordinate set by taking orthogonal directions. It can be
done by replacing one vector by its component orthogonal to second vector (Figure
7.6.1c):

( ) 2

1 1 2 1 2 2/V V V V V V′ = − ′ ⋅ ′ ′
�� �� ��� �� ��� ���

. (7.6.2)
Finally, a new coordinate system is introduced (Figure 7.6.1d). The saddle point and
one local minimum are situated on one axis and the second local minimum is situated
on another axis. An arbitrary point P in the plane can then be defined as

1 2P xV yV= ′+ ′
�� ���

, (7.6.3)
where x and y are coordinates in the new coordinate system. In order to draw a two
dimensional plot, the MF value should be computed for x and y changing in
predefined limits.
In the general case we will observe the two starting local minima with one saddle
point between them, but occasionally the presence of other critical points can be
observed in the drawing region (see Figure 7.6.2). In principle this cutting plane can
be generalized to a more complicated surface, defined not by three but by more
crossing point.
We have used this visualization tool whenever we have encountered unexpected
behavior  in our saddle points detection. The insight obtained in this way has helped
us to improve our algorithms.



Optimization via saddle points92

Figure 7.6.2 Examples of two dimensional cuts through multidimensional merit function space.
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7.7. Conclusions
In this chapter we have examined the properties of the optimization solution space
from what mathematicians might call a topological perspective. Because this high-
dimensional space is usually very complicated, it is unmanageable without focussing
on particular features.
We have shown a special role of the saddle points in the merit function landscape in
optical system design. By analyzing the splitting or merging of the equimagnitude
surfaces when the corresponding MF value changes, we have observed that the local
minima of the merit function landscape in optical system design form a network.
Based on this idea, a new type of global optimization algorithm has been proposed.
The detailed techniques for the saddle point detection and choice of the search
directions were discussed. A simple saddle point detection example and an original
method for the computation of eigenvectors were presented as well. A special tool for
the visualization of the multidimensional merit function landscape in two dimensions
has been developed.
The algorithms based on this new "saddle point" concept might, in principle, not only
reproduce or supplement the results of presently known global optimization
algorithms, but also provide additional insight into the topography of the MF
landscape, as will be discussed in the next chapter.
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8. Optical system networks
We have shown in the previous chapter that, when certain quite general conditions are
satisfied, the MF landscape in optical system design has a remarkable property. The
local minima form then a network in which all nodes are connected via links that
contain a special type of saddle point. We will illustrate our idea and show in this
chapter examples of networks of optical systems. First we start with simple systems
and analyze the topography of the merit function landscape, then we pass on to the
optical systems with many variables. Because there are plenty of known optical
systems we will focus on the features of the most well known objectives. As will be
seen the regularities for these systems observed by us were not reported before and
they are valid for more sophisticated optical systems as well.
In the preceding chapter we have also described the algorithm exploring link by link
the entire network of local minima with the help of constrained local optimization for
detecting the SPMI1. We have implemented this algorithm in our computer program
NETMIN which uses for the local optimization and ray tracing the commercial optical
design program CODE V. These two programs communicate via the Windows COM
interface. Our program is also able to work in stand alone mode and to find  saddle
points and local minima of arbitrary continuous mathematical function of many
variables. In this case we use the local optimization algorithm of IMSL Numerical
Library [82]. Here, we present results obtained for MF spaces of simple optical
systems consisting of several elements.
We will also study the properties of the robust SPMI1 in the case of lens systems
consisting of spherical surfaces in which the distances between surfaces are negligibly
small. As will be shown in section 8.3, these systems are simple enough so that basic
properties of the set of saddle points can be predicted analytically.

8.1. Single lens
The simplest optical system, which has one free significant parameter for optimization
is a singlet. In this case, if we limit the design by using only spherical surfaces, we
have only the following optimization options: two curvatures, one lens thickness and
choice of glass type. Moreover in the case of a thin component (when the lens
thickness is much smaller than the focal length) the thickness does not influence the
merit function significantly. The proper choice of the glass type and a slight defocus
allow to change the magnitude of the merit function but not the topography of the MF
landscape. Normally one of curvatures is used to keep required focal length or
magnification constant and we finally can change only one curvature to optimize for
the better image quality. Usually, because of large aberrations, this system can be
used for the imaging purposes only in the case of small aperture and field. In the case
of infinite object distance and using the merit function of Code V (in which the image
defects are transverse ray aberrations computed with respect to the chief ray), we have
only one solution, which is an almost plane-convex lens oriented as shown in Figure
8.1.1. The unicity of solution is shown by the merit function plot in Figure 8.1.2,
which has only one minimum within the possible change of the first curvature,
without ray failure.
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Figure 8.1.1 The unique local minimum for a lens singlet with an object in infinity. The system
specifications are as follows: focal length 100 mm, F number 1:5, field of view 10 degrees,
working wavelength range 656�486 nm.
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Figure 8.1.2 The merit function plot corresponding to the optical system shown in Figure 8.1.1.
The first curvature is used as optimization variable and the second curvature is used to keep the
focal length constant.

8.2. Cemented Doublet
If we add optimization variables one by one the next step will then be the cemented
doublet: two lenses with different glass types, having one common surface. In this
case we have three curvatures (two free parameters if thickness are frozen) but still
only one solution has been found because the internal surface allows to compensate
only the longitudinal chromatic aberration. However the shape of lenses in this single
solution depends on choice of glass for the components. Thus, if the combination of
glasses crown-flint is used for the first and second lenses correspondingly then the
optimization leads to the solution shown in Figure 8.2.1a. In the flint-crown case we
have another solution shown in Figure 8.2.1b. The contour plot of 3D MF landscape is
shown in Figure 8.2.2. It can be seen that we have only one local minimum for each
glass combination and the topography of the MF landscape is almost symmetric.  The
merit function landscape is very robust to the aperture and field change. It can be
observed from Figure 8.1.2c and Figure 8.1.2d that the shape of the MF function
landscape does not change significantly even for increased values of aperture and
field.
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a)

b)

Figure 8.2.1 The two solutions of cemented doublet (focal length 100 mm, F number 1:5, field of
view 10 degrees, working wavelength range 656�486 nm). a) crown-flint combination (glasses
BK7 and F2 from Schott catalog are used); b) flint-crown combination (F2/BK7).
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Figure 8.2.2 The contour plot of the merit function landscape in the case of the cemented doublet
shown in Figure 8.2.1: a) crown-flint combination (BK7/F2); b) flint-crown combination
(F2/BK7); c) aperture increased up to 1/4, d) field size increased up to 20 degrees.
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8.3. Saddle points in the MF landscape of systems of thin lenses in
contact

In order to understand the features of the saddle points we will analyze in this section
the simplest possible optical systems: lens systems consisting of spherical surfaces in
which the distances between surfaces are negligibly small. We will show that the MF
landscape of these systems has surprising regularities, which can be modeled by thin-
lens theory.

Two-dimensional analysis of a doublet
Remarkable properties of the MF landscape of systems of thin lenses in contact can
already be observed for separated doublets if two-dimensional plots of the
equimagnitude contours are carefully analyzed. In Figure 8.3.1 such a plot is shown
for a doublet which, for simplicity, is monochromatic. (Axial color correction will be
included for systems discussed in the next section.) As in the other cases, discussed in
this chapter, the object is at infinity and the merit function is the default error function
of CODE V. If we use the curvature c4 of the last surface to keep the focal length
constant and use the curvature c1 of the first surface as a control parameter, the two
remaining curvatures can be used as variables. (In all MF plots in this section the
curvature c2 of the second surface is along the vertical axis and c3 of the third surface
is along the horizontal axis.) A plot very similar to Figure 8.3.1 has also been shown
by Sturlesi and O'Shea [83].
In Figure 8.3.1 we see four MF local minima and three MF saddle points. As
expected, the best three local minima are located almost on the contours for third-
order spherical aberration (SA) equal to zero and close to the zero coma contours.
These local minima are also obtained by optimizing downwards from the three MF
saddle points. In two-dimensional plots, the saddle points can be easily recognized. As
shown in Chapter 7, close to the saddle point, the equimagnitude contours must be
hyperbolas. For the value of the MF, corresponding to the saddle point itself, the
contours degenerate into a pair of straight lines (the asymptotes of the hyperbolas).
Note that the saddle points of the MF (the small black points in Figure 8.3.1) are
situated very close to the SA saddle points (the points where the thick gray lines cross
in Figure 8.3.1b). A first remarkable property of the saddle points in this landscape is
that they are situated at the intersection points of three almost straight SA
equimagnitude contours.  In order to explain this and other surprising properties of the
MF SPMI1, we use here a simplified merit function model in which:
•  Only SA, the dominant aberration for the systems under investigation, is

considered;
•  The imaging is monochromatic and all glasses are identical;
•  Thin-lens theory will be used, i.e. in all formulas the distances between lens

surfaces will be put equal to zero.
If in a power series expansion for the transverse aberration of a given ray we keep
only the SA contribution and neglect the rest, then for all rays the transverse
aberration will be proportional with SA. If MF is a weighted sum of squares for the
transverse aberrations of a given set of rays, it will be proportional with SA2.
Assuming that for MF SPMI1 the SA is nonzero, in our model these points, which are
solutions of the system of equations ∇ MF=0, will also have the property ∇ SA=0.
(The nabla operator ∇  has as components the partial derivatives with respect to the
variables according to (7.2.2))
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Figure 8.3.1 Topography for typical values of c1 of a two-dimensional monochromatic doublet
landscape (focal length is normalized to 1, F number 3, field of view of 6 degrees, and the lens
thicknesses are small). a) MF equimagnitude contours , local minima (large gray points) and
saddle points (small black points). b) The contours for zero SA and the contours that correspond
to the saddle points (thick gray lines). The contours for third-order coma equal to zero are shown
as well (thin dashed lines). Note how the saddle point SA contours separate the zero SA contours
(the strongly curved ones) in three different branches. c) Figures a) and b) superimposed. In
addition, the network links between saddle points and local minima are shown (dotted curves).

In the thin-lens approximation, we can write the third-order spherical aberration of a
doublet as

( )4
0 1 2 3SA h f f f fα= + , (8.3.1)

where we have used the abbreviations
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The fourth curvature, which does not appear explicitly in Eqs. (8.3.1-8.3.6), is used to
keep the total power equal to 1. In these formulas n is the refractive index of the two
glasses and h is the marginal ray height at the lens. (Since the aperture stop is placed
at the lens, h is equal to half the stop diameter.) One way of obtaining these equations
is by using for the doublet the well-known Coddington thin-lens formulas [84], [85].
Alternatively, these equations (and especially their equivalents for a larger number of
lenses, which will be discussed in subsequent section) can be directly obtained with
computer algebra software by putting the distances between surfaces equal to zero in
the well-known formulas [85] that give the surface by surface contributions to SA for
lenses with finite thickness and rearranging the result. Also, these equations can be
directly verified by computing the SA with commercial optical design software (again
by putting the distances between surfaces equal to zero). For instance, CODE V lists
the quantity SA/(-2h).
The condition ∇ SA=0 with ( )2 3/ , /c c∂ ∂ ∂ ∂∇ =  leads to a system of two nonlinear
equations for the two unknowns c2 and c3. (Recall that c1 is used in this section as a
control parameter, not as a variable.) It follows after some simple algebra that this
system of equations has four solutions. An examination of the eigenvalues of the
Hessian at the solutions shows that three of them are saddle points. It turns out that the
three saddle points are the solutions of the linear systems of equations f1=0 and f2=0,
f1=0 and f3=0, f2=0 and f3=0, respectively. (Note that f1, f2, and f3 are linear functions
of the curvatures.)

Figure 8.3.2 MF and SA equimagnitude contours that pass through the saddle points (MF drawn
in black line, SA drawn in gray dashed line) for a doublet with zero thickness, n=1.5, F number 3

and field of 6 degrees.
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Thus, in the two-dimensional SA plots the saddle points are located at the three
intersections of the straight lines f1=0, f2=0, and f3=0, taken in pairs of two. It follows
from Eq. (8.3.1) that within the frame of our approximate model, along these lines SA
remains unchanged, 4

0SA h f= , i.e. these lines form an equimagnitude contour. In
fact, the existence of two of these straight equimagnitude lines can be understood
from basic principles even without using Eqs. (8.3.1)-(8.3.6). It can be easily shown
from the fact that the fourth curvature is used to keep the total power equal to 1, that
the condition f1=0 means that along this line we have c3 = c4. The condition f2=0
means c2 = c3. Since the distances between the surfaces are zero, in both cases all light
rays pass undeviated through the corresponding pair of surfaces, regardless of the
common value c3 = c4 or c2 = c3. Therefore, for zero thickness f1=0 (horizontal line in
Figure 8.3.2) and f2=0 (left oblique line), remain equimagnitude contours even if other
aberrations, including higher order ones, are included, i.e. these lines are MF contour
lines as well. On the other hand the right oblique line is straight only for SA (f3=0).
Note that in Figure 8.3.1 the SA contour lines passing through the saddle points are
slightly curved because of small but nonzero lens thickness.

Figure 8.3.3 The SA "monkey saddle" point and the three straight equimagnitude lines that pass
through it. At this point all elements of the Hessian matrix are zero, and the shape of the
"monkey saddle" is determined by cubic terms.

Figure 8.3.4 MF "monkey saddle" (black lines) for c1,crit=3.55 in the same doublet as in Figure
8.3.3. Because the MF critical value is slightly different from the value given by Eq. (8.3.7), the
SA line f3=0 (dashed gray line) does not pass exactly through the MF monkey saddle.
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In the middle of the triangle formed by the three saddle points we find a fourth
solution with ∇ SA=0. (See Figure 8.3.1.) For values of the control parameter c1 that
are not too large, this point (which will be called in what follows the "hub" of the
network) is a minimum. Despite the fact that MF of the hub is poor, this minimum
plays an essential role for the connectivity of the network. On one side, all three
saddle points are linked with the hub.
When c1 increases, the distances between the saddle points decrease and for values of
c1 larger than a critical value the hub becomes a maximum. (The network is then
linked in a way that is different from the one shown in Figure 8.3.4) Within the frame
of the simplified model the critical value is given by

( )
( )( )21

12
+−
+=
nn

nnc1,crit . (8.3.7)

For example, for n=1.5 we have 24 / 7 3.431,critc = = . When c1= c1,crit the three
equimagnitude lines pass through the same point. The three saddle points and the hub
merge then into that single point. The SA landscape around this point takes then the
peculiar shape sometimes called a "monkey saddle" [86]. (See Figure 8.3.3. Note the
difference between this figure and Figure 7.1.1) For doublets with zero thickness, for
a slightly shifted critical value of c1 the "monkey saddle" can also be observed for the
MF, where aberrations other than SA play a role as well (Figure 8.3.4).

Network of local minima and saddle points for the doublet
For a monochromatic split doublet search, the network of MF local minima and
SPMI1 detected with the program NETMIN is shown in Figure 8.3.5. The systems
have small equal distances between surfaces and all three independent curvatures are
used as variables. In the three-dimensional variable space, the local minima LM1 and
LM5 and the saddle point S5 between them are situated close to the same SA=0
surface branch and the MF differences between them turn out to be low.
In the network, the pair of systems formed by saddle point S5 and local minimum
LM1 is therefore less robust than the rest of the network. As mentioned in Chapter 7,
such points can appear or disappear more easily when specifications or the MF type
are changed.  When a saddle point disappears, one of the two local minima linked to it
always disappears as well. The local minimum and the saddle point situated on the
other side of the pair which has disappeared will then be linked together, so that such
appearances or disappearances do not affect the connectivity of the network. A typical
example for this behavior can be found in the Cooke triplet global search (see section
8.4).
The other systems in Figure 8.3.5 are robust. For instance, their shape and the links
between them are not affected by minor changes in the merit function definition. As
mentioned before, for determining the links of a saddle point we use two points
situated close to it on both sides along the downward direction. We have also
converted the pairs of CODE V files for the saddle points to the ZEMAX and OSLO
optical design programs [71], [87]. Optimizing the converted files with the RMS Spot
Radius merit function in ZEMAX and the standard optimization function of OSLO
leads to local minima that strongly resemble the corresponding local minima in Figure
8.3.5. (The files for the systems in the network are made available in all formats via
the web site [88].)
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Figure 8.3.5 Local minima (drawn within continuous-line rectangles) and saddle points (within
dashed rectangles) for a monochromatic doublet search with F number 5, field of view 6 degrees,
and n=1.5. The lines between rectangles show how these systems are linked in a network. For the
saddle points, the surfaces with nearly equal curvatures have been drawn with thick lines. The
basic achromatic doublet shapes are shown within circles. The arrows indicate which
monochromatic local minima leads to them, after local reoptimization for color correction. For
the Reversed Gauss and Steinheil systems, the V values of the two glasses are 30 and 55
respectively. For the Gauss and Fraunhofer systems, the glass order has been reversed. At this
stage, the thicknesses of the achromatic doublets have also been adjusted.

The existence of the robust systems in Figure 8.3.5 can be explained with our
simplified SA model. If all three independent curvatures of the thin doublet are used
as variables, the equation ∇ SA=0 with ( )1 2 3/ , / , /c c c∂ ∂ ∂ ∂ ∂ ∂∇ = has as solutions
four SA SPMI1 and a minimum, the hub, at the center of the tetrahedron formed by
the SPMI1. In the three-dimensional variable space, for each SPMI1 the downward
direction (i.e. the direction of the eigenvector of the Hessian that has a negative
eigenvalue) is approximately given by the line that passes through the given saddle
point and through the hub. Along this direction, the SPMI1 is a maximum, whereas in
a plane perpendicular to it the SPMI1 is a minimum. All SA SPMI1 have the same SA
value. Interestingly, the SA value is also constant along all edges of the tetrahedron
having the four SA SPMI1 as vertices.
In the two-dimensional analysis of the previous section we have found three saddle
points, one at the crossing of the lines c2 = c3 and c3 = c4 and two others, one on each
of these lines. One of the two-dimensional saddle points has thus three equal
curvatures c2 = c3 = c4, and the other two have two equal curvatures, c2 = c3 and c3 =
c4, respectively. With the first curvature now variable, the four SPMI1 follow the
same pattern. For two of them three successive curvatures are equal and for the other
two SPMI1 two curvatures are equal, the first two curvatures and the last two
curvatures, respectively. (See Table 8.3.1.) Note that in Figure 8.3.5 the robust MF
saddle points, which have been detected numerically, have these properties as well.
As predicted by the simplified model, on one side all the robust saddle points are
linked with the hub. Although this local minimum is a poor one (the Seidel
aberrations are not corrected), it is an interesting example of a relaxed optical
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configuration [89]. On the other side, the robust SPMI1 are linked with local minima
that begin to resemble the familiar achromatic doublet shapes.

Table 8.3.1 The curvatures of the four SA SPMI1 for a thin-lens doublet with n=1.5

Equal
curvatures

c1 c2 c3 c4

S1 c1 = c2 -12/7 -12/7 12/7 -2/7
S2 c1 = c2 = c3 12/7 12/7 12/7 -2/7
S3 c2 = c3 = c4 12/7 -2/7 -2/7 -2/7
S4 c3 = c4 12/7 -2/7 22/7 22/7

     a) b)
Figure 8.3.6 The networks of local minima and saddle points for a separated doublet with
corresponding MF values (object distance is infinity, focal length 100 mm, F number 1:5, field of
view 10 degrees, working wavelength range 656�486 nm, lens thicknesses of 4 mm). The "m"
systems are local minima, and the "s" systems are saddle points with Morse index 1: a) flint-
crown glass combination (F2/BK7); b) crown-flint glass combination (BK7/F2).

For practical purposes, doublets have to be corrected for axial color as well. As well
known, there are four basic shapes for split achromatic doublets [90], [91]. These
shapes result from thin-lens theory as the possible ways to correct SA, coma and axial
color with the three available curvatures. Interestingly, as shown in Figure 8.3.5, the
basic shapes can be obtained from the monochromatic local minima by locally
reoptimizing them for color correction with appropriate glasses. The zero-power
meniscus lenses of the thin-lens SA saddle points become then negative power lenses,
as required for correcting axial color.
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An example of a network of doublet with real thicknesses and increased field of view
obtained with our NETMIN program is shown in Figure 8.3.6. As we will see later a
two-dimensional graph captures the essentials of the topography in a MF landscape
having a high dimensionality. The lines between systems show how the systems are
linked together via "minimum elevation" paths. For each such path, the MF difference
between the saddle point and the local minimum gives the height of the MF barrier
that must be overcome in order to reach from a given local minimum the basin of
attraction of a neighboring one. If desired, the regions of interest in the network can
be studied link by link, for instance by examining the way the optimization variables
change along the links. In this way, additional insight in the highly complex MF
topography can be obtained.
It is seen from Figure 8.3.6 that the theoretically predicted network is robust enough
and remains even for real working parameters. However the merit function landscape
changes depending on the chosen glass combination because the chromatic aberration
is included.  It is obvious that Steinheil and Reversed Gauss solutions are preferable in
case of flint-crown combination with negative first lens whereas Fraunhofer and
Gauss solutions are preferred in case of crown-flint combination where the first
component is positive. Remarkably, at the same time the MF value for the hub almost
does not change and the MF value of the saddle points interchange crosswise
(Steinheil - Fraunhofer and Gauss - Reversed Gauss). The systems corresponding to
the saddle points are very similar to those obtained in the case of the thin
monochromatic doublet in Figure 8.3.5.

Systems of more than two thin lenses in contact
For thin lenses in contact, the simplified zero-thickness SA model predicts that the
robust SPMI1 in the corresponding networks form an amazingly regular pattern. For
m>1 lenses, 2m-1 curvatures from the total set of 2m curvatures are independent
variables. It turns out that there are 2m SA SPMI1 that form a hyper-tetrahedron
having again a hub at its center. When the total power is 1, the sets of curvatures for
the saddle points can be obtained as follows:
Consider first the sequence of points p1, p2, p3, ...  given by

( )dkpp k 112 −+= ,     ( )dkpp k 1112 −+−=+ (8.3.8)
with k = 1,2,3,... and
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Table 8.3.2 The curvatures of the six SA SPMI1 for a thin-lens triplet with n=1.5

Equal
curvatures

c1 c2 c3 c4 c5 c6

S1 c1 = c2 -6/7 -6/7 6/7 -1/7 11/7 4/7
S2 c1 = c2 = c3 6/7 6/7 6/7 -1/7 11/7 4/7
S3 c2 = c3 = c4 6/7 -1/7 -1/7 -1/7 11/7 4/7
S4 c3 = c4= c5 6/7 -1/7 11/7 11/7 11/7 4/7
S5 c4 = c5= c6 6/7 -1/7 11/7 4/7 4/7 4/7
S6 c5= c6 6/7 -1/7 11/7 4/7 16/7 16/7

The first SA SPMI1, S1, has then the curvatures c1i = pi/(m-1), with i=1,...,2m. For
k>1, the curvatures of the saddle point Sk are given by ck,k-1 = ckk = pk+1/(m-1) and cki =
ck-1,i  for i ≠k-1 and i ≠k. Table 8.3.1 and Table 8.3.2 show the resulting values for the
curvatures of the SPMI1 in the case of a doublet and a triplet, respectively. Note that
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the 4x4 curvature matrix in Table 8.3.1 differs from the corresponding 4x4 submatrix
(shown with bold italic font) in Table 8.3.2 only by a factor 2 (that results from the
division with m-1).
In the general case, we encounter a structure that is a generalization of the one for the
doublet. The first SA SPMI1 has c1 = c2, for 2m>k>1   Sk has ck,k-1 = ckk = ck,k+1, and
S2m has c2m,2m-1 = c2m, 2m.

Figure 8.3.7 The hub and the eight robust MF SPMI1 around it in the case of a monochromatic
quartet topography. All systems have been detected numerically. The systems have F number 5,
field 6 degrees, and n=1.5. The distances between consecutive surfaces are equal, such that the
total distance between the first and the last surface is 14% of the focal length. For better
comparison, on the outer ring figures of successive saddle points have been superimposed. Since
the curvatures of the systems are small, the aspect ratio of the plots has been changed so that the
curvatures appear larger. Since this graphical change causes the thicknesses to appear too large,
the thicknesses have also been reduced in the drawings.
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Figure 8.3.7 shows the robust MF SPMI1 and the hub linked to them for a
monochromatic quartet with small, but nonzero distances between surfaces. Despite
the fact that the values of the curvatures differ somewhat from the ones computed
with the simplified SA model, the structure mentioned above remains valid for the
MF saddle points detected numerically. Moreover, note that, when we move from a
MF saddle point to the following one, only one pair of consecutive surfaces changes
significantly, while the other surfaces remain basically unchanged, as predicted by the
simplified model. For a triplet, a figure having the same properties as Figure 8.3.7 can
be obtained as well.
While for a doublet the hub is a poor quality local minimum, Fulcher has shown that
for m=3 and m=4 the system called in this paper a hub can have SA=0 for a certain
value of the refractive index [92]. For instance, the quartet hub has SA=0 for n=1.5.
Moreover, the quartet hub is known to be a relaxed design that has an axial imaging of
excellent quality even at large apertures [89], [93].

8.4. Triplet

Triplet with an object in infinity
In our first example the triplet forms an image of an object at infinity and we have
used the first five curvatures as variables. The image plane was placed at its paraxial
position and the curvature of the last surface has been solved to keep a constant
effective focal length. As in the previous example the default Code V merit function
(which is based on transverse ray aberrations) was used. The resulting network, which
is presented in Figure 8.4.1, consists of 18 local minima and 20 saddle points. In this
network, each node represents a point in the five-dimensional design space and the
lines connecting nodes represent optimization paths that have been generated from the
saddle points. As expected, the local minima form a network where they are all linked
through optimization paths generated from the saddle points. This network, which has
been detected in five dimensions, can be visualized in a two-dimensional graph. This
allows us to examine the relationship between the various minima independently of
the dimensionality of the MF space.
The network represented in Figure 8.4.1 has an excess of saddle points as only 17
saddle points are required to form a network where all 18 minima are connected. For
example, the saddle point having a MF value of 54390 can be removed without
disconnecting the network. By removing all such superfluous saddle points, we obtain
the “essential” topography of the MF space as presented in Figure 8.4.2. The acyclic
network thus formed shows the minimum barriers in MF value that needs to be
overcome in order to move from one minimum to another one. From Figure 8.4.2 we
can also derive a binary-tree representation where the splitting of the equimagnitude
surfaces is represented (see Figure 8.4.3). This binary tree can be used to visualize
how the equimagnitude surfaces split as a function of decreasing MF values. Such a
representation is less sensitive to the type of local optimization algorithm used to
generate the paths from the saddle points towards the minima.
Even in the case of a constrained MF space, we can apply our algorithm to detect the
network of minima. For instance, we have added an additional constraint such that the
curvature of the fifth surface is larger than zero. The corresponding network of
minima is presented in Figure 8.4.4. This network shows a remarkable similarity with
the network presented in Figure 8.4.2. Those parts of the network for which the
constraints have not been violated are identical. However, saddle points and minima
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are now also found on the constraint while other parts of the unconstrained network
do not exist anymore.
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Figure 8.4.1 Network of the global search corresponding to the Cooke triplet. The nodes
represent optical systems corresponding to the saddle points and local minima. Nodes are
connected through optimization paths generated from the saddle points.
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Figure 8.4.2 Essential network of the global search corresponding to the Cooke triplet. The
minimum barrier in merit function value that needs to be overcome in order to move from one
minimum to another one is determined by the saddle point with highest MF value that separates
these minima.
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Figure 8.4.3 Tree structure of the global search corresponding to the Cooke triplet. The splitting
of the equimagnitude surfaces is represented as a function of the merit function value. The
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Figure 8.4.4 Essential network of the global search corresponding to the constrained Cooke
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that the branches are drawn in a different order.)
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Our experience has shown that the searches into the direction of the eigenvector with
smallest eigenvalue find slightly less than 50% of the saddle points. To find all saddle
points, the eigenvectors with higher eigenvalues are also important. In the searches for
the unconstrained Cooke triplet, the different eigenvalues of the Hessian matrix at a
minimum can differ significantly. For one of the minima, the highest eigenvalue was
approximately 25,000 times higher than the lowest eigenvalue of the Hessian matrix.
Mostly, the ratio between the highest and lowest eigenvalue at a minimum ranges
between 500 and 6000 so that the initialization of the algorithm for saddle point
detection is extremely important in optics.

Symmetric Triplet
For testing the reliability of our network detection, in this example we have chosen
the specifications (distances between surfaces, glass types) to be rigorously symmetric
with respect to the aperture stop. For this purpose, the central lens has been split by a
fictitious stop surface. The image plane was placed at its paraxial position and the
position of the object plane was controlled such that the transverse magnification was
kept equal to -1. Because of an additional equality constraint (the distance between
object and image was also kept constant) the search space was effectively 5-
dimensional. The merit function used was the default merit function of CODE V.
In the case of a symmetric triplet where the optimization variables were the six
curvatures of the surfaces, we have found 23 SPMI1 (drawn within thin-line boxes in
Figure 8.4.5). By following the downward paths of local optimization started at these
points, we have obtained 19 local minima (thick-line boxes). The best two local
minima, m1 and m2, have the well-known shape of the Cooke triplet. The first 17 of
our local minima are identical with the 17 local minima listed in the output of Global
Synthesis, the global optimization algorithm of CODE V.  Interestingly, the saddle-
point configurations si-j can be viewed as intermediate stages in a continuous
transformation of the local minimum mi into the minimum mj.
As expected, the detected network show in Figure 8.4.5 is almost perfectly symmetric.
With one exception, the saddle point s8-5, the configurations in Figure 8.4.5 are either
symmetric with respect to the stop (m9, s1-2 , and s19-18) or they have mirror images.
For clarity, the pairs in which one configuration is (almost) the mirror image of the
other have been grouped together in the same box. Moreover, with the exception of
the two dashed links in the lower right part of Figure 8.4.5, the detected links display
the same symmetry: if a saddle point links two minima, then the mirror of the saddle
point will link the mirrors of the same minima. The minor deviations of the network
from perfect symmetry are not surprising since the aberrations that affect the ray
tracing results perturb to some extend the symmetry between object and image.
The best two local minima of this search, m1 and m2, have the well-known shape of
the Cooke triplet. Interestingly, for a numerical aperture of 0.055 (the value of this
search), both are slightly asymmetric and form a mirror pair, whereas the saddle point
s1-2 between them is symmetric. However, if we increase the numerical aperture,
beyond the value of 0.075 these two minima will merge into a single symmetric one.
Although we cannot be certain that the present algorithm has detected the entire
network, the symmetry detected as expected increases our confidence in the potential
of our network idea.
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Figure 8.4.5 Network of the global search corresponding to the symmetric Cooke triplet
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8.5. Double Gauss
The next example is the network of the Double Gauss objective (see Figure 8.5.1).

Figure 8.5.1 The network of local minima corresponding to a Double Gauss global search, as
detected by the program NETMIN. The optimization variables are curvatures of the eight outer
surfaces, and the merit function is the default error function of CODE V. (The system
specifications are reduction ratio of 1, entrance pupil diameter 50 mm, field of view 28 degrees,
working wavelength range 656�486 nm).

Again we take the symmetric design with regard to the stop plane. In this system we
have eight free optimization parameters (the curvatures of the surfaces on each air-
glass separation). As the parameters of the object distance (it was used to keep the
reduction ratio constant) and the last thickness (the paraxial image distance solve was
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put on it) were also used, the total track constraint in order to avoid "long" solutions
was also used. The global search with NETMIN detected 29 local minima and 46
saddle points.

8.6. DUV and EUV lithographic objectives
It is obvious that a further increase of the number of optimization parameters leads to
larger and larger networks. For complex systems with many parameters exploring the
entire network may be very time consuming because even the local optimization of
these systems takes a lot of time even on a modern PC. This issue requires a new
strategy based on network analysis for the choice of search directions leading to the
better solutions. This strategy is a subject for further research.
Because of their complexity it is not easy to find even parts of the network of DUV
objectives. For patented designs, the aberration correction is so well performed that
already a small change of the system parameters often results in a shift to the basin of
attraction of a neighboring local minimum. However, for these small parameter
changes visually the neighboring local minima seem to be identical. For
demonstration purposes we took an objective shown in Figure 4.4.2 (the specifications
of this system were taken from Ref. [35]). We reduce the number of free parameters
to five (the five curvatures of the lens group enlarged  in Figure 8.6.1). The part of
network of this objective discovered with the NETMIN program is shown in Figure
8.6.2.

Figure 8.6.1 Three nodes of the network of DUV lithographic objective. In the enlarged picture
two local minima hatched in crossing direction are superimposed. The contour of the system

corresponding to the saddle point is shown in thin lines.
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Figure 8.6.2 Part of the network of the lithographic objective. The specifications of the optical
system are taken from Ref. [35].

Interestingly, it is easier to present parts of the network for EUV objectives because a
number of basic configurations can be obtained already with several variables
(mirrors curvatures). A part of such a network is shown in Figure 8.6.3. In order to
prevent discontinuity in the MF topography, the condition of obscuration absence was
temporarily omitted. (It can be seen that the unobscured local minima m6 and m3 are
connected via obscured system m2.) Moreover, this network provides additional
useful information. For instance, it can be seen that two neighboring obscured local
minima m5 and m4 are connected via the unobscured saddle point s13. Thus, if we
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implement the obscuration constraint at this saddle point it will drive us to two new
unobscured local minima.

Figure 8.6.3 Part of the network of EUV lithographic objective.

In order to simplify the global optimization of complex systems, more appropriate
procedures can be suggested. For instance, the complex optical systems can be split
into groups (for instance objective, eyepieces, compensator etc.) and with the global
optimization the number of basic solutions for each group is obtained. These solutions
can be then combined in order to obtain the most promising result. Finally the local
optimization for entire system has to be performed.
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8.7. Conclusions
In the last chapter we have shown and analyzed a number of networks of optical
systems obtained with our global optimization method. The number of local minima
and the network complexity increase with each additional optimization variable.
Several presentation forms of this network were introduced as well. These
representations allow a comprehensible view of the relationship between the various
minima without having to deal with aspects such as the dimensionality of the
optimization problem. These networks could thus be of use for the analyses of
complex optical design problems.
We have also analyzed the MF topography and have shown that for certain optical
systems the positions of saddle points in multidimensional space can be predicted.
Even when we did not obtain the expected result, we have often discovered some new
and unexpected features of the MF topography. We believe that this new insight is
part of a very valuable learning process. We do believe that optical system design
would benefit very much if we had some methods that not only produce practical
results, but also provide insight in the complexity of the MF landscape.
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Summary and Conclusions
This thesis has been devoted to two main subjects: the compensation of birefringence
induced by spatial dispersion (BISD) in Deep-UV lithographic objectives and the
optimization of optical systems in general.
The motivation for this research follows from Moore's Law, according to which the
number of transistors per integrated circuit grows exponentially in time and this
tendency remains valid at least for the near future. This challenge requires advanced
imaging capabilities for the projection optics of a photolithographic machine. One of
the ways to improve the resolution of lithographic objectives is to decrease the
wavelength, but in this case lithographers, among other issues, should find an
appropriate lens material, because in the currently used deep UV range, only a few
media are sufficiently transparent. Cubic crystals such as CaF2 are used as a
companion material at the wavelength of 193 nm and fluorides are the only possible
known materials which can be used for optical systems working at 157 nm. However,
the use of cubic crystals is limited by their birefringence induced by spatial dispersion.
In the framework of this research, a number of studies were performed in order to
investigate the difficulties related with the use of cubic crystals in modern lithography
and to find possible solutions for them.
First, we have studied the problem of spatial dispersion in cubic crystals and we have
obtained the expressions for the eigenpolarizations and the linear birefringence value
in the case of BISD in cubic crystals for an arbitrary ray direction. The angular
dependence of the magnitude of the effect has been analyzed as well. Cubic crystals
possess seven optical axes with respect to the BISD effect. As known from the
literature, considering the measured magnitude of the effect, the use of cubic crystals
in DUV lithography causes serious problems for the resolution of the projection lens.
The resolution issue was further investigated by modeling the BISD effect in optical
design software, which allowed us to estimate the detrimental effect on optical
resolution. The image deterioration is brought on mainly by the phase retardation
caused by BISD. This effect was computed on the basis of polarization ray tracing
with the help of Jones matrices. It was shown that the magnitude of the phase
retardation is large enough to cause serious problems for obtaining the required
resolution. We have also examined the possibilities for BISD analysis offered by
modern software tools and we found that, for the estimation of the retardation value,
the standard deviation of the retardation over the pupil is useful. The second BISD
consequence − the ray bifurcation and deviation − was briefly discussed as well.
The phase retardation effect in deep UV lithography can be compensated. We have
discussed several approaches for the compensation of the phase retardation. All
concepts assume the presence in the optical system of two groups of components
contributing with almost the same distribution of the retardation magnitude but with
the orthogonal retardation orientation. Several examples of DUV lithographic
objectives with corrected phase retardation are presented.
Modern high-technological devices and systems require the best possible solution and
implementation for the problem they have to solve. This is why global optimization is
an important problem in modern optical system design. High-aperture optical systems
with a resolution well within the diffraction limit such as lithographic objectives may
have tens of optimization parameters, which complicates the task of optimization.
Because of the existence of multiple local minima, a special optimization strategy
providing additional information about the relationship between them is required.
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In our research on optimization we first consider the general optimization problem
and its specific application to optical system design. The most useful local and global
optimization approaches were discussed and three strategies based on local
optimization in order to escape from a local minimum were considered.
Nowadays, the known global optimization methods are able to find local minima only
as isolated points in the parameter space without any information about the merit
function topography. This is why we have focussed on the topological properties of
the optimization solution space and we have demonstrated that the saddle points
having Morse index of one play a special role in the merit function landscape in
optical system design. We have also shown that it is possible to move from one local
minimum to a neighboring one by locating a saddle point between them and we
proposed a method for the saddle point detection. Once the saddle points are known,
the corresponding local minima result automatically by following the downward links
from the saddle points. Techniques for the saddle point detection and for the choice of
the search directions were developed as well.
Moreover, by analyzing the splitting or merging of equimagnitude surfaces we have
observed that the local minima of the merit function landscape in optical system
design form a network. In order to perform this investigation a number of analyses
and visualization tools were developed. Based on this idea, a new type of global
optimization algorithm in optical system design has been proposed.
Finally, we have given several examples of optical system networks of different
complexity. We have also shown by means of the example of systems of thin lenses in
contact, that sometimes a simplified model can predict analytically the most important
saddle points in the merit function landscape. It turned out that exploring networks of
optical systems is useful even in the case of sophisticated Deep-UV and Extreme-UV
lithographic objectives. In our opinion, sometimes it is easier to discover new features
of optical systems by focussing on the saddle points rather than on the local minima,
and the "saddle point" idea can also provide additional insight into the topography of
the optimization space.
This new insight can be useful to meet the design challenges encountered in high-
quality optics for lithography, microscopy and space applications. We do believe that
asking new questions is essential for improving our understanding of optical design.
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Nederlandse Samenvatting en Conclusies
Dit proefschrift is gewijd aan twee hoofdonderwerpen: de compensatie van dubbele
breking veroorzaakt door ruimtelijke dispersie (BISD) in de Deep-UV lithografische
objectieven en het optimaliseren van optische systemen in het algemeen.
De drijfkracht voor dit onderzoek vloeit voort uit de Wet van Moore. Volgens deze
wet groeit het aantal transistoren per geïntegreerde schakeling exponentieel in de tijd
en deze neiging blijft ten minste tot in de nabije toekomst geldig. Deze groei van
transistoren vereist geavanceerde afbeeldingskwaliteit voor het optisch system dat
nodig is in de fotolithografische machine. Een van de manieren om de resolutie van
lithografische objectieven te verbeteren is het verkleinen van de golflengte. In dit
geval zouden lithografen naast andere zaken ook een geschikt lensmateriaal moeten
vinden, omdat in het Deep-UV (DUV) bereik dat tegenwoordig wordt gebruikt,
slechts een aantal media voldoende doorzichtig zijn. Kubische kristallen zoals CaF2
worden gebruikt als een hulpmateriaal bij een golflengte van 193 nm en fluoriden zijn
de enig mogelijke bekende materialen die gebruikt kunnen worden voor optische
systemen die werken bij een golflengte van 157 nm. Het gebruik van kubische
kristallen is echter begrensd door hun dubbele breking veroorzaakt door ruimtelijke
dispersie. In het kader van dit onderzoek zijn een aantal studies uitgevoerd om de
moeilijkheden te onderzoeken die gerelateerd zijn aan het gebruik van kubische
kristallen in de moderne lithografie en om mogelijke oplossingen voor deze
moeilijkheden te vinden.
Ten eerste hebben we het probleem van ruimtelijke dispersie in kubische kristallen
bestudeerd en hebben we de uitdrukkingen voor de eigenpolarisaties en de lineaire
dubbele brekingswaarde voor een willekeurige straalrichting verkregen in het geval
van BISD in kubische kristallen. Ook de hoekafhankelijkheid van de grootte van het
effect is geanalyseerd. Kubische kristallen hebben zeven optische assen met
betrekking tot het BISD effect. Het is algemeen bekend dat als we de gemeten grootte
van het effect in beschouwing nemen, het gebruik van kubische kristallen in DUV
lithografie ernstige problemen voor de resolutie van de projectielens veroorzaakt.
De resolutiekwestie werd verder onderzocht door het BISD effect te modelleren met
behulp van ontwerpsoftware voor optische systemen, die het ons mogelijk maakte om
het nadelige effect op de optische resolutie te bepalen. De beeldverslechtering wordt
vooral veroorzaakt door de fasevertraging ten gevolge van het BISD effect. Dit effect
werd berekend op basis van polarisatiestraaldoorrekening met behulp van Jones
matrices. Getoond is dat de fasevertraging groot genoeg is om ernstige problemen te
veroorzaken in het verkrijgen van de vereiste resolutie. We hebben ook de
mogelijkheden voor BISD analyse onderzocht die door moderne
softwaregereedschappen worden aangeboden en we vonden dat, voor de bepaling van
de vertragingswaarde, de standaarddeviatie van de vertraging over de pupil geschikt
is. Het tweede BISD gevolg – de straalopsplitsing en straalafwijking – werd eveneens
kort besproken.
Het fasevertragingseffect in DUV lithografie kan gecompenseerd worden. We hebben
een aantal methodes voor het compenseren van de fasevertraging voorgesteld. Alle
ideeën veronderstellen de aanwezigheid van twee groepen componenten in het
optische systeem die bijdragen met bijna dezelfde spreiding van de vertragingsgrootte
maar met de loodrechte oriëntatie van de vertraging. Een aantal voorbeelden van
DUV lithografische objectieven met gecorrigeerde fasevertraging werden getoond.
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Moderne en technologisch geavanceerde apparaten en systemen vereisen de best
mogelijke oplossing en implementatie voor het probleem dat ze op moeten lossen.
Daarom is globale optimalisering een belangrijk probleem in het hedendaagse
optische systeemontwerp. Optische systemen met een grote apertuur en met een
resolutie ruim binnen de diffractielimiet, zoals lithografische objectieven, hebben
tientallen optimaliseringsvariabelen die het optimaliseren zeer gecompliceerd maken.
Omdat er meerdere lokale minima bestaan, is er een speciale optimaliseringsstrategie
nodig die aanvullende informatie geeft over de relatie tussen de verschillende minima.
In ons onderzoek naar optimalisering beschouwden we eerst het algemene
optimaliseringsprobleem en zijn specifieke toepassing op optisch systeemontwerp. De
meest bruikbare lokale en globale optimaliseringsmethodes werden besproken en er
werden drie strategieën beschouwd die gebaseerd waren op lokale optimalisering om
te ontkomen aan een lokaal minimum.
Tegenwoordig zijn de bekende globale optimaliseringsmethodes in staat om een
lokaal minimum slechts als geïsoleerd punt in de parameterruimte te vinden, zonder
enige informatie over de foutfunctietopologie. Daarom hebben we gekeken naar de
topologische eigenschappen van de oplossingsruimte van een
optimaliseringsprobleem en hebben we laten zien dat er een speciale rol is weggelegd
voor zadelpunten met een Morse index gelijk aan 1 in het foutfunctielandschap van
een optisch systeemontwerp. We hebben tevens aangetoond dat het mogelijk is om
van een lokaal minimum naar het naburige lokale minimum te gaan door de plaats te
bepalen van een zadelpunt dat tussen hen in ligt en we hebben een methode
voorgesteld voor de detectie van deze zadelpunten. Als de zadelpunten eenmaal
bekend zijn, volgen de overeenkomstige lokale minima automatisch door het volgen
van de naar beneden gaande verbindingen vanaf de zadelpunten. Technieken voor de
zadelpuntdetectie en voor de keuze van de zoekrichtingen werden eveneens
ontwikkeld.
Bovendien hebben we, door het splitsen of samenkomen van contouren met dezelfde
hoogte, waargenomen dat de lokale minima in het foutfunctielandschap van een
optisch systeemontwerp een netwerk vormen. Om het onderzoek uit te voeren, werden
er  een aantal analyse- en visualiseringsgereedschappen ontwikkeld. Op basis van dit
idee hebben we een nieuw soort algoritme voor globale optimalisering in optisch
systeemontwerp voorgesteld.
Tot slot hebben we een aantal voorbeelden gegeven van optische systeemnetwerken
van verschillende complexiteit. Tevens hebben we, door middel van het voorbeeld
van systemen met dunne lenzen in contact, laten zien dat een vereenvoudigd model
analytisch de meest belangrijke zadelpunten in het foutfunctielandschap kan
voorspellen. Het werd duidelijk dat het verkennen van netwerken van optische
systemen nuttig is, zelfs in het geval van ingewikkelde DUV en Extreme-UV
lithografische objectieven. Naar onze mening is het soms gemakkelijker om nieuwe
kenmerken van optische systemen te ontdekken door alleen de zadelpunten te
beschouwen in plaats van de lokale minima. Ook kan het “zadelpunt idee” aanvullend
inzicht verschaffen in de topografie van de optimaliseringsruimte.
Dit nieuwe inzicht kan nuttig zijn om de ontwerpuitdagingen aan te kunnen pakken
die men tegenkomt in de hoge kwaliteitsoptica voor lithografie, in microscopen en in
de toepassingen voor astronomie en ruimte-optica. Wij geloven dat het stellen van
nieuwe vragen essentieel is om ons inzicht in optisch systeemontwerp te verbeteren.
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