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Abstract

Advances in the semiconductor industry are mainly driven by improvements in

optical lithography technology, which have enabled the continual shrinking of integrated

circuit devices. However, optical lithography technology is approaching its limit, and

within ten years, it may be substituted by new non-optical approaches. These may include

Extreme Ultra Violet (EUV) lithography and charged particle beam projection

lithography. While these technologies may have potentially better resolution, they can be

very difficult to implement into manufacturing.

During the course of the research presented here, the extension of optical

lithography to sub 70nm resolution has been investigated. Since optical lithography is

mature and well understood, extending it to allow for higher resolution can dramatically

reduce manufacturing difficulties, compared to EUV or charged particle beam projection

lithography. A majority of the existing infrastructure, such as photoresist materials,

sources, optics, and photo-masks, remain applicable with the optical methods explored

here.

The avenues investigated in this research have concentrated on spatial frequency

filtering in alternative Fourier Transform planes, vacuum UV wavelength lithography,

and achieving ultra high numerical aperture imaging through the use of liquid immersion

imaging. More specifically, novel spatial frequency filtering using angular transmission

filters was developed and demonstrated. Multiple filter designs were proposed, one of



which was successfully fabricated and implemented for lithographic imaging. Spatial

filtering, using angular transmission filtering, proved to enhance the resolution of contact

hole images by approximately 20%. Vacuum UV imaging aj the 126nm wavelength was

carried out but deemed likely to be less practical for commercial viability due to source,

optics, and materials issues. Immersion lithography, using ithe 193nm wavelength ArF

excimer laser, was investigated and demonstrated for very high numerical aperture

imaging. Requirements for immersion lithography were established, including the

necessary design of imaging fluids, optics, sources, and photoresist materials. As a

development tool, an interference lithography system was built using the 193nm ArF

excimer laser and water as an immersion fluid. Patterns below 70nm were printed using

the process developed, which has established the potential to extend optical lithography

further than was believed at the onset of this project. This research provides proof of the

concept of extending optical lithography to the 70nm generation and below.
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1 . Introduction to Optical Microlithography

The improvement of optical lithography has played a very important role in the

rapid development of the semiconductor industry. Both circuit speed and integration

density strongly depend on the minimum printable feature size. Device yield and wafer

throughput also depend on the performance of the lithography process that can make

smaller chip sizes. Aside from performance issues, the economy of the integrated circuit

production is also related to lithography.

Optical projection lithography has been the leading technology of VLSI

manufacturing. Projection systems have evolved from longer to shorter wavelengths. The

initial introduction of projection lithography used near-UV illumination, specifically the

g-line of the mercury lamp. Over time, the exposure wavelength has been changed to i-

line (365nm), KrF (248nm) and ArF (193nm) excimers to improve resolution. Each

wavelength change has required extensive research and development. Recently, efforts

focused on 157nm wavelength lithography using an F2 excimer laser. 157nm lithography

is expected to produce 70nm features with a number of resolution enhancement

techniques. However, before 157nm lithography is viable for manufacturing technology,

there are many problems that must be solved.

Some basic resolution improvement methods include increasing the numerical

aperture (NA) of the projection system, utilizing a shorter exposure wavelength, and

wavefront engineering, such as phase shift masking and off-axis illumination. For a

higher numerical aperture, the current lens designs have already reached an NA of 0.85,



and production lenses have attained an NA of 0.75; therefore, such conventional

enhancements would not afford much improvement. However, greater potential exists

with immersion imaging that enables a numerical aperture greater than 1.0.

The exposure wavelength is 193nm in current high-end production. Extensive

development efforts are aiming for 157nm; however, there is little room for further

reduction of wavelength, though 121nm and 126nm are also candidates for future

generation exposure wavelengths.

Optical lithography is approaching the limits of its capability through its very fast

development. According to the International Technology Roadmap for Semiconductors

(ITRS), shown in Table 1 [1], current optical lithography with 193nm will reach its

limitation in 2005 with resolution at about 80nm, if there is no breakthrough. After 2007,

EUV [l]-[4] or EPL (Electron Beam Projection Lithography) [5]-[7] is expected to be the

manufacturing technology per the ITRS roadmap.

Table 1. Abstract of 2002 ITRS roadmap

Year 2003 2005 2007 2010 2013 2016

Resolution(nm) lOOnm 80nm 65nm 45nm 32nm 22nm

Via-hole(nm) 130nm lOOnmm 80nm 55nm 40nm 30nm

Potential

Technology
193nm 193nm

193nm

/157nm

157nm/

EUV/EPL
EUV/EPL EUV/EPL



Extending optical lithography will have a significant impact on the future of the

semiconductor industry, both technically and economically. Thus, research needs to be

performed to extend optical lithography below the 70nm scale and possibly down to 35 -

40nm using spatial filtering, a shorter wavelength, and immersion lithography. Spatial

filtering modifies the transmission characteristics of ithe projection lens using

transmission and phase filters. A shorter wavelength could provide better resolution,

although more extensive research and development is required. Immersion lithography

enables a very high NA projection lens by filling the gap between the lens and the image

with a liquid. Immersion lithography requires the study of immersion liquids and

moderate changes to photo resists, projection optics, and wafer handling systems, but

almost no change to the mask.

By combining these technologies, it is expected that printing below 70nm is

possible with 193nm optical lithography. Further extension of optical lithography can be

done with 157nm lithography.



2. Theory of Sub-Wavelength Optical Lithography

In considering the performance, limitations, and enhancement strategies for

optical lithography, the two most important key figures of merit are the resolution (R)

and the depth of focus (DOF) of the minimum printable feature size. The latter is the

focal range over which the image is adequately sharp without changing in size. Both

parameters are governed by Rayleigh's relations [8] - [1 1], as shown in Equations (1) and

(2).

R = k (1)1

NA

A
NA2

DOF = k2
-

(2)2 AT/<2
v ""

In the above equations, X and NA are the exposing wavelength and the numerical

aperture of the exposure system, respectively. These two quantities will be discussed in

detail throughout the subsequent sections.

Rayleigh's equation (1) of the resolution limit describes the resolving power of

microscope objectives and gives k\ = 0.61 and fa = LO. In practical semiconductor

lithography, k\ and k2 factors are generally dependent on the exposure system, resist,

processes, type of the mask and patterns being imaged, as well as the requirements of the

shape, and allowed range of the developed resist profile. The parameter k\ can be as low

as 0.25 for dense patterns, theoretically. In general, depending on the process, quality and

setup of the projection system, k\ can reach far below 0.5 with state-of-the-art resolution



enhancement technologies that will be discussed in later sections. The parameter fa,

however, is more complicated. It is generally said to be about unity. Equation (2) for the

DOF is a first order paraxial approximation [13], only valijd for low NA systems up to

about 0.5 NA [14].

i

From Equation (1) the resolution can be improved in three ways: by shortening

the exposure wavelength, increasing the numerical aperture NA, and/or decreasing the

value of k\. As shown in Table 2 according to the International Technology Roadmap for

Semiconductors (ITRS), all three strategies have been pursued simultaneously in the past.

This trend is projected to continuedin the foreseeable future.

Table 2. Trend of optical lithography system parameters

Year 90 95 99 2002 2004

NA 0.5 0.6 0.7 0.75 0.85

fa 0.7 0.6 0.5 0.5 0.45

Wavelength(nm) 365 248 248 248/193 193

Critical

Dimension(nm)
500 250 180 150/130 100

Field size(mm) 20x20 22x22 26x34 26x34 26x34

DOF(|im)

requirement 1.5 1.0 0.6 0.4 0.25



Increasing resolution by decreasing the wavelength and increasing the numerical

aperture occurs at the cost of a reduced depth of focus. With a high NA system, the DOF

is reduced faster with the inverse ofNA2. Because of the inverse square dependency on

the numerical aperture, the depth of focus becomes extremely small for high NA

exposure systems. The DOF dependence on the wavelength is less severe than that on

NA. Solving Equations (1) and (2) forNA yields Equation (3):

L
R2

DOF =
_

'"2

kx X
(3)

Equation (3) explicitly shows that a shorter wavelength affords a larger depth of

focus for the same process parameters, fa and fa, and the resolution, R. This is the

motivation for exploring shorter wavelengths, even when a longer wavelength seems to

be adequate. Table 3 describes calculated results of the required numerical aperture for

varying wavelength and fa values to achieve 70nm resolution. In this regime, fa is

expected to be about 0.35. For a lithography system to print a variety of geometries, fa

needs to be higher than 0.35. Thus, to have flexible lithography, the numerical aperture

should be approximately 0.97 with 193nm or 0.63 with 126nm.

Table 3. Required numerical aperture to achieve 70nm resolution

Wavelength fa = 0.3 fa = 0.35 fa = 0.4

126nm 0.54 0.63 0.72

157nm 0.67 0.79 0.90

193nm 0.83 0.97 1.1



2.1 Improving Resolution by DecreasingWavelength

Exposure wavelength reduction, as described in the previous section, has been

executed from g-line (436nm), to i-line (365nm), to the KfF excimer laser wavelength

(248nm) [14]. Each reduction brings its own issues. There iwere no severe issues in the

transition from g-line to i-line. Minor issues included improving the transmission of the

novolac photoresist and a change of the mask material to fused silica glass from any

transparent glass material that was already used in g-line production. The transition to
i-

line did not take a long time.

The transition to 248nm required several changes. All lens materials and mask

blanks were changed to synthetic fused silica glass. The light source was altered from a

broad band lamp to a narrow band pulse laser because of intensity and chromatic

aberration in the projection lens. There were a number of laser related problems to

overcome as well, mainly optics contamination, reliability, cost, and productivity. The

photoresist was changed to a chemically amplified phenolic resist, which was the most

difficult issue. It took more than ten years to develop a stable chemically amplified resist.

The sensitization and dissolution mechanism that was changed in the chemically

amplified resist (CAR) [15] required very precise control of post-exposure bake and

contamination control. Due to poor transmission of the novolac resin in g-line and i-line,

the base resin was substituted with Poly Hydroxy Styrene (PHS) [16]. The porous

characteristics ofPHS generated another set of chemical contamination problems [17].



The industry transition to 193nm lithography has recently begun. Two major

changes in the 193nm system are the introduction of CaF2 crystal lens elements and a

new resist polymer. The traditional lens materials were not transparent with exception of

synthetic fused silica, however, it degrades in a short period of time with a high pulse

dose [18] - [20]. Thus, CaF2 has to be used in high dose applications such as in the region

of the illuminator and the last few elements of the projection lens [21] - [22]. In the

photoresist, the base resin of the chemically amplified resist had to be changed again to a

more transparent polymer at 193nm. Poly Hydroxy Styrene (PHS) used in 248nm

lithography, is not transparent to 193nm. Still, a number of different polymers [23], such

as VEMA (Vinyl Ether Maleic Anhydryde), COMA(Cyclo-01efin Maleic Anhydride),

and multiple derivatives of PMMA (Poly Methyl Metha-Aerylate) have been suggested

and exercised. None of these show characteristics as good as PHS at 248nm.

Due to the rapid development ofKrF lithography, it is likely that 193nm exposure

systems were introduced with a 0.75 NA to production with the use ofRETs (Resolution

Enhancement Technique). 193nm lithography can provide a solution for sub-lOOnm

technology but not for every type of pattern. Some patterns, like via-holes, require a very

strong miniaturization technique, even with 193nm lithography for the sub-lOOnm

generation.

Recently, lithography at the 157nm wavelength of the F2 laser has been pursued.

One of the few known optical materials capable of transmitting 157nm laser radiation

[24] - [28] is CaF2 crystal, which has insufficient optical quality and an inadequate



infrastructure to fabricate large enough sizes and quantities to support the lithography

requirement. Other transparent materials such as Magnesium Fluoride have unacceptable

intrinsic birefringence [29] and Lithium Fluoride, which is relatively soft and

hygroscopic, was also excluded. In addition to the material problem, the F2 excimer laser

was not mature yet.

Significant advances have recently been made enabling the technology. Both the

F2 laser and CaF2 material development have progressed greatly in the last few years. A

laser capable of a 600Hz, 6 Watts output has been demonstrated with remarkable

improvement with its 2pm bandwidth. However, this bandwidth only allows only

catadioptric lens system; otherwise the lens will suffer from chromatic aberration. Still,

there are many fundamental challenges in 157nm lithography that are listed and discussed

in Section 5.1. These include birefringence issues with CaF2 [27], the lack of a suitable

mask [30], mask pellicle materials [31] - [32], and the need for new photoresist materials

development [33] - [37].

2.2 Resolution Enhancement Techniques

Resolution Enhancement Techniques (RETs) modify the shape of the wavefront

of an imaging system at the illumination pupil and/or the imaging pupil by spatial

filtering [38]. Some RETs are very similar to those used in microscope technology.

Several approaches have become promising for application in optical lithography.

Examples of optical RET include phase shift mask technology, off-axis illumination

(modified illumination), and spatial frequency filtering.



2.2.1 Off-Axis Illumination (OAI)

Off-axis illumination is a common RET method at the illumination plane. The

illumination coherence in the spatial domain is an adjustable parameter that has influence

on the imaging performance. The illumination is said to be partially coherent if a certain

amount of spatial coherence exists. The amount of partial coherence is governed by the

ratio of the numerical aperture of the condenser lens (NA; ) to the projection lens (NAo).

The so-called partial coherence factor, a, is shown in Figure 1.

The influence of coherence is demonstrated by simulation in Figure 2 by showing

the image intensity near a simple knife-edge [38] - [40]. The limiting case a
= 1

corresponds to incoherent illumination that gives the smoothest profile. Decreasing the

coherence increases the edge slope, which decreases the intensity minimum near the edge

on the bright side. The local maximum intensity on the dark side of the pattern and

minimum intensity on the bright side determine the line edge fidelity and profile quality.

If a is reduced to values as low as 0.1 in order to decrease the intensity minimum, the

intensity ringing becomes excessive and extends laterally. The limiting case a
= 0 refers

to an ideally coherent point source yielding the sharpest slope but intolerable overshoot.

In practical lithography, typical sigma value ranges between 0.3 and 0.8.

10
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Condenser lens Mask Projection lens Image

NA0 - sin (90) where 60 is half angle at image

NA, = sin (Oi) where 9, is half angle at source

a= Nai/NA0

Figure 1. Definition ofNA and coherence factor a in a Koehler Illumination

system
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Figure 2. Image profile at the edge ofpattern with different coherence factor
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An aperture is introduced in front of the light source to control the coherence

factor. This aperture changes the effective size of the source. A circular aperture, as in the

case of partially coherent illumination, refers to simple low pass filtering with a cut-off

frequency determined by the numerical aperture of the condenser lens (NAC) and that of

the projection lens. Only plane waves up to a certain amount of obliqueness can pass

through the mask.

By applying only oblique illumination, it is possible to change the minimum

period of pattern whose first diffracted beam can pass through the projection lens. The

zero order beam will pass through the edge of the projection lens, thus the minimum

resolvable period Re [41]is given by Equation (4)

R*=inr7i t (4)
NA(l + aoffset)

where a offset is angle of obliqueness in terms ofa

Equation (4) only gives the minimum resolvable period and not the real resolution.

When only an oblique beam is utilized with a offset and proper resist, resolution can be

achieved as per Equation (4). By applying this principle, depending on the chip design

and resolution requirement, an annular aperture or multipole aperture can be used.

Aperture shapes and applications are depicted in Figure 3.

The annular aperture has no directional preference; however, there will be more

zero order light than first order, thus creating low contrast. The quadrupole aperture has a

preference for the vertical and horizontal directions but has a higher contrast than the
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annular aperture and a lower cut-off frequency. The dipole aperture can have the highest

resolution and contrast but is effective only for one directional pattern. There is potential

for completely customized illumination for a specific pattern whose application is limited

to the regular array of very dense patterns [42].

The downfall of off-axis illumination is that it always rejects one side of the

diffracted light to attain higher resolution. The image contrast for a nominal resolvable

pattern is much lower than that of conventional illumination. This is the reason why this

technique was not applied previously, even though it was well known in the optics field.

Low contrast images generated by off-axis illumination can be printed with the

improvement of photoresist contrast.

(a)Conventional (b)Annular (c)Quadrupole (d)Dipole

Figure 3. Various aperture pupil diagram

In off-axis illumination, when the zero order and first diffracted order are well

chosen, both beams may have the same angle from the vertical, and there is no phase

difference between the two beams even with defocus. The DOF of periodic features may

be infinite in theory. For this reason, modified illumination schemes, or
"off-axis"
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techniques, have become a well-established method extending optical lithography

towards sub-wavelength resolution. In physical situations, the DOF may not be infinite

because of the finite size of the illumination source, the area of repeating pattern, and lens

aberrations.

2.2.2 Phase Shift Mask Technology

Due to their binary nature, conventional binary masks either transmit or attenuate

light without varying phase. Adding a phase-shifting function to binary masks may yield

a higher resolution at the same or larger depth of focus. Thus, phase-shifting is a

technique used to reduce the fa parameter [44]. The enhancement is defined from the fact

that both the amplitude and phase are used to store information about the image on the

mask.

The phase-shifting principle was first introduced in 1982 by Marc Levenson, but

has since remained as a development technology. Recent enormous efforts have been

made in industrial applications and production application has begun for special

applications [47].

There are several different types of phase shift masks. The various types ofmasks

are presented in Figure 4. Among them, alternating phase shift masks in (b), the phase

edge masks, and attenuated phase shift masks in (d) [48]
- [50] are the most interesting in

practical application.
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Mask

l^p^r m m

E-field at mask

E-field at image

Intensity at image

(a) Binary mask (b) Alternating (c) Rim PSM (d) Attenuated

Figure 4. Various types of phase shift masks

An alternating type of phase shift mask or phase edge mask in Figure 4(b) has a

phase for each of the two clear patterns. Two periods of lines and spaces have only one

period when phase is included. The resulting diffraction pattern does not contain zero and

even orders, and first order diffracted light appears at half of the angle of the binary mask.

There are only two equally powered first orders in the pupil for a small period pattern.

When it is imaged on the imaging plane, there should be a point that has zero intensity in

the dark area. This feature makes it easier to print a very fine line, but not a fine space,

with positive resist. Application of the alternating type mask requires a very wide area in
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the layout to solve the phase conflict that cancels the merit of phase shift masks. Another

approach to solving the phase conflict is by using a secondary mask to remove conflict

areas. This method reduces some of the merit of phase shift mask although there are some

possibilities of improving lithographic productivity. Printing very fine features with

relatively wide pitch became an easy task using this method.

When a feature is isolated from other patterns, a narrow area with opposite phase

may be added to improve the contrast of the image, as shown in Figure 4(c). The

attenuated phase shift mask in Figure 4(d) has a different application. Combined with

various illumination techniques, it may be used for almost all kinds of patterns. The

attenuated phase shift mask has an ranges of 5 - 20% transmission leak in the dark area

with a
180

phase change relative to the clear area. In general, it was developed for

imaging via-holes. Because of the phase difference near the pattern, the intensity at the

edge of the via-hole pattern goes to zero and the via-hole image narrows. In principle,

attenuated phase shift masks reduce the zero order intensity. This works well with dense

line and space patterns by reducing the zero order beam intensity relatively, combined

with off-axis illumination.

2.2.3 Spatial Frequency Filtering

Spatial frequency filtering is an image processing technique applied in the spatial

frequency domain. A recently proposed method referred to as in-lens filtering enhances

the depth of focus by placing a special amplitude and phase filter in the pupil plane of the

projection lens [51], which functions as the spatial frequency plane. However, pupil plane
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filtering has primarily been of theoretical interest in microlithography since the pupil

plane in lithographic lenses is usually not accessible to the user unless the lens is

disassembled. Furthermore, different mask types require different types of spatial

filtering for optimum performance. Thus, the in-lens filter cannot simply be a fixed

optical element, which makes this approach hardly practical in manufacturing processes

where a large number of different mask patterns are applied during the fabrication

process of an integrated circuit.

2.3 Improving Resolution by Increasing Numerical Aperture

Increasing the numerical aperture [52] may directly improve resolution by

increasing the cut-off frequency in the spatial domain, as in Equation (1). However,

increased numerical aperture can reduce the depth of focus. Rayleigh's equation (2) on

the depth of focus is a paraxial approximation for low NA. It can be modified to account

for highNA lithography imaging [53]:

A
8
sin2

(91 2)
DOF<n ,

_
(5)

where NA = sin# . From Equation (5), it can be easily seen that higher numerical aperture

reduces the depth of focus faster than the original Rayleigh's equation (2), so the merit of

increased numerical aperture is reduced more abruptly in depth of focus.

Another problem in increasing numerical aperture is an economic issue. Increased

numerical aperture requires more complex lens designs and fabrication that is already

highly complicated [52]. Current high-end lens designs have very highNA's on the order
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of 0.85. Further increases in NA do not give much improvement in resolution with

respect to the cost and challenges [54].
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3. Overview ofExperimental Approach: Research into Sub-Wavelength

Optical Lithography

Research to extend optical lithography technology beyond 70nm covers broad

spectrum. Several basic approaches are mentioned in the previous chapter. Among the

resolution enhancement methods described in Chapter 2, a study was carried out in three

major areas including spatial filtering, shorter wavelength exposure with 126nm, and the

potential ofvery high numerical aperture with liquid immersion.

3.1 Spatial Filtering Outside of the Lens Pupil

The wavefront traveling in the optical system may be modified through spatial

filtering as described in Section 2.2.2. Spatial filtering in projection lithography is

essentially used as a high pass filter. High pass filtering in Fourier optics is a well-known

technique. The difference between lithography and image processing is the resolution and

contrast requirement. Lithography requires printing high contrast images near the limits

of optical imaging.

Spatial filtering may be done by inserting an amplitude and phase filter in the

pupil of the projection lens. Through spatial filtering, resolution and image profiles may

be modified. However spatial filtering in lithography is prohibitively difficult because of

the complexity of the projection lens. The pupil plane is barely accessible because it is in

the most critical part of the optical system. Therefore, filters should have good optical
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characteristics including flatness, thickness, and proper positioning. They should not

generate any heat from light absorption, which can change the quality of the optics.

Filtering requirements are also different from pattern to pattern, so the filter should be

easily exchangeable. These requirements are not easily acljiievable with a conventional

system.

An alternative approach for spatial filtering suggested in this study is to carry out

j

the spatial filtering at an alternative pupil plane, specifically, near the mask or image

plane. These locations correspond to spatial frequency planes of the mask and image field

but exist at an angular distribution of diffraction. Theoretically, angle-dependent

transmission filtering (angular filtering), near the mask or image, is the same as

transmission and phase in the spatial filtering of the pupil. The position of the angular

filter may be located near the mask, just outside of the Fraunhofer region, a distance

greater than R2/X, where R is the range ofmask pattern that carries as Fourier transform.

When an array of via-holes near the resolution limit is illuminated with nearly incoherent

illumination, Fraunhofer approximation distance is about the size of a via-hole. With

partially coherent illumination, the distance should be increased with the inverse of the

coherent factor. A few microns are sufficient for 193nm lithography considering the

pattern, resolution, coherence of illumination, and wavelength. Therefore, the filter may

be located at the pellicle [55] plane, which is about 6mm from the mask, in place of the

mask pellicle. A pellicle is a thin, transparent membrane spaced several millimeters away
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from the mask on an aluminum frame to prevent particles from degrading the mask image

performance by contamination.

A study of alternative spatial filtering, optimization of imaging via-holes, design

and fabrication of an angle dependent filter, and lithographic evaluation was carried out.

Mask Spatial

(a) Conventional spatial filtering

Image

Angular Spatial

(b) Novel angular spatial filtering

Figure 5. Conventional and novel spatial filtering technique diagram

3.2. Optical Lithography at 126nm Wavelength

In Rayleigh's equation, a shorter wavelength will result in better resolution for a

given numerical aperture, or a better DOF for a given resolution. That is, if the same or a
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similar NA can be achieved, a shorter wavelength will give better resolution. Thus, it is

reasonable to study wavelengths shorter than 157nm for future generations.

An extreme case of a shorter wavelength is EUV. The EUV wavelength that is

applied to lithography is 13.54nm. It potentially has 15 times the capability over current

193nm lithography. However, there are a number of difficult issues, such as a defect-free

reflective mask, a bright and clean source, high NA projection optics fabrication, and the

lifetime of optics.

Rather than the dramatic change in wavelength to EUV, there are other more

plausible wavelength choices available. Potential wavelengths include 126nm and 121nm.

These wavelengths offer about 20% resolution improvement over the 157nm wavelength,

which is similar to the improvement in the transition from 193nm to 157nm.

To evaluate the potential of 126nm lithography, paper studies for proper materials

and a light source have been carried out. In addition, a small field Schwarzschild

objective lens was evaluated for a research exposure system and a small field exposure

apparatus was built, and utilized for imaging experiments.

3.3. Higher Numerical Aperture through Liquid Immersion Lithography

An alternative approach to shorter wavelength is the use of a high refractive index

fluid between the imaging lens and the image. The high index fluid effectively reduces

the wavelength by a factor of the refractive index. For 193nm lithography, commercial
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lithography equipment manufacturers have already announced that 0.85NA exposure

systems are near the maximum numerical aperture for conventional systems. As

described earlier, higher numerical apertures will allow higher resolution. Lithography

lenses are currently produced with 0.75NA, while lenses with 0.85NA are being

developed. Further increases in NA are not practical because of a loss in DOF and the

prohibitively high cost of the lens[56].

The numerical aperture can be much greater than unity with less of a reduction in

the depth of focus when a liquid immersion system [57] - [63] is considered. However,

the theoretical limitation of the numerical aperture is near the index of the liquid used for

the immersion fluid because the wavelength in the liquid scales with XIn. For example,

the wavelength in water is 134nm when it is applied to 193nm.

Immersion imaging techniques have been widely used in optical microscopy. In

1880, Hugh Powell made the first 1.5NA apochromatic oil immersion microscope. Carl

Zeiss of lena, Germany, produced the first oil immersion objective in 1880, designed by

Ernst Abbe, who was the founder of the optical theory ofmicroscope lenses. Imaging in a

high index fluid is a well-known technique in optical microscopy. In fact, many studies of

liquid immersion microscopy were conducted in the early 20th century to improve

resolution. Unlike microscopy, lithography was limited to dry imaging until now. This

was mainly due to the difficulty of handling liquid in a mass production environment,

which is unlike the research environment of microscopy. The high index oil that can

yields improvement in resolution with a longer wavelength is especially difficult to
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handle. Instead of using immersion technology, lithography used a direct reduction in

wavelength. Moreover, lithography was limited in the region of relatively low NA until

recently, and longer wavelength resist material was not compatible with liquid immersion

[61]. However, further reduction of wavelength may affront fundamental physical

problems. It has become necessary to try liquid immersion to reduce the effective

wavelength or increase the numerical aperture.

When the imaging medium is not air or vacuum, the depth of focus equation (2)

should be modified to include the index of the medium as in Equation (6).

DOF = k2^A- (6)2 NA2

For high NA systems, Equation (6) should be modified accordingly:

DOF<
j ; (7)

8sin2(#/2)

where NA=nsmG is the definition of the numerical aperture that includes the index of

refraction. The index changes the optical path difference linearly. Lithography in the high

index medium can have a higher depth of focus, as in Equation (6) and Equation (7), for

the same resolution capability. For the same NA, imaging in a high index medium can

improve DOF, while a higher NA system can improve resolution.

Cryogenic noble gas liquids [62] and fluorinated solvents are candidates for

immersion liquid, and have been suggested for 157nm wavelengths and below.

Fluorinated solvents that have been evaluated by Switkes et.al [63] are still quite opaque
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at 157nm. Because of the low transmission and low index of fluorinated solvents at

157nm in addition to the difficulty of 157nm imaging, it is very difficult to realize liquid

immersion lithography with 157nm.

Water is a good candidate as an immersion liquid for 193nm lithography. Water is

relatively well characterized and compatible with the existing process at 193nm resist

materials. The refractive index of water [64] remains relatively low for longer

wavelengths, although, it increases as it reaches the absorption boundary. At 193nm, the

refractive index reaches up to 1.437, which grants 44% resolution improvement. Ifwater

exhibits good transmission and index characteristics at 193nm, it will be the most

practical liquid for immersion lithography.

There are a number of issues that arise with immersion lithography. One of the

most obvious challenges involves the handling of wafers and the resist in the liquid. A

mechanical apparatus can be designed to accommodate the immersion liquid in the

vicinity of projection while keeping other areas dry. This is merely a technical issue not a

fundamental physical barrier. A simple conceptual drawing in Figure 6 is suggested for

this study [61] - [65]. Clean water is supplied from one side of the lens and drained

through the other side. The surrounding air curtain will hold water only under the lens.

Another possibility is to immerse the whole wafer in a small water bath on the wafer

stage thus the whole stage moves with the water bath [66]. The latter method is possible,

but the former is more practical because of a lighter stage weight that enables higher

throughput.
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Water out

Vacuum Water in

Air Curtain Air Curtain

Figure 6. Immersion fluid flow diagram for stepper or scanner

Problems that need to be investigated in immersion lithography include index

variations of the immersion liquid with temperature, pressure, wavelength, micro/nano-

bubbles [68] in liquid, and resist-water interactions. Index variation with wavelength can

simply induce a chromatic aberration [69] because the immersion liquid itself is a

refracting medium. The thickness of the liquid is expected to be a few millimeters;

therefore, color dispersion in this region should be much smaller than the depth of focus.

Studies were concentrated to characterize the requirements of the immersion

liquid and the properties of water, resist, and the water interaction. As proof of the

concept of technology, a modified Talbot interferometer has been developed. Finally, a

90nm pitch pattern was printed with immersion interference lithography.

26



4. Sub-Wavelength Optical Lithography Part 1: Spatial Filtering outside of

the Lens Pupil

Spatial filtering technique is useful for high resolution imaging. Specially, via

hole image is very useful application. Imaging of via is optimized based on coherent

imaging system. Angular spatial filters have been designed and fabricated and exercised

with projection imaging system.

4.1 Optimization of the Pellicle Plane Spatial filter

A particularly useful application for spatial filtering is in the imaging of small via

objects known as contact holes. The optimized shape of the spatial filtering function for

these via-hole features is discussed. Imaging of via-holes with a coherent source can be

explained with Fourier Transformation analysis [70] - [71]. When a mask has the square

via-hole size a and the wavelength is X, the electric fields at the mask m(x,y) and at the

pupil M(u, v) are as follows:

m(x,y)
=Rect(-A (8)

a a

xNAu+yNAv

I rr ~2m

M(u,v) = \\m(x,y)e x

dxdy (9)
R JJ

jhy \
A?TATrraNAu aNAv^ new

M(u, v) = ASINC( , ) ( 10)
X X
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where A is amplitude factor including all factors affecting intensity, and x/y are spatial

coordinates in the mask plane and ulv are the corresponding spatial coordinates in the

frequency domain .

The pupil image has a SINC function shape. Near the resolution limit, the pupil

width is much smaller than the width of the SINC function, therefore the filtered pupil

image is nearly a cylindrical function rather than the intended SINC function. The field

intensity at the center of the pupil is much higher than at the edge of the pupil. The field

amplitude is calculated in Table 4. The pupil image is filtered with the pupil aperture and

the final image is the inverse Fourier transformation of the pupil image. Control of the

pupil image will change the final image size and shape. A narrower pupil image will

make wider final images. Reduced intensity at the pupil edge will also result in a wider

final image. Ifwe can make the pupil image constant across the pupil or lower intensity

at the center of the pupil related to the cylinder function, the final image will be narrower

than that of a normal imaging system.

When a via-hole mask is illuminated with coherent light, the pupil function and

the image profile is described by the following equations:

i . aNAu aNAv

M(u,v) =
sinc( ) (11)

K X A

,
i .

aNAu aNAv
+v2

M'(w,v) =
-sinc( )Cyl{ ) (12)
R X X NA

mXx,y)
=

BRe*(xla,ylayh(ffr/[A)

(13)
NArIX
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I(x,y) =
B2

Rtct(x Ia,y I
ay^{fArlX)

(14)
NArIX

Where B is an amplitude factor including all factors affecting intensity, M'(u, v)is

the electric field in the pupil, m\x,y) is electric field in the image plane, r is
+v2

,

and I(x,y)is the intensity profile at the image plane.

For a given lens and wavelength without any spatial filtering techniques, the

image profile of the smallest via-hole is the square of the
1st

order Bessel SINC function

(BESINC, ) of dimension ofNAr/X, when the hole size in the mask is infinitesimal.

The BESINC function has a tail and side lobes with infinite support, therefore the images

can not be smaller than the original mask size.

The proper transmission function in the lens pupil can transform the Fourier

transformed image into the defined flat cylinder function with reduced intensity. The

electric field at the edge of the pupil and the required transmission to make a flat

cylindrical intensity profile at the pupil are summarized in Table 4 for a 0.7NA 248nm

system.
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Table 4. Normalized E-field at the edge of lens pupil for 0.7NA DUV

Via-hole Size

{weal XINA)

E-field intensity

At edge of pupil

250nm/0.7 0.37

200nm / 0.56 0.55,

180nm/0.50 0.62

160nm/0.45 0.70

Further reduction of the image size can be done with a loss of intensity and a side

lobe that appears outside of the desired pattern. If we can add a small negative intensity

of 2-besinc functions at the edge of the original impulse response function, which is

BESINC(/V/4 r/X) the image can be narrower than one with the original impulse function

as shown on Figure 8. Equation (15) represents the pupil function with the inverse cosine

profile where r is the relative radius in the pupil. The resulting image adhere to Equation

(16). The modified pupil function is shown in Figure 7. Images of the related Fourier

component are displayed in Figure 8. The resulting image using the cosine pupil is

displayed in Figure 9 compared to the normal image. There is higher intensity in the

sidelobe that should be optimized depending on the resist contrast and pattern density.

M\r) =E0{l-bcos(^-)}Cyl(^-) (15)

m(x,y)
= E,{S(r)-bS(r - XINA)-b5(r +XINA)}*Besmc(NAr IX) (16)
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Figure 7. Profile of inverse cosine pupil

In Figure 9, the full width at halfmaximum (FWHM) of the inverse cosine pupil

image is 17% smaller than the original SINC image generated by a perfect cylindrical

pupil image.
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4.2 Design of the Angular Spatial filter

As an alternative approach to conventional spatial filtering techniques [72] -[73] a

spatial filtering technology can be implemented with angular transmission characteristics.

The angular transmission filter can be made using multilayer thin film techniques. In the

multilayer thin film angular transmission filter, the thickness variation across the filter

affects the transmission, but does not generate wavefront aberrations since the spatial

plane of projection lens pupil is related to the angle at the filter and does not generate

heat from absorption inside lens.

The system used for this design study was a projection system with a 0.7NA, 4X

magnification 248nm wavelength, and a target via-hole size of about 0.25um or smaller.

A filter must be designed that has the lowest transmission at the vertical incidence and

the highest transmission at the angle of
sin~l

(NA) ). The NA at the mask side is smaller

than that of the image side by a factor of the magnification. Thus, at 0.70 NA with a 4X

magnification, the highest transmission angle should be
10

for a 4X system.

The Fourier transformed image function of a via-hole near its resolution limit which

is about 180nm, has a 62% at the edge of the pupil relative to the center of pupil electric

field intensity. The filter designed should have 62% transmission at normal incidence and

100% transmission at 10.

To make this type of angular transmission filter, a low finesse Fabry-Perot etalon

[74] was used. A low refractive index material, sandwiched between high refractive index

materials, is one design option. The thickness of the low refractive index material may be
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slightly thick for a pellicle based coating compared to the normal optical coating which

makes it difficult to fabricate. The minimum transmission at the normal incidence can be

limited by the index of available coating materials and obtainable thickness. The thin film

design software Tfcalc tm, by Software Spectra Inc. [75], was used for several variations

of the filter design

4.2.1 Design Approach 1 - Organic Film based on Fabry-Perot Designs.

One approach to the filter design is through the alteration of an existing organic

pellicle material made up of a polymer film. The nominal thickness of the pellicle film is

on the order of 1 micron. The fluoro-polymer pellicle based material has a low index near

1.4. However, there was no proper high index organic coating material available for

248nm. If it is possible to apply on inorganic coating material, there are several materials

that can be used. As a high index coating material A1203 was evaluated for the design. A

high index inorganic coating on both sides of fluoropolymer pellicle can make a good

angle dependent filter, as shown in Table 5 and Figure 10. This filter can results in 73%

transmission at the vertical incidence, which is slightly higher than the target

transmission. Higher index materials give even lower transmission. This design is

feasible, however, alternative inorganic approaches were pursued.



Table 5. Single coating pellicle filter design

Material Thickness Index

A1203 31.20nm 1.7136

Fluoro-polymer 2767nm 1.403

A1203 31.20nm 1.7136
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Figure 10. Transmission of fluoropolymer based single layer coating DUV filter

4.2.2 Design Approach 2 - Inorganic Layers based on Fabry-Perot Designs.

Another possible approach for a thinner coating is an etalon with a multi-layered

coating for higher reflectance. Higher reflectance gives even stronger angular variation of

transmission. In a high finesse Fabry-Perot etalon, very low transmission at normal

incidence can be obtained. Thus, the center layer can be thinner than the previous design,

even with the higher index of the center layer material.
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The design that was actually fabricated and used for the exposure has a 3-layer

coating on a glass substrate as a simplified form of the multi-layer design, which is

shown in. A transmission of 73% at normal incidence was achieved in this design. The

maximum transmission difference between normal and oblique incidence can be obtained

at the thickness that gives
0.25

phase difference between the normal and oblique

incidence. That thickness is generally too thick to fabricate, so it was necessary to trade

off between thickness and thickness control. The transmission characteristics of the

designed filter are shown in Figure 1 1 . When both sides of the filter are coated, it was

possible to have below 60% transmission at the normal incidence. Using the double sides

coating the lithographic performance can also be enhanced.
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Table 6. Filter design on fused silica substrate

Material Thickness Index

Hf02 31.8nm 2.38

Si02 2548nm 1.509

Hf02 41nm 2.38

silica substrate 0.25mm 1.509
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Figure 11. Transmission of designed filter on fused silica substrate
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4.2.2 Potential Problems ofFabry-Perot Designs

A plane parallel plate can change the phase between the normal incidence and

oblique incidence. The phase difference is about as shown in Equation (17) where <9is

incidence angle and thickness is thickness of sandwitched layer.

Phase Difference = thickness * (1 - 1 / cos(c9)) (1 7)

Multiple reflections can generate different phases. Still the phase difference between the

normal incidence and oblique incidence is very similar to plane parallel plate because the

intensity of multiple reflected light of which intensity is about 30% of normal incident

light is weak compared to directly transmitted light.

The phase difference induced by plane parallel plate is very similar to defocus at low

angles. As incidence angle increase, it will include a higher order term, which will

correspond to spherical aberration. Thus, when we use this filter with very high angles

like a lx high NA lens, compensation for spherical aberration is required. With pellicle

plane filtering, the maximum angle is about
10

with a 0.7NA, and 4x magnification

system. Thus, only the focus calibration is necessary even with the thick glass pellicle

filter.
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4.3. Fabrication of Spatial Frequency Filters

A pellicle plane filter was fabricated with a 3 layer coatings on a fused silica

substrate with design 2. The coating material was evaporated with an e-beam assisted

evaporator, while thickness was monitored with a quartz crystal micro balancer.

Transmission was measured with a spectroscopic ellipsometer, as shown in Figure 12.

The surface reflection was compensated with the calculated values by Fresnel reflection.

The maximum off-axis transmission was 77% and the minimum transmission, at normal

incidence, was 65% after surface reflection compensation, compared to the design values

of 98% and 74%. Considering the maximum transmission angle that is matched with the

design value within a degree, the thickness control of the middle layer was acceptable. If

the thickness is not on target within 3nm, the maximum transmission angle would have

been significantly changed. Since the deposition thickness control that is monitored with

quartz micro-balancer, was under lnm that is better than required thickness control. The

thickness variation of the outer layer also does not give this kind of transmission loss.

It is suspected that the loss of transmission came from the scattered light from the

relatively thick middle layer. The technique and equipment used for this deposition was

optimized under a lOOnm thick film. Thus, a 2767nm thick film could have a

inhomogeneity that can create scattering. However it was not verified.
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Figure 12. Transmission of fabricated filter

4.4. Lithography Results using Spatial Frequency Filters

Lithography was carried out with the ASML PAS 5500/300 stepper [76] with 0.5o

and 0.3 a partial coherences, and a 0.63NA. The photoresist was UV110, by Shipley [77],

coated to 0.42um thick on an organic antireflective film. Because the theory is based on

coherent illumination, a 0.3 a and the standard 0.5 a were chosen for the experiment.

Mask patterns were evaluated for isolated, semi-dense (1:5), and dense 250nm via-hole

arrays. These conditions were not optimum for the fabricated filter, which was initially

customized for 0.7NA and 180nm holes. For 250nm via-holes, higher attenuation is

required. However, it requires more complicated manufacturing process.
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In this study, the purpose of the imaging is to print smaller via-holes rather than print

a specific size. When smaller sizes are possible, it is always possible to print bigger vias

with a biased mask. Thus, it is not necessary to make the image size always the same as

the mask size.

Minimum printable via-hole sizes were determined to have a 10% dose margin for

10% size variation. This means that the via-hole size is still remaining within 10% of

minimum size while dose varies +/- 5% and a certain range of defocus. The defocus

requirement, that is called depth of focus, varies with the exposure system and other

process conditions. In this experiment, about 0.5pm was required. It is preferred to have a

larger depth of focus for easier process control for the printing of the same size, or similar

depth of focus for smaller sized patterns. It is also preferred to print but not necessary,

via-holes that have similar sizes across density.

The reference group showed a big size difference between dense and isolated vias.

Dense via-holes were printed at about 250 -

260nm, but isolated via-holes were about

210nm. The DOF was 0.4 - 0.6pm. Focus-Exposure plots for dense via-holes with 0.5 a

are compared in Figure 13 and one for 0.3a is shown in Figure 14. Via-hole imaging with

the filter produced very uniform results, as shown in Figure 15 and Figure 16. In all cases,

the minimum via-hole sizes were 210nm - 220nm in the filtered image. The DOF was a

similar level to that of the reference group. There was about 16% improvement in the

dense via-hole and 4% for the isolated via-holes. The filtered results showed good

resolution down to 210nm with reasonable focus and exposure margins. The reference
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results are about 260nm with a 0.6um DOF. The filtered results, however, have a wider

DOF than the reference results for bigger via-holes with a higher dose. The biggest merit

of this filtered system was that the printed sizes of different densities were similar within

5% for smaller holes while the reference system showed about 15% difference.

Print holes with the filter were about 1.7-2 times more than the reference. The filter

transmission was about 65% at normal incidence without surface reflection on the glass

side. Glass reflects an additional 5%. The total loss at normal incidence is about 40%.

Thus the dose difference is about order of tolerance.
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Figure 13. Dense 250nm via-holes with 0.5a, 0.6NA.
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Figure 15. Semi dense 250nm via-hole with 0.3a, 0.6NA
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Figure 16. Isolated 250nm via-hole with 0.3a, 0.6NA

Table 7. Lithographic results summary with and without spatial filter.

Filtered Reference

Illumination Isolated Semi-iso Dense Isolated Semi-iso Dense

0.3sigma

Size 210nm 215nm 220nm 220nm 235nm 260nm

DOF 0.5pm 0.5 pm 0.5 pm 0.4 pm 0.6 pm 0.6 pm

0.5sigma

Size 210nm 220nm 220nm 205nm 220nm 260nm

DOF 0.5 pm 0.5 pm 0.4 pm 0.5 pm 0.5 pm 0.6 pm
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4.5 Spatial Filtering Conclusions and FutureWork

Spatial filtering with an angular transmission filter was suggested and

demonstrated as a new lithography technique. Multiple filter designs were successfully

suggested and one of them was actually fabricated for lithography. The transmission

results were not as designed. The fabrication process need to be refined, but showed good

thickness control of the film. The lithography results showed up to 15% hole size

reduction with different densities ofvia holes.

As numerical aperture increases, the peak transmission angle also increases. This

will result in a thinner coating thickness, which makes the fabrication process easier. The

fabrication process still needs to be fine tuned for better transmission. With better

transmission and a better match with design, lithography is expected to print smaller

geometries with a better process window.
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5. Sub-Wavelength Optical Lithography Part 2: Lithography at 126nm

For the lithography below 157nm, several wavelengths has been investigated.

Potential light source for suitable for lithography is considered and optical characteristics

of those source have been explored also. Projection lens for the 126nm lithography

evaluation tool has been evaluated and future improvement was investigated. Finally as

imaging layer, silylation process has been evaluated.

5.1 Wavelength Considerations below 157nm

Optical lithography of below 157nm wavelength is very difficult. As well known

almost all optical materials are not transparent at 157nm. Few exceptions are fluoride

crystals as shown in Table 8 [78]. However, fluoride crystals in general have intrinsic

birefringence. CaF2 as main material for 157nm optics already has an unacceptable level

of intrinsic birefringence that needs serious correction with combination of lens

orientation. Other materials like MgF2 have more birefringence than CaF2, thus there are

almost no acceptable optically transparent materials available below 157nm. For the

window with no optical power, MgF2 crystal can be used. LiF2, another transparent

candidate, is but hygroscopic and soft. So LiF2 should be coated with MgF2 to be used

even after fabrication. These materials have very limited applications.

The projection optics should be a reflective system because there are no practical

transparentmaterials below 157nm. Small part of the system can be refractive using LiF2.

Unlike refractive optics, reflective optics require large obscuration and/or strong aspheric
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surface to make a high NA system [56]. Basic Schwarzschild lens design can be used for

small field lithography such as direct write system as well as experimental lithography

system. This study includes design and analysis of a highNA Schwarzschild lens.

Table 8. Properties ofVUV transparent materials

Material Eg(eV)
Cut off

waverlength(nm)

BaF2 8.6 144

CaF2 9.9 126

MgF2 12.2 102

LiF 12.2 102

NaF 11.9 104

Si02 9.6 130

Another problem of lithography with shorter wavelength below 157nm is the lack

of a bright light source. For 436nm and 365nm, a mercury xenon lamp provides a stable

and bright source with a narrow bandwidth. KrF, ArF, and F2 excimer laser sources are

very bright and have good characteristics at shorter wavelengths. There are a few

candidates for wavelength shorter than 157nm [78]. One type is excimer lamp or laser.

Another type is a Lyman source.

Lyman sources emit a radiation of 121nm, which is based on the atomic transition

wavelength of hydrogen. So the bandwidth of the source is very narrow, which is

required for any kind of refractive element with optical power. However, it is very
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difficult to make a bright Lyman source. Total power of source is scalable but the area of

source also will be increased.

The excimer lamp is the main interest to VUV lithography because it has the same

wavelength with Argon excimer laser that can generate brighter light. Similar to excimer

I

lasers, incoherent excimer sources generate photons in non-thermal gas discharges in rare

gases or rare-gas halogen mixtures near atmospheric gas pressure. Typically, a dielectric

barrier discharge ("silent
discharge"

or "ozonizer discharge") is applied. This discharge

comprises of multiple self-pulsing microdischarges (lifetime of about 10 ns) that

stochastically fill the discharge volume, resembling the plasma conditions of pulsed

excimer lasers. Unlike lasers, these sources have a wide area of source plane, which

makes it difficult to fit in the optical projection system. However it can be used for an

experimental system with reduced source area. The typical radiant efficiency (electrical

input power to radiant power) is about 10 percent, with a lamp lifetime of about 1000

hours.

There are some development efforts in Argon excimer lasers. They are still in the

very primitive stage [79] - [82]. Because of the high energy requirement to activate

Argon gas, it is required electron beam activation. There were several reports that states

that an electron beam with near 700KV has high activation efficiency with 20atm argon

gas and energy of pulse reached up to 40mJ/pulse and pulse width ranges from 5 to

20nsec. Development of such sources for optical lithography applications would be
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feasible if the technology were beneficial. Thus argon excimer 126nm lithography was

explored.

5.2 Projection Lens Evaluation for 126nm Lithography

At 126nm wavelength, a reflecting projection system is preferred because there

are limited transparent materials. For a small field experimental system and small field

applications, Schwarzschild lens can be used. The Schwarzschild lens has only 2

reflecting surfaces, thus it does not have chromatic aberration and has a very small

aberration level for a simple design. Therefore a Schwarzschild reflective system can be

used for a 126nm lithography test system.

A Schwarzschild system has no
3rd

order spherical, coma or astigmatism. Design

of a system consists of two nearly concentric mirrors, hence there is only 3 degrees of

freedom. Those are as calculated by Schwarzschild. For the infinite conjugate system, the

design parameters follow those shown in Table 9 [83].

There are commercially available Schwarzschild microscope objective lenses.

Among them, the Coherent model 25-2522 [84] has 36x magnification, 0.5NA, focal

length 5.41mm, back focal length 8.6mm, and obscuration 12.2 % in area. This lens has

about 0.5mm field ofview. As a projection lens for 126nm lithography, this lens has been

chosen and analyzed. Thus, the starting point of the design will have the dimensions as

shown in Table 9.
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The lens was optimized for 200pm field size diameter and 36 x magnification at

126nm. It was reverse engineered using GENII merit function, which is included in the

OSLO lens design software [85]. Evaluation was carried out for all spherical surfaces of

this commercial model and with one aspheric surface for future improvement. The

optimized lens parameters are shown in Table 10 for both all spherical and single

aspherical lens. The difference between the calculated and optimized parameter as shown

in Table 9 and 10 respectively, is caused mainly by changing the conjugate parameter.

The aspheric results are almost same as for all spherical designs.

Table 9. Basic parameter calculated with Schwarzschild equation and commercial lens.

Parameter Equation Commercial lens

Space between mirrors d lid = If 10.82mm

Convex radius R2
(V5-1)/

6.6871mm

Concave radius Rl
(Vs+1)/

17.507mm

Rl to focus (V5+2)/
22.91mm

Rl clear aperture (V5+2)/
NA

Fractional area osculation 1/5 NA

Optimization was mainly done to minimize wavefront aberration. However, ray

intercept and other methods were also used to verify the viability of the design. For a

short focal length with visible wavelength, Schwarzschild lens can have very low

aberration at the center of field. This lens was evaluated for 126nm wavelength, which is

50



4-5 times shorter than visible wavelength. Thus wavefront aberration in unit of

wavelength is 5 times larger than for the visible case that is original design target of

commercial lens.

For an all-spherical design, in general the resulting aberration levels exceed the

acceptable lithography levels. RMS OPD of lithography lens should be below 0.05X.

However, all spherical lens has 0.082 X at the center of field, and 0.3 X at the edge of

field with perfect fabrication and alignment as shown in Table 12. Figure 18 and Figure

19 show wavefront aberrations for 0.28NA and 0.5NA Schwarzschild design.

Table 10. Schwarzschild lens optimized

Parameter All spherical

optimized

Single aspheric

optimized

Space betweenMirror 11.0584mm 11.0584 mm

Convex radius 6.773915 mm 6.7959 mm

Concave radius 17.7688 mm 17.7603 mm

Rl to focus 23.228 mm 23.1719 mm

Table 1 1 . Optimized Aspheric parameter

parameter 4th 6th 8th 10th

results 1.5462e-8 1.711e-10 -4.719e-14 5.84748e-15
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Next the both lens design with all spherical and single aspherical mirror were

evaluated for different conjugate where the lens can be used with small changes. As it

goes higher in magnification, the aberration of the center of field improves but that of the

edges of field degrades. This is caused by the optimization routine, which is a

compromise between field points. At the center of field, high order spherical aberration

was a major contributor to the RMS OPD error. Thus the aspheric surface would improve

spherical aberration at the center of field. Major degradation at the field edge was caused

by the field curvature as shown in Figure 18 and Figure 19 that show strong inward field

curvature. Adding a very weak lens near the image plane to compensate for field

curvature is recomended.

When the aspheric surface was introduced to a large concave mirror, the

aberration at the field center reduced to 0.021A, which is deemed appropriate for

lithography. However, the aberration at the field edge remained quite high. A major

source of aberration is the field curvature, which is about one micron at the edge of field.

A similar trend of aberration and field curvature to the all-spherical lenses was

observed with different conjugate. 38x magnification gives best performance at the center

of field whose aberration is very similar with results optimization was done for center of

field only.

The aspheric sag was calculated from the designed lens. Sag was 0.566 pm at the

edge of lens as shown in Figure 17. Actually edge is raised, so center should be removed
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for the fabrication process. Removal amount is about 1 wavelength with visible wave.

This is well within measurement range for a conventional interferometer.

Tolerances for the Schwarzschild design are normally very tight. Curvature

should remain within a wavelength of 126nm, which is normal production tolerance.

Distance between the two mirrors is within a couple of micron and de-center of concave

mirror should remain within 1 micron, which is a very tight tolerance.

600

400

5 200

0 5 10

D'stance from center (mm)

Figure 17. Aspheric departure of primary mirror
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Table 12. RMS aberration with different conjugate with spherical and aspherical surface

All spherical Single asphric

conjugate Field

center

70pm 100pm Fie^d

center

70pm 100pm

35x 0.09135 X 0.1791 X 0.2876 X 0.04207 X 0.1057 k 0.2274 X

36x 0.08164 X 0.1844*, 0.2964 X

I

0.02121 X 0.112 X 0.2356 X

37x 0.07692 X 0.1912 X 0.3058 X 0.00339 X 0.1267 X 0.2508 X

38x 0.07716 X 0.1991 X 0.3156 X 0.02351 X 0.1397 X 0.2633 X

Optimized

only for

center

0.00248 X 0.125 k 0.2511k

Table 13. Summary of tolerance in terms ofwavefront aberration

(Peak to valley/RMS value)

Tolerance

parameter

Tolerance On axis 70pm 100pm

Reference(optimize

d for center)

0.0708/0.0211 0.469/0.112 0.9136/0.2356

Convex 2 fringe(126nm) 0.1175/0.0342 0.4483/0.1087 0.8892/0.2311

Concave 2 fringe(126nm) 0.0851/0.0242 0.4683/0.1127 0.9118/0.2361

Distance 5 pm 0.1598/0.0478 0.6236/0.1566 1.084/0.2794

De-center convex 0.1mm 0.0724/0.0211 0.4701/0.1121 0.9147/0.2358

De-center Concave 1pm 0.3389/0.7123 0.653/0.1313 1.089/0.2455
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Figure 18. Wavefront aberration of 0.28NALens
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Figure 19. Wavefront aberration of 0.5NA lens with aspheric surfaces

5.3 126nm Lithography System Design

A small field experimental 126nm projection lithography system was designed

[86] based on the commercial Schwarzschild lens for this experiment. For the

illumination system consisted of a simple single spherical mirror with a slight tilt. The

magnification of projection system is 15x and the maximum numerical aperture of

illumination optics is 0.019.
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With the 0.28NA projection system, depth of focus is about 1.6pm. Thus fine

focus control is still required for the imaging. A capacitance gauge, ADE
technologies'

s

module 3800 and a passive gauge 2810 [88], were installed between the projection lens

and the wafer for finer focus control. This setup can deliver a focus resolution to the level

of lnm depending on the set up, however the actual number can vary with wafer

condition and conduction of ground path. A granite wafer chuck coated with chrome was

used to make a conductive path for the capacitance gauge. In this system, the readout

precision was limited to 0.07pm, which is about 5% of total focus budget for maximum

resolution. The capacitance gauge itself has a much higher precision, however output

precision is limited by the readout device.

Similar to 157nm and 193nm, 126nm can generate ozone in the light path that can

block the light. Thus, the light path should be purged with clean nitrogen free from

oxygen and water vapor. All optics were enclosed in a sealed box purged with clean

nitrogen as shown in Figure 20 and Figure 21 .

56



Piezoelectric

Stage

Environmental

enclosure

Wafer

Aperture:

p n
M9F2

Condensor
Mask Mirror

Argon Lamp

Figure 20. Exposure system enclosure diagram.

Figure 21. Assembled exposure system (Top cover is opened for display)
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5.4 126nm Lithography Resist Processes

To date, no organic polymer transparent to the wavelength of 126nm has been

reported. Due to the high absorption, surfaces to a depth of a few tens of nanometer can

resist is possible at 126nm.

negative amplified resist to

be exposed at 126nm. Thus, surface imaging or ultra thin

Traditional silylation [89] process was applied with DUV

have surface imaging. Shipley DUV resist SNR248 was used with 110C soft bake,

120C PEB with about 400nm thickness. Reasonable selectivity could be obtained at

lmJ/cm exposure as shown in Figure 22. For temperatures above 58C, there was small

amount of silylation in exposed area. However at this temperature the unexposed area

was already silylated completely down to bottom of resist. The optimum temperature was

58C, considering the required silylation thickness for dry development.

Under these conditions, the initial results using via-hole printing showed a

promising possibility. Exposure was about 0.5
- lmJ/cm2 was estimated from the lamp

manufacturer's data. Silylation condition was lOtorr with Di-Methly Silazane Di-Methyl

Amine(DMSDMA), 60C, 4min in the vacuum oven. With making a rough contact

printing with MgF2 mask, 3um line and spaces image were produced, which were the

smallest features available on the mask.
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Figure 23. 126nm silylation images using contact printing
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5.5 126nm Lithography Conclusions

Schwarzschild objective lens designs were evaluated for 0.28 and 0.5NA. Both

lens required an aspheric surface to meet aberration requirement within a small field.

Higher numerical aperture would require multiple refractive} elements, however there are

I
no functional materials available at this wavelength. Thus 0.5NA is the maximum

numerical aperture for this lens design.

A prototype experimental exposure system for 126nm lithography is developed

with 0.28NA Schwarzschild optics. A simple Schwarzschild system can have good

imaging quality for experimental purpose. Resolution of this system is expected to be as

small as to 0.2um.

With a proper selection of organic or inorganic surface imaging techniques, sub-

quarter micron resolution is expected. Silylation process responds well to 126nm

illumination. It is expected to be a promising for the experiment as well as manufacturing

processes.

With cryogenic liquid immersion, numerical aperture of an all refractive

projection system can reach about 0.7NA. However this NA is not enough to compete

with liquid immersion 193nm lithography. Thus, effort was concentrated on 193nm

immersion lithography.
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6. Sub-Wavelength Optical Lithography Part 3: Liquid Immersion

Lithography

As an alternative to 126nm immersion lithography, initially water immersion

lithography at longerwavelength was suggested. As comparable candidate to liquid argon,

water was chosen as immersion medium. Ultimate resolution of 193nm water immersion

should be comparable or better than 126nm lithography since water is transparent to

193nm and have higher index than visible wavelength. Optical requirements of

immersion liquid have been explored for various aspects. Interferometric lithography

system was designed and built for 193nm excimer layer and lithography for the below

50nm resolution was explored.

6.1 Optical Characteristics and Requirements of Immersion Fluids

The effect of dispersion of a liquid can be calculated as outlined below. The

optical path length for a liquid with thickness t and index n is simply tn for paraxial

optics. Optical path difference caused by small index change should be much smaller

than X/4 to avoid chromatic aberration. However, the estimate changes for higher NA

optics such as NA >1.0, because the paraxial approximation fails. To have minimal

chromatic aberration, dn should be smaller than Equation (21). This calculation will work

for all kinds of index variations including chromatic aberrations and thermal index

variations.

61



Image

Figure 24. Optical path difference caused by liquid or defocus

Figure 24 displays the optical path difference in an imaging system with index

variation. When an image is formed with index n, the phase difference between the

normal incidence and oblique incidence at the top of medium with thickness t is

described in Equation (18) :

Phase=*E*(-
]

X cosO
1) (18)

The phase difference caused by a uniform index change 5n should be smaller

than Rayleigh's quarter wave criteria to make a good image. In actual lithography

systems, phase differences should be much smaller than a quarter wave length to have

good process margin.

Phase difference = - (-

X cos#
1) (19)
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Snt(---l)<

costf 4

Thus the required index variation limitation is.

c. X cos#
on<

(20)

(21)
4H-COS6'

When index is fluctuated for any reason within a local area, the maximum

allowable index change should be much smaller than Equation (21). The maximum

allowable local index fluctuation is given Equation (22) and (23).

Snt X
<

cos6 4

5n<
A cos 6?

4r

(22)

(23)

These index variation criteria includes color dispersion and index change by

temperature and pressure.

Table 14. ch requirement at 193nm in ppm by Equation (21) for global index change

NA 0.7 0.8 0.9 1 1.1 1.2

Working

distance

(mm)

10 35 25 18 13 9 6

5 69 50 36 26 19 13

1 347 248 180 130 93 64
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Table 15. 5n requirement at 193nm in ppm by Equation (23) for local index non uniformity.

NA 0.7 0.8 0.9 1 1.1 1.2

Working

distance

(mm)

10 4 4 4 4 3 3

5 8 8 8 7 6 6

1 42 40 38 35 32 28

In the Table 14 and Table 15, the index variation requirement is summarized with

various assumptions. Water [64] is a perfect candidate as an immersion liquid for 193nm

lithography. Transmittance of 1cm thick pure water is about 90%. Index of water at

193nm is 1.436 that is high enough to meet merit of immersion lithography as shown in

Figure 25. According to previous research, water index changes less than lOOppm per

1C at room temperature and 2ppm per 1pm wavelength change. Refractive index

changes by 0.4 - 0.6ppm considering the laser wavelength bandwidth about 0.2
- 0.3pm.

When water temperature is controlled under 0.1C at room temperature, NA can be

higher than 1.0 with reasonable working distance of 1mm or below.

A liquid for immersion lithography should be very transparent. Otherwise, it can

absorb light. Transmission ofwater was measured with spectrophotometer. Fused silica

cells with two different thicknesses of 15 mm and 30 mm were used for calibrating the

surface effect. Cell windows have to be cleaned very carefully for almost 100%

transmission for 193nm except Fresnel reflection. After cleaning with solvent, oxygen

plasma was applied to remove residual solvent and organic residues. After cleaning, both
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cells showed about 81% transmission without water. Loss of transmission was caused by

the surface Fresnel reflection. To measure pure water transmission, transmission from

30mm cell was divided with 15mm cell to compensate for all surface reflection and

transmission loss caused by test cell.

According to the transmission measurement as shown in Figure 27, higher

temperature gives slightly lower transmission and the absorption edge shift to a longer

wavelength. Lower temperature gives better transmission and smaller index change with

temperature. This gives a reason to change lithography system temperature below 20C in

addition to lowering the dn/dT.

1 .4364

1 .4360

15 20 25

Temperature(degree C)

Figure 25. Refractive index variation with temperature
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Figure 26. Refractive index variations with wavelength

In the semiconductor manufacturing facility, the immersion water can be

contaminated with solvent or chemicals. However, keeping the contamination below

lOppm-lOOppm does not cause serious transmission losses. The contamination level of

the most abundant solvent in the semiconductor manufacturing facility, Isopropyl

Alcohol (IPA) can be allowed up to lOOOppm. In Figure 28, the contaminated water

transmission with common resist solvent, IPA and acetic acid is displayed. The small

amount of acetic acid in the immersion water, can also be used to prevent T-topping resist.

Because ofvery high NA, low transmission can cause unbalanced absorption over

pupil. In general, absorption at the center of pupil is preferred for high pass filtering.

However, the edge of pupil always has higher absorption. When NA is 1.1, distance ratio

between normal incidence and maximum angle of incidence is cos(sin"1(l.l/n)=1.55.

Transmission ratio is
i0"at*055

is amount of apodization effect. If not, the transmission
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loss at the edge of pupil will create an apodization that creates contrast loss and other

problems in the image. Ifwe want to keep the ratio less than 2%, cd should be less than

0.016. Considering the absorbance of water of about 0.05, thickness of water should be

less than 3mm.

180 190 200 210 220

wavelength(nm)

temperature

of water

22

-*30

230

Figure 27. Absorption of 1cm water down to 190nm
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Figure 28. Absorbance of contaminated water

6.2 Interactions between Immersion Liquid and Photoresist

Photoresist used in the lithography is very sensitive to contamination. Chemically

amplified resists are more sensitive than other types of resists. In the initial introduction

of chemically amplified resists, chemical contamination was a serious problem.

Chemically amplified resists are susceptible to process conditions and airborne

contamination. Underlying substrates also influence the resist profile. Most of positive

chemically amplified resists suffer from the formation of an insoluble layer or T-top

profile depending on the contamination level. This is caused by the absorption of base

materials from the air. Major base sources are HMDS, N-methylpyrrolidone and base

material from the wall paint.
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To solve the T-top problem, several methods have been suggested and evaluated.

Those methods are adding base additive, supplying acidic material before development

and modifying the polymer properties. Significantly lowering or raising de-protection

energy of polymer can reduce the T-top problem. Lowering Ithe de-protection energy [90]
i

makes less time to have contamination reaction the by de-protecting polymer just with

exposure before PEB. Raising de-protection energy [91]'. makes possible very high

temperature bakes such that no base can be absorbed in the resist.

In water immersion lithography, water can be absorbed in the resist then behave

as an acid consuming medium or acid generator can be leached out to water. Cure for this

problem can be similar to the cure for the T-top problem. Solutions can be : (a) more

hydrophobic surface, (b) densermaterial, and (c) added acid on top of resist.

Interaction between resist and water can be tested by immersion in water after dry

exposure. For the test a matured DUV resists and i-line resists are better than immature

193nm resist. Easiest metrics are contrast and sensitivity. When acid generator diffuses to

water from chemically amplified resist, sensitivity will be lower and contrast in general

will be higher. Thus it is possible to find amount of reaction and correction requirement

for the immersion exposure.

OCG OIR620 [92] Novolac resist for i-line system was used for verification

purpose. Soft bake temperature was 110C and PEB was 120C. With this condition,

negligible water-resist interaction is expected. Water rinse before develop was 60 seconds,

which is relatively long enough for the immersion lithography. For each condition, 2
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wafers were tested. Figure 29 shows contrast curves for silicon substrate and Figure 30

shows contrast curves for resist on an antireflective coated silicon substrate. Immersed

wafers were expected to show a slower photo speed. However it was very difficult to find

the difference between immersion and the reference group.

Figure 31 shows the process window comparison results for a chemically

amplified resist. TOK DP 7126 [93] was tested with and without water immersion similar

to the novolac resists case. A 150nm via-hole printing shows little difference between

immersion and dry lithography. For small dose and defocus, immersion shows a rapid

reduction of size. In the case of nominal dose for 150nm case, no differences between

immersion and dry lithography were observed. Reduced sizes of via-holes were from the

surface inhibition layer caused by immersion water. This problem can be reduced with

minormodification in the resist.
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Figure 31. Comparison of process window ofvia-hole pattern

dry and immersion imagingwith chemically amplified resist TOK DP7126

6.3. Image Contrast Estimation for Lithography

Estimation of image contrast in lithography can be simplified with the contrast of

2-beam and 3 -beam interference. When light waves propagate and interfere with each

other in the resist, there are several factors that affect contrast. Different polarization can

have different transmissions through the surface. The interference for the TM polarization

is proportional to the cosine of the angle between incident beams. Also, when the beam is
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diffracted at the mask or grating, there are different intensities for the different order of

beams with different angles of diffraction.

Diffraction angle and intensities can be calculated using a Fourier transform with

small amount of radiometric correction for the larger angle diffraction. In a general

lithography case, radiometric correction factor is less' than 2 -3% because of

demagnification of the mask image. Fresnel electric field vector transmission coefficient

are given in Equation s (24) and(25).

2*110,0083
(24)TE

sin(0,+#,.)
V '

2sin,cos,

sin(0,+0,)cos(0.-0,)
V }

Vector interference [94] -[101] contrast in the resist with TE polarization is unity

for all angles. However, in the case of TM polarization, image contrast is proportional to

the cosine of incidence angle of the 2 beams.

In the case of equal angle 2-beam interference lithography, the contrast is simply

the inner product of two vectors. In the case of 3-beam interference, which is more like a

real projection lithography, it is more complicated because it has different radiometric

effect and transmission. When intensities of 2 beams are same, the contrast is given in

Equation (26) and (27). When the intensity of center beam is same as the sum of 2 other

beams in a 3 beam interference, as in the case of dense line and spaces, contrasts are
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given in Equation (28) and (29) that include radiometric effect, Fresnel reflection, and

transmissions.

Contrast(TE, Ibeam) = 1 (26)

Contrast (TM, Ibeam) = cos(26>, ) (27)

Contrast(TE,3beam) =
cos(0tIM)2sm0,COS0i

(28)
sin(0, +^)

Contrast(TM,3beam) = cos(0, IM) cos(0, )
2sin^cosff

(29)
sin(6>( +^ ) cos(#. -0t)

Weighted average of contrast for TE and TM polarized light is plotted for 193nm

dry, immersion, and 157nm dry imaging. For 2-beam interference, contrast of immersion

lithography is slightly lower than that of dry imaging for the same NA as shown in Figure

32. This is caused by low contrast interference in TM polarized light. For very high

resolution with strong dipole illumination, it is possible to use only TE polarized light.

The contrast will always be near unity.

For 3-beam interference, immersion lithography has a much higher contrast than

the dry imaging case, because TM contrast is relatively higher than 2-beam dry imaging

and smaller Fresnel reflection makes higher contrast at high NA case with TE polarized

light.
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6.4 Interference Lithography for Immersion Lithography Evaluation

Immersion lithography with real projection optics will require considerable

resources and great deal of modification of the projection lens and stage system. Thus

interference system [102] -[103] will be used for the evaluation of liquid immersion

lithography. Interference lithography was previously evaluated for the experimental

techniques or special application. In the Figure 34, the period of interference imaging is

determined by the Equation (30).

A = (30)
2 sin(0)

As shown in Figure 34, interference lithography system is very simple compared

to the projection system. To introduce liquid in this system, only a matching optical index

is required to keep incidence angle in the air preserved by the liquid. A prism can work

for the matching optical index for a certain incidence angle. If it is required to change the

angle of incidence, hemispherical lens is required.
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Figure 34. Diagram for simple interference lithography system

There are a lot of different setups for interference lithography. Some of the

interesting designs are listed in the Figure 35. In general, the light source should be

monochromatic. However, at the lithography wavelength, there are not many lasers with

high coherence. Excimer laser can generate high power and short wavelengths but have

broad spectral ranges and spatial incoherence.

Traditional interference imaging setup[97] is shown in Figure 35 (a). Type (a)

uses a half mirror to split the wavefront. This setup is very simple, but the wavefront is

mirrored and a laser source with very high spatial coherence is required. To solve this

problem, type (b) has been suggested, but an additional mirror introduces complications

in alignment and a longer path length. Type (c) has been tested byMIT Lincoln Lab. This
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uses a Fresnel reflection by a thick silica plate. Still a very complicated beam path

alignment is required.

As a different approach for a beam splitter, phase shift grating was introduced by

MIT [100] as shown in Figure 35 (d). Phase shift grating can make multiple beams, but

the first two have most of the energy. Using another grating, it can be converged to a

point that creates interference imaging. Setup and alignment are very simple compared to

other types. Because it uses 2 gratings, it is nearly achromatic. However this setup can

make only one period pattern. When a different period is required, both gratings should

be replaced. When a period relatively longer than the wavelength is required with a

spatially coherent source, it is required to have a phase shift grating [101] as shown in

Figure 35 (e). Two first order diffracted beams can interfere with each other and make

interference pattern with a half period of the original grating. This is the simplest setup,

but needs a very high spatial coherence to make awider area.

The last type (f), a modified Talbot interferometer [103], consists of a simple

grating beam splitter and 2 mirrors. The period of the interference image can be adjusted

with mirrors. Wavefront orientation remains the same for both beams. Thus the spatial

coherence requirement is relatively small. Also it has quasi-achromatic characteristics.
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Figure 35. Various types of interference setup
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When the laser is broadband, interference lithography gives narrow ranges of

imaging because of beat frequencies ofmultiple wavelengths. In Figure 36, the period of

the pattern is given by
Pw= X /2sin(#w) . For the fixed mirror type setups such as type (a),

(b) and (c), 9w is fixed and the period is only a function of wavelength. However in the

type (d) and (f), 9w is function of wavelength also. When laser source has different

wavelength Xo and Xh in as the case ofmirror beam splitter, the interference image has a

beat frequency with period of

Pb=
P(^) P(4) /(P(4> P(4))

=

l/2sin(0)*(V4>y(V4>) (31)

However in the grating beam splitter, 6W is a function ofwavelength because of

the diffraction angle. The diffraction angle is
#,=

asin(A/Pg) where pg is the period of

grating.

0w
= 01+2#2ew

= e1+2e2 (32)

Pw
=

X/lsm(0J
= A/2sin (asin(A/Pg +202 ) (33)
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Grating

Mirror

Figure 36. Quasi achromatic interference setup

When Pw = 2 Pg is desired, 02will be 0. Then,
Pw= i/2sin (asin(/l/Pg) )=2Pg So

this setup is completely achromatic. However when fabricating small period of grating,

due to difficulty, reduction imaging is required. Then with 92> 0, it will not be complete

achromatic will have achromatic characteristics. Beat frequencies at or near achromatic

interference is calculated in Table 16

Table 16. Beat period with grating beam splitter.

^"-~---^^ Bandwidth

Beam splitter ^^^-^^^ 10pm 1pm

Grating period lOOOnm 5mm 10mm

Grating period 600nm 8mm 80mm

Grating period 400nm 150mm 1500mm

Simple HalfMirror 3mm 30mm
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The bandwidth of illumination source can affect the image as described above. It

also limits the path length mismatch between 2 paths in the interference setup. As well

known, the coherence length is proportional to
X2

18X. Temporal coherence length is

about 4mm f or 10pm bandwidth that was used in this study setup. Thus the beam path

length should be matched to within a millimeter to have good contrast. Spatial coherence

will limit the tolerance of misalignment. For the 193nm beam, which is very difficult to

align, it is required to have a few millimeters of spatial coherence. Excimer lasers used

for lithography have only a few tens of microns of spatial coherence length. There were

some efforts on developing a long spatial coherence excimer laser with a unstable

resonator. Spatial coherence was enhanced to halfmillimeters recently. To achieve good

uniformity in illumination, the laser beam will need to be expanded then the spatial

coherence will also be magnified. With new spatially coherent excimer laser, it is now

possible to make good interference images. The major specifications of excimer laser that

was used for this research is Bragg star EX 10BM [105] as listed in Table 17.
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Table 17. Specification of excimer laser for interference lithography

Energy Control Range 4-12 mJ

Repetition Rate 100 Hz

Static Gas Life to 50% energy 60 days

Pulse Length 15 nS

Beam Size 8 X 3-5 mm

Divergence 1 X 2 mRad

Energy stability pulse to pulse <2% Standard Deviation

Temporal coherence 0.5mm -2mm

Spatial Coherence >0.5mm for 193nm

Beam Uniformity +/-5%

6.5 Imaging Results with Interference Lithography

Initial lithography work was carried out with a multi mode 442nm He-Cd laser

and a single mode 457nm Argon ion laser. The theoretical minimum period of a dry

442nm system is 221nm without immersion. In practice, however, it is about 310nm with

45
incidence. It is possible to increase the resolution with higher angle, but the gain is

not so high due to difficulties associated with alignment and polarization issues. It is also

not practical to have a higher angle in projection lithography. Thus, the interference

lithography experiment was also done with up to
45

angle. In the case of immersion
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interference lithography, the resolution can be improved by a factor of the index of a

prism material when the immersion liquid has a comparable index at the low incidence

angle.

In water immersion, the theoretical minimum period goes down to 165nm with a

water index of 1.341 at 442nm. With a
45

setup, it is possible to print a 210nm pitch

with glass prism. Figure 37 and Figure 38 show high resolution interference images with

dry and immersion setups, respectively.

Wm

Figure 37. 320nm period images with dry interference lithography at 442nm with

corresponding NA 0.74
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Figure 38. 230nm period images with water immersion interference lithography at 442nm

withcorresponding NA 1.04

Figure 39. Clean interference imagewith coated optics

A minor problem was found during the experiment was found in immersion

lithography. There are several surfaces in the beam path without an antireflective coating.

Those surfaces generate lots of ghost images and parasitic interference as shown in

Figure 38. Major sources of parasitic interference are reflection from the backsides of the

index matching prism. With coated optics, it could be reduced as much as in Figure 39. In
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a real projection imaging system, every surface has high transmission coating. Thus, the

parasitic interference is not an issue.

The main target of this research is to make an immersion lithography image with

193nm that can practically extend optical lithography below 70nm resolution. As

described in previous Section, it is difficult to make interference image because of the

low temporal and spatial coherence nature of excimer lasers. Thus, the choice of excimer

laser with high coherence was the key enabler for good interference. In addition to the

laser, the interference beam path should be matched very well.

A system for immersion interference lithography has been built for proof of

concept. An artistic diagram and actual picture are shown in Figure 40. Optical beam

alignment was done carefully with He-Ne laser and Excimer laser.

Extra-cavity spatial /temporal

filtering
ofa 100 Hz 4WArF excimer:

- Pulse Length 15 nS

- Dual etalons for 10 pm FWHM j.

.

- Unstable resonator

With beam expansion and filtering:

- Spatial coherence region

>2.5mm

Polarizer

sjh Turning
ix} mirrors

Electronic

Shutters

Phase

Grating

Turning
Mirror

Electronic

Sutter

Beam

Expander

Figure 40. Immersion lithography system
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Wafer was prepared with resist on antireflective coating to reduce interference

effect due to resist thickness variation. Unlike longerwavelengh lithography, 193nm light

interference is too severe to make good image because of high reflectance of silicon.

Brewer Science ARC
29

[106] was spun at 2600rpm resulting in 77nm thick coating

and baked at 200C. The photoresist used for this experiment was TOK ILP06 which

is an experimental immersion resist. It was coated at 4500 RPM resulting in a 72nm thick

coating on antireflective layer coated wafer and followed by 115C, 60sec bake to

remove remaining solvent. The wafer was then exposed on the interference imaging

system followed by PEB (post exposure bake) at 115C 60sec to the chemical

amplification and 30 second development with a tetra methyl ammonium hydride

(TMAH) solution.

Because of very high resolution nature of immersion interference imaging, resist

collapse and lifting are very serious problems. Solving pattern collapse or lifting is not

part of this research. As an interim solution, the resist thickness was lowered to have low

aspect ratio and a low viscosity rinse chemical
'OptiPattern

Surface Conditioning

Solution'

by Air Products [107] was used after rinse before dry. Most critical part in this

process was optical alignment of interference system and rinse to prevent collapse.

Using a dry imaging system with
30

incidence angle to the hemispherical lens in

interference system with water, a 193nm pitch line and space pattern was resolved, as

expected for the reference. Using the same system with water immersion, a 120nm pitch

pattern was obtained, as shown in Figure 41. With higher angle
42

and
47

that have
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corresponding NA of 0.8 and 0.96, lOOnm and 90nm pitch patterns were resolved as

shown in Figure 41 and Figure 42 respectively. Unlike argon ion laser and He-Cd laser

interference with an excimer laser, the parasitic interference was not an issue because of

the short coherence length. Instead of the parasitic interference, the alignment

requirement was much tighter than in the He-Cd case. Higher angle corresponding to

high numerical aperture images were also achieved. The highest NA that could create a

good image was 1.05 and corresponding line and space size was 45nm as shown in

Figure 41. As expected from the basic theory of interference and immersion lithography,

the pattern pitch was well defined according to the incidence angle. With a higher angle

and good alignment, itwould be possible to print smaller features also.

:

Figure 41. 120nm pitch pattern by 0.80NA Immersion imaging
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Figure 42. 90nm pitch pattern by 1.05NA immersion imaging.
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6.6 Immersion Lithography Conclusions

Immersion lithography feasibility has been demonstrated for printing of features

below 70nm with a 193nm wavelength. The temperature control requirement for

controlling index variation is acceptable, with several millimeters working distance.

Wavefront distortion or focus change can be minimized with tight temperature control.

Image quality below 70nm with 193nm immersion can be adequate for those generations.

TM polarization contrast became lower, whereas TE contrast remained the same or even

higherwith immersion lithography.

Finally, using interference techniques, 90nm pitch dense line and space were

demonstrated with 193nm immersion lithography. With further improvement of the

interference setup with a higher incidence angle, it can be expected to achieve print at

about 35nm line and space resolution. An interference system can be used for immersion

resist evaluation as a low cost substitute for a projection system. It also allows mimicking

the low contrast image when using polarization control and zero order background light

addition.

Immersion lithography is a very promising technology for extending current

optical lithography to below 70nm and even further. Similar technology can be extended

with shorterwavelengths, making even smaller geometries.
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7. Sub-Wavelength Optical Lithography Conclusions and Summary

Optical lithography has been developing very rapidly for the last several decades.

Every time it reached some limitation, a new technology was developed to extend its life.

For numerous reasons, it was believed that with optical lithography with 70nm would be

very difficult to achieve, and EUV or some other technology would take over.

In this research, extension of optical lithography is proposed and achieved. An

alternative method of spatial filtering has been suggested and its performance was

evaluated for via-hole imaging resulting in reductions ofvia-hole size by 15% or more. A

126nm lithography evaluation system was built and showed a simple imaging result with

via-hole printing, except for projection imaging. Unfortunately, it turned out to be more

practical to apply a shortened wavelength with liquid immersion lithography. Liquid

immersion 193nm lithography, comparable to dry 134nm wavelength, is suggested and

evaluated. The majority of problems that may be encountered in immersion lithography

were evaluated and proven as acceptable or deemed a simple engineering problem.

Interference lithography, which is a good means of proto typing and evaluating

lithography, has been developed with an excimer laser at 193nm for the first time in the

industry, using a modified unstable resonator excimer laser. Imaging results show line

and space patterns below 50nm line and space beyond the 70nm lithography generations.

As a result of this study, the major contributions to lithography technology are

listed in, but not limited to, the following.
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A. An alternative method of spatial filtering in an angular dimension is introduced

and successfully demonstrated.

B. Using the concept of spatial filtering and a novel approach in the imaging system,

imaging of smaller via-hole is demonstrated, both with simulation and physical

demonstration.

C. The potential of shorter wavelength lithography at 126nm was evaluated from the

aspect of the photomask, imaging system, and resist processing components. It

turned out to be more practical to use immersion lithography at 193nm rather than

trying lowNA (about 0.7) immersion lithography at 126nm.

D. Basic requirements in immersion lithography were evaluated as initial lithography

development work, including index and transmission requirement calculation,

measurements and evaluation of existing information, interaction between resist

and water, and a study ofperformance with immersion lithography.

E. A new quasi achromatic interference lithography system using a 193nm excimer

laser was developed, and imaging was demonstrated at a 90nm pitch for process

evaluation.

For improvement in the future, the angular filter manufacturing process needs to

be tuned for better performance. Immersion lithography still requires much study,

including light scattering in a liquid medium, vector imaging effects, suppression of

bubble generation from wafer handling, and resist-water interactions. There are more
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issues that must be addressed in order for immersion lithography to be commercially

available technology.
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