
1

CUDA hands-on sessions
Examples: VectorAdd,

ReverseArray, ReduceSum, MxM

2

What is CUDA?
Compute Unified Device Architecture

• CUDA Architecture

– Massive parallel architecture of modern GPUs
with hundreds of cores

• CUDA Programming Model

– A way to program these modern GPUs to solve
general purpose problems in parallel

– Program all these GPU cores easily and efficiently

– Process thousands of elements for a particular
task in parallel

3

How can CUDA help us?

• On a GPU we have hundreds of cores

• Each of them working on tens or hundreds of
threads simultaneously (juggling them)

• These are thousands of threads on a given time
working on the GPU

• CUDA provides a scalable and easy way to
express parallelism
– We simple write our program for one data element

– It gets automatically distributed on hundreds of
cores for thousands of threads

4

A simple example

• We want to sum two vectors A, B and store
the results in C

 C = A + B

A B C

+ =

5

A simple example

• In C language we solve this with a for loop
– for each element of the vector at a time, from

i=0 to i=n-1, the loop adds every pair of elements
and then puts the result in corresponding
element of C

 for (i=0; i<n; i++)
{
 C[i] = A[i] + B[i]
}

A B C

+ =

n
 =

 le
n

gt
h

 o
f

ve
ct

o
rs

6

A simple example

• With CUDA each individual addition will be
a thread: each thread produces an
element of the result

 Each thread i does an single operation:
{
 C[i] = A[i] + B[i]
}

A B C

+ =

n
 =

 le
n

gt
h

 o
f

ve
ct

o
rs

7

A simple example

• Instead of using a loop we write the
elementary operation as a function
(kernel) that receives the three vectors

VecAdd(A,B,C)
{
 C[i] = A[i] + B[i]
}

A B C

+ =

n
 =

 le
n

gt
h

 o
f

ve
ct

o
rs

8

A simple example

• The same function will be executed by all
threads but on a different element (using
the index of the thread)

VecAdd(A,B,C)
{ int i=threadIdx…;
 C[i] = A[i] + B[i]
}

A B C

+ =

n
 =

 le
n

gt
h

 o
f

ve
ct

o
rs

9

A simple example

• Now we only need to launch n threads in
parallel running this function

A B C

+ =

n
 =

 le
n

gt
h

 o
f

ve
ct

o
rs

VecAdd(A,B,C)
{ int i=threadIdx…;
 C[i] = A[i] + B[i]
}

VecAdd <<< n >>> (A, B, C)

Modified syntax to launch n copies of the function

10

A simple example: summary

• Our function, instead of executing exactly
once per call,

executes n times as in separate threads
– 1 thread per data element

• This gives us an easy way to express
parallelism

• And n can become very large (thousands,
millions…)
– Scale up to greater levels of parallelism

VecAdd <<< n >>> (A, B, C)

11

CUDA Language:
C with Minimal Extensions

• Philosophy: provide minimal set of extensions necessary to
expose power

• Declaration specifiers to indicate where things live
__global__ void KernelFunc(...); // kernel function, runs on device

__device__ int GlobalVar; //variable in device memory

__shared__ int SharedVar; // variable in per-block shared memory

• Extend function invocation syntax for parallel kernel launch
KernelFunc<<<500, 128>>>(...); // launch 500 blocks w/ 128

threads each

• Special variables for thread identification in kernels
dim3 threadIdx; dim3 blockIdx; dim3 blockDim; dim3 gridDim;

• Intrinsics that expose specific operations in kernel code
__syncthreads(); // barrier synchronization within kernel

12

Steps for building our CUDA program

1. Identify those parts with a good potential to run in
parallel exploiting SIMD data parallelism

– CUDA is good for lots of computations and lots of data

2. Identify all data necessary for the computations

3. Move data to the GPU

4. Call to the computational kernel

5. Establish the required CPU-GPU synchronization

6. Transfer results from GPU back to CPU

7. Integrate the GPU results into CPU variables

13

1. Adding two vectors

a b c

14

The required code for the GPU kernel
and its invocation from the CPU side

The __global__ prefix indicates that vecAdd() will execute
on device (GPU) and will be called from host (CPU)

A, B and C are pointers to device memory, so we need to:
Allocate/free memory on GPU, using cudaMalloc()/cudaFree()

These pointers cannot be dereferenced in host code

// Add two vectors of size N: C[1..N] = A[1..N] + B[1..N]

// Each thread calculates a single component of the output vector

__global__ void vecAdd(float* A, float* B, float* C) {

 int i = threadIdx.x + (blockDim.x* blockIdx.x);

 C[i] = A[i] + B[i];

}

GPU code

int main() { // Launch N/256 blocks of 256 threads each

 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

}
CPU code

15 64

• unsigned int size= N * sizeof(float);

• // Allocates CPU memory

• float* h_A = (float*) malloc(size);

• float* h_B = (float*) malloc(size);

• ... initializes h_A and h_B ...

• // Allocates GPU memory

• float* d_A; cudaMalloc((void**)&d_A, size);

• float* d_B; cudaMalloc((void**)&d_B, size);

• float* d_C; cudaMalloc((void**)&d_C, size);

• // Copy input data from CPU into GPU

• cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

• cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

• ... CALL TO THE VecAdd KERNEL IN THE PREVIOUS SLIDE HERE...

• // Copy results from GPU back to CPU

• float* h_C = (float*) malloc(size);

• cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

• // Free video memory

• cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);

CPU code to handle memory
and gather results from the GPU

16

Running in parallel
(regardless of hardware generation)

vecAdd<<< 1, 1 >>>():
Executes 1 block composed
of 1 thread - no parallelism.
vecAdd<<< N, 1 >>>():
Executes N blocks
composed on 1 thread.
Inter-multiprocessor
parallelism.
vecAdd<<< N, M >>>():
Executes N blocks
composed of M threads
each. Inter- and intra-
multiprocessor parallelism.

GPU

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Global memory

Shared memory

Core 1

Registers

… Core 2

Registers

Core M

Registers

Texture cache

(scalability in 2nd gener.)

(scalability in 3rd gener.)

17

Indexing arrays with blocks and
threads

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

7

18

Handling arbitrary vector sizes

Typical problems are not friendly multiples of
blockDim.x, so we have to prevent accessing
beyond the end of arrays:

And now, update the kernel launch to include the
"incomplete" block of threads:

// Add two vectors of size N: C[1..N] = A[1..N] + B[1..N]

__global__ void vecAdd(float* A, float* B, float* C, N) {

int i = threadIdx.x + (blockDim.x * blockIdx.x);

if (i< N)

 C[i] = A[i] + B[i];

}

 vecAdd<<< (N + 256-1)/256, 256>>>(d_A, d_B, d_C, N);

19

2. Reverse the order to
the elements of a vector

Array size= 16

20

GPU code for the ReverseArray kernel
(1) using a single block

__global__ void reverseArray(int *in, int *out)

{

 int index_in = threadIdx.x;

 int index_out = blockDim.x - 1 - threadIdx.x;

 // Reverse array contents using a single block out[index_out] = in[index_in];

}

It is a solution too naive, which does not aspire to apply
massive parallelism. The maximum block size is 1024 threads.

threadIdx.x=0..15

blockIdx.x = 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Array size= 16

21

GPU code for the ReverseArray kernel
(1) using a single block

__global__ void reverseArray(int *in, int *out)

{

 int index_in = threadIdx.x;

 int index_out = blockDim.x - 1 - threadIdx.x;

 // Reverse array contents using a single block out[index_out] = in[index_in];

}

It is a solution too naive, which does not aspire to apply
massive parallelism. The maximum block size is 1024 threads.

threadIdx.x=0..15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

blockIdx.x = 0

22

GPU code for the ReverseArray kernel
(2) using multiple blocks

__global__ void reverseArray(int *in, int *out)

{

 int in_offset = blockIdx.x * blockDim.x;

 int out_offset = blockDim.x * (gridDim.x - 1 - blockIdx.x);

 int index_in = threadIdx.x + in_offset;

 int index_out = out_offset + (blockDim.x - 1 - threadIdx.x);

 // Reverse contents in chunks of whole blocks out[index_out] = in[index_in];

}

Array size= 16

threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

23

GPU code for the ReverseArray kernel
(2) using multiple blocks

__global__ void reverseArray(int *in, int *out)

{

 int in_offset = blockIdx.x * blockDim.x;

 int out_offset = blockDim.x * (gridDim.x - 1 - blockIdx.x);

 int index_in = threadIdx.x + in_offset;

 int index_out = out_offset + (blockDim.x - 1 - threadIdx.x);

 // Reverse contents in chunks of whole blocks out[index_out] = in[index_in];

}

threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3

blockIdx.x = 0

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

Array size= 16

Array size= 16

24

What if we also use shared memory
to speed up the process?

1. Copy to shared memory in reversed order
2. Wait to all threads in block finalize step 1
3. Copy to output vector (global memory)

threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Shared Memory for each Block

Array size= 16

25

What if we also use shared memory
to speed up the process?

1. Copy to shared memory in reversed order
2. Wait to all threads in block finalize step 1
3. Copy to output vector (global memory)

threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

3 2 1 0 Shared Memory for each Block

Array size= 16

26

Now write operations to global
memory are aligned (then coalesced)

1. Copy to shared memory in reversed order
2. Wait to all threads in block finalize step 1
3. Copy to output vector (global memory)

threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

3 2 1 0 Shared Memory for each Block

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

27

ReverseArray using Shared Memory

28

GPU code for the ReverseArray kernel
(3) using multiple blocks and shared

memory

__global__ void reverseArray(int *in, int *out)

{

 __shared__ int temp[BLOCK_SIZE];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x;

 // Read input elements into shared memory temp[lindex] = in[gindex];

 // Reverse local arrays within each block temp[lindex] = temp[blockDim.x-lindex-1];

 // Reverse contents in chunks of whole blocks

 // out[threadIdx.x + ((N/blockDim.x)-blockIdx.x-1) * blockDim.x] = temp[lindex];}

29

3. Reduce sum

30

Reduction example

Reduce N values to a single one:

Result = Sum(V0, V1, V2, V3, …, VN-2, VN-1)

Common primitive in parallel programing

31

Reduction example

We will use 1 Block for simplicity

Start with N/2 threads to apply the reduction
N

32

Reduction kernel first step

Copy data from Global to Shared Memory

Each threadi loads 2 data elements Vi and Vi+N/2

Wait until all the threads have load data:
__syncthreads();

3 1 7 0 4 1 6 3

3 1 7 0 4 1 6 3

Th0 Th1 Th2 Th3 Th0 Th1 Th2 Th3

N

N/2 Threads

Shared Memory

Global Memory

33

Reduction kernel second step

Do sum reduction on the shared memory data

__syncthreads() after each iteration

3 1 7 0 4 1 6 3

7 2 13 3 4 1 6 3

Th0 Th1 Th2 Th3

N

Iteration 1
N/2 Threads

20 5 13 3 4 1 6 3

Th0 Th1
Iteration 2

N/4 Threads

25 5 13 3 4 1 6 3

Th0
Iteration 3

N/8 Threads

34

Reduction kernel last step

Write result back to Global Memory

The kernel has finished. The host can get the
final result from first element of the array

25 1 7 0 4 1 6 3

25 5 13 3 4 1 6 3

Th0

Shared Memory

Global Memory

35

4. Matrix product

36

Typical CPU code written in C language

C = A x B.

All square matrices of size N x N.

Matrices are serialized into vectors to
simplify dynamic memory allocation

void MxMonCPU(float* A, float* B, float* C, int N);

{

 for (int i=0; i<N; i++)

 for (int j=0; j<N; j++)

 {

 float sum=0;

 for (int k=0; k<N; k++)

 {

 float a = A[i*N + k];

 float b = B[k*N + j];
 sum += a*b;

 }

 C[i*N + j] = sum;

 }

}

A

B

C

N

N N

37

CUDA version for the matrix product:
A draft for the parallel code

__global__ MxMonGPU(float* A, float* B, float* C, int N);

{

 float sum=0;

 int i, j;

 i = threadIdx.x + blockIdx.x * blockDim.x;

 j = threadIdx.y + blockIdx.y * blockDim.y;

 for (int k=0; k<N; k++)

 {

 float a = A[i*N + k];

 float b = B[k*N + j];
 sum += a*b;

 }

 C[i*N + j] = sum;

}

A

B

C

N

N N

38

CUDA version for the matrix product:
Explaining parallelization

Each thread computes a single element of C
Matrices A and B are loaded N times from video memory

Blocks accommodate threads in groups of 1024 threads (internal
CUDA constraint in Fermi and Kepler). That way, we may use 2D
blocks composed of 32x32 threads each

N

N

N
N

X = C(x, y)

WidthA

HeightA

WidthB

HeightA

WidthB

C A B
· · · · · · · · · · · · · · ·

· · · · · · ·
· · · ·

· · · ·
· · · · · ·

· · · ·

· · · ·
· · · · · ·

· · · · · · ·
· · · ·

· · · ·
· · · · · ·

· · · ·

· · · ·
· · · · · ·

Grid

Block

Th(x,y)

dim2 dimBlock(BLOCKSIZE, BLOCKSIZE);

dim2 dimGrid(WidthB/BLOCKSIZE,

HeightA/BLOCKSIZE);

...

MxMonGPU <<<dimGrid,dimBlock>>> (A, B, C, N);

39

CUDA version for the matrix product:
Analysis

Problems:

Low arithmetic intensity

Demanding on memory bandwidth, which becomes
the bottleneck

 Solution:

Use shared memory on each multiprocessor

40

The 32x32 submatrix Csub computed
by each thread block uses tiles of
32x32 elements of A and B which are
repeatedly allocated on shared
memory

A and B are loaded only (N/32) times
from global memory

Achievements:

Less demanding on memory
bandwidth

More arithmetic
intensity

A

B

C

Csub

M M M M

M

M

M

M

N

N

N N

Using shared memory: Version with tiling

41

Tiling: Implementation details

We have to manage all tiles involved within a thread block:
Load in parallel (all threads contribute) the input tiles (A and B) from global
memory into shared memory. Tiles reuse the shared memory space

 __syncthreads() (to make sure we have loaded matrices before starting
the computation)

Compute all products and sums for C using tiles within shared memory

Each thread can now iterate efficiently on tile elements

 __syncthreads() (to make sure that the computation with the tile is over
before loading two new tiles of A and B in the next iteration)

Transfer the output values for C allocated on global memory

41

42

A trick to avoid shared memory bank
conflicts

Rationale:
The shared memory is structured into 16 (pre-Fermi) or 32 banks
Threads within a block are numbered in column major order, that
is, the x dimension is the fastest varying

When using the regular indexing scheme to shared memory
arrays: shData[threadIdx.x][threadIdx.y], threads within a
half-warp will be reading from the same column, that is,
from the same shared memory bank
However, using shData[threadIdx.y][threadIdx.x], threads
within a half-warp will be reading from the same row,
which implies reading from a different bank each
So, tiles store/access data in shared memory transposed.

43

Tiling: The CUDA code for the GPU
kernel

__global__ void MxMonGPU(float *A, float *B, float *C, int N)

{

 int sum=0, tx, ty, i, j;

 tx = threadIdx.x; ty = threadIdx.y;

 i = tx + blockIdx.x*blockDim.x; j = ty + blockIdx.y*blockDim.y;

 __shared__ float As[32][32], float Bs[32][32];

 // Traverse tiles of A and B required to compute the block submatrix for C

 for (int tile=0; tile<(N/32); tile++)

 {

 // Load tiles (32x32) from A and B in parallel (and store them transposed)

 As[ty][tx]= A[(i*N) + (ty+(tile*32))];
 Bs[ty][tx]= B[((tx+(tile*32))*N) + j];

 __syncthreads();

 // Compute results for the submatrix of C
 for (int k=0; k<32; k++) // Data have to be read from tiles transposed too

 sum += As[k][tx] * Bs[ty][k];

 __syncthreads();
 }

 // Write all results for the block in parallel

 C[i*N+j] = sum;

}

44

A compiler optimization: Loop
unrolling

• Without loop unrolling: Unrolling the loop:

 ...

 __syncthreads();

 // Compute results for that tile
 for (k=0; k<32; k++)

 sum += As[tx][k]*Bs[k][ty];

 __syncthreads();
}

C[indexC] = sum;

 ...

 __syncthreads();

 // Compute results for that tile
 sum += As[tx][0]*Bs[0][ty];

 sum += As[tx][1]*Bs[1][ty];

 sum += As[tx][2]*Bs[2][ty];

 sum += As[tx][3]*Bs[3][ty];

 sum += As[tx][4]*Bs[4][ty];

 sum += As[tx][5]*Bs[5][ty];

 sum += As[tx][6]*Bs[6][ty];

 sum += As[tx][7]*Bs[7][ty];

 sum += As[tx][8]*Bs[8][ty];

 ····

 sum += As[tx][31]*Bs[31][ty];

 __syncthreads();
}

C[indexC] = sum;

45

Performance on the G80 for tiling &
unrolling

46

Bibliography and tools

47

Books and documents

Books:

GPU Gem series (1,2,3) [http://developer.vidia.com/content/GPUGems3/gpugems3_part01.html]

A list of CUDA books [http://www.nvidia.com/object/cuda_books.html]

CUDA developer guides and docs:

Programming Guide. CUDA basics.

Best Practices Guide. For code optimizers.

http://developer.nvidia.com/object/gpucomputing.html

Learn more on CUDA Zone [http://www.nvidia.com/cuda]:

Codes developed in CUDA along with the speed factors achieved.

Research papers describing applications and implementations.

Tutorials, forums, programming courses, ...

GPU computing webinars [http://developer.nvidia.com/gpu-computing-webinars]

Talks from GPU Tech. Conf. 2013 [http://www.gputechconf.com/gtcnew/on-demand-gtc.php]

http://developer.vidia.com/content/gpu-gems-3]
http://www.nvidia.com/object/cuda_books.html]
http://developer.nvidia.com/object/gpucomputing.html
http://www.nvidia.com/cuda
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]

48

Developers

 Sign up as a registered developer:

 http://developer.nvidia.com/user/register

 Meeting point with many other developers

 http://www.gpucomputing.net

 GPU news and events

 http://www.gpgpu.org

 List of CUDA-enabled GPUs

 http://developer.nvidia.com/cuda-gpus

48

http://developer.nvidia.com/user/register]
http://www.gpucomputing.net
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus

49

Software tools (free use)

 CUDA Toolkit 5.0, already covering Kepler. It includes:
 The nvcc compiler, libraries and documentation.

 CUDA SDK, with compilation scripts, utilities,
examples and whitepapers.

 Available for Linux, MacOS and Windows 7.

 http://developer.nvidia.com/cuda-downloads

 CUDA Occupancy Calculator.

 CUDA Profiler: To study execution times, coalesced accesses to
memory, execution times, diverging warps, conflicts when
accessing shared memory, ...

 Nvidia Parallel Nsight: Programming environment integrated into
Visual Studio.

http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads

