
Optimizing CUDA – Part II

Outline

Execution Configuration Optimizations

Instruction Optimizations

Multi-GPU

Graphics Interoperability

© NVIDIA Corporation 2009 2

Occupancy

Thread instructions are executed sequentially, so
executing other warps is the only way to hide
latencies and keep the hardware busy

Occupancy = Number of warps running concurrently
on a multiprocessor divided by maximum number of

© NVIDIA Corporation 2009 3

on a multiprocessor divided by maximum number of
warps that can run concurrently

Limited by resource usage:

Registers

Shared memory

Blocks per Grid Heuristics

of blocks > # of multiprocessors

So all multiprocessors have at least one block to execute

of blocks / # of multiprocessors > 2

Multiple blocks can run concurrently in a multiprocessor

Blocks that aren’t waiting at a __syncthreads() keep the

© NVIDIA Corporation 2009 4

Blocks that aren’t waiting at a __syncthreads() keep the

hardware busy

Subject to resource availability – registers, shared memory

of blocks > 100 to scale to future devices

Blocks executed in pipeline fashion

1000 blocks per grid will scale across multiple generations

Register Dependency

Read-after-write register dependency
Instruction’s result can be read ~24 cycles later

Scenarios: CUDA: PTX:

add.f32 $f3, $f1, $f2

add.f32 $f5, $f3, $f4

x = y + 5;

z = x + 3;

© NVIDIA Corporation 2009 5

To completely hide the latency:
Run at least 192 threads (6 warps) per multiprocessor

At least 25% occupancy (1.0/1.1), 18.75% (1.2/1.3)

Threads do not have to belong to the same thread block

ld.shared.f32 $f3, [$r31+0]

add.f32 $f3, $f3, $f4

s_data[0] += 3;

Register Pressure

Hide latency by using more threads per
multiprocessor

Limiting Factors:

Number of registers per kernel

8K/16K per multiprocessor, partitioned among concurrent
threads

Amount of shared memory

© NVIDIA Corporation 2009 6

Amount of shared memory

16KB per multiprocessor, partitioned among concurrent
threadblocks

Compile with –ptxas-options=-v flag

Use –maxrregcount=N flag to NVCC

N = desired maximum registers / kernel

At some point “spilling” into local memory may occur

Reduces performance – local memory is slow

Occupancy Calculator

© NVIDIA Corporation 2009 7

Optimizing threads per block

Choose threads per block as a multiple of warp size

Avoid wasting computation on under-populated warps

Facilitates coalescing

Want to run as many warps as possible per
multiprocessor (hide latency)

Multiprocessor can run up to 8 blocks at a time

© NVIDIA Corporation 2009 8

Heuristics

Minimum: 64 threads per block

Only if multiple concurrent blocks

192 or 256 threads a better choice

Usually still enough regs to compile and invoke successfully

This all depends on your computation, so experiment!

Occupancy != Performance

Increasing occupancy does not necessarily increase
performance

BUT …

© NVIDIA Corporation 2009 9

BUT …

Low-occupancy multiprocessors cannot adequately
hide latency on memory-bound kernels

(It all comes down to arithmetic intensity and available
parallelism)

Parameterize Your Application

Parameterization helps adaptation to different GPUs

GPUs vary in many ways
of multiprocessors

Memory bandwidth

© NVIDIA Corporation 2009 10

Shared memory size

Register file size

Max. threads per block

You can even make apps self-tuning (like FFTW and
ATLAS)

“Experiment” mode discovers and saves optimal
configuration

Outline

Execution Configuration Optimizations

Instruction Optimizations

Multi-GPU

Graphics Interoperability

© NVIDIA Corporation 2009 11

CUDA Instruction Performance

Instruction cycles (per warp) = sum of

Operand read cycles

Instruction execution cycles

Result update cycles

© NVIDIA Corporation 2009 12

Therefore instruction throughput depends on

Nominal instruction throughput

Memory latency

Memory bandwidth

“Cycle” refers to the multiprocessor clock rate

1.3 GHz on the Tesla C1060, for example

Maximizing Instruction Throughput

Maximize use of high-bandwidth memory

Maximize use of shared memory

Minimize accesses to global memory

Maximize coalescing of global memory accesses

© NVIDIA Corporation 2009 13

Optimize performance by overlapping memory
accesses with HW computation

High arithmetic intensity programs

i.e. high ratio of math to memory transactions

Many concurrent threads

Arithmetic Instruction Throughput

int and float add, shift, min, max and float mul, mad:
4 cycles per warp

int multiply (*) is by default 32-bit

requires multiple cycles / warp

Use __mul24()/__umul24() intrinsics for 4-cycle 24-bit

int multiply

© NVIDIA Corporation 2009 14

Integer divide and modulo are more expensive

Compiler will convert literal power-of-2 divides to shifts

But we have seen it miss some cases

Be explicit in cases where compiler can’t tell that divisor is
a power of 2!

Useful trick: foo%n==foo&(n-1) if n is a power of 2

Runtime Math Library

There are two types of runtime math operations in
single precision

__funcf(): direct mapping to hardware ISA

Fast but lower accuracy (see prog. guide for details)

Examples: __sinf(x), __expf(x), __powf(x,y)

: compile to multiple instructions

© NVIDIA Corporation 2009 15

funcf() : compile to multiple instructions

Slower but higher accuracy (5 ulp or less)

Examples: sinf(x), expf(x), powf(x,y)

The -use_fast_math compiler option forces every
funcf() to compile to __funcf()

GPU results may not match CPU

Many variables: hardware, compiler, optimization
settings

CPU operations aren’t strictly limited to 0.5 ulp

Sequences of operations can be more accurate due to 80-

© NVIDIA Corporation 2009 16

Sequences of operations can be more accurate due to 80-
bit extended precision ALUs

Floating-point arithmetic is not associative!

FP Math is Not Associative!

In symbolic math, (x+y)+z == x+(y+z)

This is not necessarily true for floating-point addition

Try x = 1030, y = -1030 and z = 1 in the above equation

When you parallelize computations, you potentially

© NVIDIA Corporation 2009 17

When you parallelize computations, you potentially
change the order of operations

Parallel results may not exactly match sequential
results

This is not specific to GPU or CUDA – inherent part of
parallel execution

Control Flow Instructions

Main performance concern with branching is
divergence

Threads within a single warp take different paths

Different execution paths must be serialized

Avoid divergence when branch condition is a

© NVIDIA Corporation 2009 18

function of thread ID

Example with divergence:

if (threadIdx.x > 2) { }

Branch granularity < warp size

Example without divergence:

if (threadIdx.x / WARP_SIZE > 2) { }

Branch granularity is a whole multiple of warp size

Outline

Execution Configuration Optimizations

Instruction Optimizations

Multi-GPU

Graphics Interoperability

© NVIDIA Corporation 2009 19

Why Multi-GPU Programming?

Many systems contain multiple GPUs:

Servers (Tesla/Quadro servers and desksides)

Desktops (2- and 3-way SLI desktops, GX2 boards)

Laptops (hybrid SLI)

Additional processing power

© NVIDIA Corporation 2009

Additional processing power

Increasing processing throughput

Additional memory

Some problems do not fit within a single GPU memory

Multi-GPU Memory

GPUs do not share global memory

One GPU cannot access another GPUs memory directly

Inter-GPU communication

Application code is responsible for moving data between
GPUs

© NVIDIA Corporation 2009

GPUs

Data travels across the PCIe bus

Even when GPUs are connected to the same PCIe switch

CPU-GPU Context

A CPU-GPU context must be established before
calls are issued to the GPU

CUDA resources are allocated per context

A context is established by the first CUDA call that
changes state

© NVIDIA Corporation 2009

changes state
cudaMalloc, cudaMemcpy, cudaFree, kernel launch, ...

A context is destroyed by one of:

Explicit cudaThreadExit() call

Host thread terminating

Run-Time API Device Management:

A host thread can maintain one context at a time

GPU is part of the context and cannot be changed once a
context is established

Need as many host threads as GPUs

Note that multiple host threads can establish contexts
with the same GPU

© NVIDIA Corporation 2009

with the same GPU

Driver handles time-sharing and resource partitioning

GPUs have consecutive integer IDs, starting with 0

Device management calls:

cudaGetDeviceCount(int *num_devices)

cudaSetDevice(int device_id)

cudaGetDevice(int *current_device_id)

cudaThreadExit()

Choosing a Device

Properties for a given device can be queried
No context is necessary or is created

cudaGetDeviceProperties(cudaDeviceProp *properties, int
device_id)

This is useful when a system contains different GPUs

Explicit device set:

© NVIDIA Corporation 2009

Explicit device set:
Select the device for the context by calling cudaSetDevice()
with the chosen device ID

Must be called prior to context creation

Fails if a context has already been established

One can force context creation with cudaFree(0)

Default behavior:
Device 0 is chosen when no explicit cudaSetDevice is called

Note this will cause multiple contexts with the same GPU

Except when driver is in the exclusive mode (details later)

Ensuring One Context Per GPU

Two ways to achieve:

Application-control

Driver-control

Application-control:

© NVIDIA Corporation 2009

Host threads negotiate which GPUs to use

For example, OpenMP threads set device based on
OpenMPI thread ID

Pitfall: different applications are not aware of each
other’s GPU usage

Call cudaSetDevice() with the chosen device ID

Driver-control (Exclusive Mode)

To use exclusive mode:

Administrator sets the GPU to exclusive mode using SMI

SMI (System Management Tool) is provided with Linux
drivers

Application: do not explicitly set the GPU in the
application

© NVIDIA Corporation 2009

application

Behavior:

Driver will implicitly set a GPU with no contexts

Implicit context creation will fail if all GPUs have contexts

The first state-changing CUDA call will fail and return an
error

Device mode can be checked by querying its
properties

Inter-GPU Communication

Application is responsible for moving data between
GPUs:

Copy data from GPU to host thread A

Copy data from host thread A to host thread B

Use any CPU library (MPI, ...)

© NVIDIA Corporation 2009

Use any CPU library (MPI, ...)

Copy data from host thread B to its GPU

Use asynchronous memcopies to overlap kernel
execution with data copies

Lightweight host threads (OpenMP, pthreads) can
reduce host-side copies by sharing pinned memory

Allocate with cudaHostAlloc(...)

Example: Multi-GPU 3DFD

3DFD Discretization of the Seismic Wave Equation

8th order in space, 2nd order in time, regular grid

Fixed x and y dimensions, varying z

Data is partitioned among GPUs along z

Computation increases with z, communication (per node) stays

© NVIDIA Corporation 2009

Computation increases with z, communication (per node) stays
constant

A GPU has to exchange 4 xy-planes (ghost nodes) with each
of its neighbors

Cluster:

2 GPUs per node

Infiniband SDR network

2-GPU Performance

© NVIDIA Corporation 2009

Linear scaling is achieved when computation time exceeds
communication time

Single GPU performance is ~3.0 Gpoints/s

OpenMP case requires no copies on the host side (shared pinned
memory)

Communication time includes only PCIe transactions

MPI version uses MPI_Sendrecv, which invokes copies on the
host side

Communication time includes PCIe transactions and host memcopies

3 or more cluster nodes

© NVIDIA Corporation 2009

Times are per cluster node

At least one cluster node needs two MPI
communications, one with each of the neighbors

Performance Example: 3DFD

© NVIDIA Corporation 2009

Single GPU performance is ~3,000 MPoints/s

Note that 8x scaling is sustained at z > 1,300

Exactly where computation exceeds communication

Outline

Execution Configuration Optimizations

Instruction Optimizations

Multi-GPU

Graphics Interoperability

© NVIDIA Corporation 2009 32

OpenGL Interoperability

OpenGL buffer objects can be mapped into the CUDA
address space and then used as global memory

Vertex buffer objects

Pixel buffer objects

Direct3D vertex and pixel objects can also be mapped

© NVIDIA Corporation 2008 33

Direct3D vertex and pixel objects can also be mapped

Data can be accessed like any other global data in the
device code

Image data can be displayed from pixel buffer objects
using glDrawPixels / glTexImage2D

Requires copy in video memory, but still fast

OpenGL Interop Steps

Register a buffer object with CUDA
cudaGLRegisterBufferObject(GLuint buffObj);

OpenGL can use a registered buffer only as a source
Unregister the buffer prior to rendering to it by OpenGL

Map the buffer object to CUDA memory
cudaGLMapBufferObject(void **devPtr, GLuint buffObj);

Returns an address in global memory
Buffer must registered prior to mapping

© NVIDIA Corporation 2008 34

Buffer must registered prior to mapping

Launch a CUDA kernel to process the buffer

Unmap the buffer object prior to use by OpenGL
cudaGLUnmapBufferObject(GLuint buffObj);

Unregister the buffer object
cudaGLUnregisterBufferObject(GLuint buffObj);

Optional: needed if the buffer is a render target

Use the buffer object in OpenGL code

Interop Scenario:
Dynamic CUDA-generated texture

Register the texture PBO with CUDA

For each frame:

Map the buffer

Generate the texture in a CUDA kernel

Unmap the buffer

Update the texture

© NVIDIA Corporation 2008 35

Update the texture

Render the textured object

unsigned char *p_d=0;

cudaGLMapBufferObject((void**)&p_d, pbo);

prepTexture<<<height,width>>>(p_d, time);

cudaGLUnmapBufferObject(pbo);

glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);

glBindTexture(GL_TEXTURE_2D, texID);

glTexSubImage2D(GL_TEXTURE_2D, 0, 0,0, 256,256,

GL_BGRA, GL_UNSIGNED_BYTE, 0);

Interop Scenario:
Frame Post-processing by CUDA

For each frame:

Render to PBO with OpenGL

Register the PBO with CUDA

Map the buffer

Process the buffer with a CUDA kernel

© NVIDIA Corporation 2008 36

Process the buffer with a CUDA kernel

Unmap the buffer

Unregister the PBO from CUDA

unsigned char *p_d=0;

cudaGLRegisterBufferObject(pbo);

cudaGLMapBufferObject((void**)&p_d, pbo);

postProcess<<<blocks,threads>>>(p_d);

cudaGLUnmapBufferObject(pbo);

cudaGLUnregisterBufferObject(pbo);

...

