

Inside the GPU

by

 Michael August

for

CS 596

May 15, 2006

 2

 As with almost all aspects of computer technology, computer video display

technology has experienced an almost incomprehensible growth and evolution over the

past two decades. Behind this evolution of video technology has been the demand for

more photorealistic computer graphics. This demand for photorealism has come

primarily from the video game community. At the heart of this photorealism is the

hardware necessary to make computer-generated imagery appear in real time. All of

today’s 3D graphics acceleration-enabled video cards contain a graphics processing unit

(GPU) at their core. A GPU is just a special kind of central processing unit (CPU) that is

dedicated to performing video-related computations. The quality of the GPU determines

the quality and the kinds of graphics that can be viewed on a display device. Before

getting into the details of the inner workings of a modern GPU, it is best to look back at

the history of CPUs and how the technology got to where it is today.

 In the early days of digital computing (in the 1930s and 1940s), the switching

elements in CPUs consisted of electromechanical relays. These CPUs took up the space

of whole rooms and were fairly reliable but very slow devices which performed

computations that could be output onto punched paper tape or punch cards. The next step

up in computational power came (in the 1940s and 1950s) when vacuum tubes were used

in place of relays as the switching elements comprising the CPU. Vacuum tubes were not

very reliable and had to be replaced regularly. They also took time to warm up when first

turned on. However, they were faster than relays because they had no moving parts.

Their output was usually sent to punch cards. In the late 1950s and early 1960s

computers began to be built out of transistors. Transistors became, and still are, the

 3

fundamental switching elements out of which CPUs are formed. At first, transistors were

soldered onto the circuit boards by hand. However, with the techniques of Small Scale

Integration, integrated circuits consisting of multiple transistors became common. Chips

containing one or more logic gates were wired together to form the CPU. Large Scale

Integration and Very Large Scale Integration have led to all of these multiple chips being

integrated into one chip that has tens of millions to hundreds of millions of transistors.

The modern Pentium 4 Prescott CPU, for example, has 125 million transistors. The main

visual output of most transistor-based computers since the 1970s has been the Cathode

Ray Tube (CRT). More recently, newer display technologies, such as the Liquid Crystal

Display and the Plasma Display, have become more popular than the CRT. All of these

devices display graphics in two spatial dimensions (changes in the displayed graphics

throughout the time dimension can create animation). There are also a number of other

2D display devices that are less common, and some experimental 3D display devices

exist as well. Alongside the development of CPU technology has been the evolution of

video display technology and the video cards responsible for making that new display

technology function.

 At first, video cards were simply frame buffers with auxiliary electronics built in. A

frame buffer is a collection of memory cells that store the data (i.e. color and intensity)

about each pixel that is displayed on the screen in a particular frame (a frame is one

sample, or time-slice, of everything that is being displayed on the screen. Televisions in

America, for example, display 30 frames per second). The CPU on the computer would

perform the computations necessary to determine the color and intensity information for

 4

each pixel and then send this information along a bus to the frame buffer on the video

card. Eventually, graphics coprocessors were included on the motherboard alongside the

CPU to perform graphics-specific computations. The use of a coprocessor in graphics

intensive tasks offloaded work from the CPU onto the coprocessor, thereby allowing the

CPU to use its cycles on other computations and improving system performance. An

example of a graphics coprocessor was the blitter. The blitter performed the Bit Block

Transfer operation (also known as BitBLT). Introduced in 1974, the Bit Block Transfer

was a special instruction that a graphics programmer could use to incorporate multiple

2D images (called sprites) into a frame. An alternative technique for displaying sprites

on a frame was hardware-based sprite acceleration. Hardware-based sprite acceleration

was eventually included directly on video cards. The difference between direct hardware

support for sprite manipulation and the blitter is as follows. With hardware support for

sprites, a sprite would be placed into a special sprite memory. The sprite would not be

placed into the frame buffer. Instead, the graphics card (note: the terms “graphics card”,

“video card”, and “graphics board” are all interchangeable) would read the frame buffer

contents and then read the sprite memory to overlay the sprites that are in the sprite

memory on top of the contents of the frame buffer. Effectively, this meant that the frame

buffer provided the background image and the sprites were overlayed on top of that

background image. With the blitter and the BitBLT operation, a sprite was written

directly into the frame buffer by using a clever technique which applied a combination of

bitmasks to the frame buffer contents. This meant that individual pixels in the frame

buffer were actually overwritten by the sprites. In other words, pieces of the background

image were actually replaced by the sprites. Eventually, the blitter and the hardware

 5

support for sprites were moved onto the graphics card itself. This combination of frame

buffer, blitter, and hardware-enabled sprite acceleration, all in one device, was a

forerunner of the modern graphics card. It could be said that the blitter itself was a

primitive form of the modern GPU. The offloading of the graphics workload from the

main system board onto specialized graphics modules that reside on the video card has

been a common theme throughout the history of video technology. These early video

cards were designed for displaying 2D images only. In fact, all modern computer

monitors display only 2D images, but the use of 3D art techniques trick the human eye

into believing that the images being displayed are 3D images. The implementation of

these 3D techniques was first done in software by the CPU. However, the

implementation of these 3D techniques bogged down the CPU extensively. It wasn’t

until specialized hardware for manipulating 3D graphics emerged that realistic-looking

3D games and simulations could be created. Throughout the 1980s and 1990s, Silicon

Graphics, Inc. (SGI) played a leading role in the creation of hardware and software

solutions for the creation of 3D graphics. These solutions were very expensive, and thus

were designed for large organizations that had a need for high-end 3D graphics

technology. The consumer market for 3D graphics began in the mid-1990s with the

introduction of 3D graphics accelerators that ran alongside the main 2D graphics board.

With this generation of 3D graphics cards, the 3D card had a connection to the 2D card,

which would then send the video output to the display. With the introduction of the

Voodoo Rush graphics accelerator card by 3dfx in 1996, both the 2D and 3D

functionality were integrated into one video card. In 1997, Intel introduced the Pentium

MMX CPU, which had an enhanced instruction set for performing multimedia

 6

computations (referred to as MultiMedia eXtensions by some, and Matrix Math

eXtensions by others). The following year, AMD introduced a similar extension to its

K6-2 instruction set (referred to as 3DNOW!). In 1999, Intel responded to AMD’s

3DNOW! technology with Streaming SIMD Extensions (SSE) on its Pentium 3. The

idea behind these CPU instruction set extensions was to allow the CPU to perform more

graphics-intensive computations in fewer CPU cycles. Graphics-related computations

tend to be based on floating point data, so these extensions improved the performance of

Intel’s processors and AMD’s processors when executing instructions on floating point

data. These extensions also parallelized operations on data, which improved the

performance of these CPUs. In the fall of 1999, NVIDIA Corporation introduced

itsGeForce 256 3D graphics accelerator card. The GeForce 256 was the first video card

to incorporate a processor that had a Transform and Lighting Engine. This characteristic

made the GeForce 256 the first graphics card to have a full-fledged GPU. Ever since the

introduction of the GPU in 1999, more features have been added to graphics cards and

their GPUs in the quest for the display of real-time photorealistic 3D graphics. In order

to understand these features, we must first take a look at the purpose of the GPU and

video card in general.

 All shapes that one sees on a computer screen start out inside the computer as abstract

entities that don’t have any physically realizable representation. These abstract entities

get transformed into other abstract entities until they are in a form that is suitable for the

computer screen to display them. The whole idea of a graphics card is to be the interface,

or middle man, between the computer and the video display. The graphics card

 7

transforms the abstract entities it receives into a form which is suitable for the computer

screen to display. The input to the graphics card is called a primitive, and this primitive

is the abstract entity that needs to be transformed into a physical representation. A

primitive could be a circle or a sphere or any other geometric object. The GPU on a

graphics card takes each primitive that the host computer sends to it and converts that

primitive into the required electronic signal that the video display electronics

understands. The series of transformations that occur to the primitive to make it into a

form which can be displayed is called the graphics pipeline. This pipeline represents the

work that is done to each primitive before it can be displayed on the computer’s monitor.

It is possible to implement the graphics pipeline, and the work that it entails, entirely in

software. However, this would be such a burden on the host computer’s CPU and

memory that it would prevent the computer from performing any other computations.

Also, most general-purpose CPUs are not designed for performing graphics-related

computations and would not be able to handle the workload required by graphics-

intensive applications. Furthermore, any piece of software that emulates the functioning

of a hardware device is always significantly slower than that hardware device. The goal

of the modern graphics pipeline is to convert 3D primitives into a series of pixels on a 2D

display device. This process of converting 3D objects that exist in a vector space into a

set of pixels that exist in a 2D space is called rasterization. A raster graphics video

display only accepts a signal that has encoded in it the information about each pixel on

the screen. In the past, there have also existed vector graphics displays. A vector

graphics display will accept individual 2D primitives for display on the screen, and then

draw each 2D object on the screen in the order that it receives them. A raster graphics

 8

display, on the other hand, scans every pixel on the screen during each frame and

displays the pixel based on the information that is in the video signal coming from the

video card. The difference between these two techniques is that the vector graphics

display requires much less information than the raster graphics display. This is because

the raster graphics display needs information about each pixel on the screen whereas the

vector graphics display only needs to know the shape that it is supposed to draw and the

endpoints and location of that shape. This difference in display technology causes

differences in the video card’s design. In a video card designed for a vector graphics

display, only a display list is required. The display list contains information about the 2D

shapes that will be displayed on the screen. The display list is the output of the graphics

card, which is then input into the vector graphics display. On the other hand, a raster

graphics video card has to have a memory which stores information about every pixel

that will be displayed on the screen. This memory is called the frame buffer, and the

frame buffer is the output of the video card which gets sent to the input of the raster

graphics video display. Nearly all video displays currently in use are raster graphics

displays, and therefore nearly all graphics cards currently in use are raster graphics video

cards. Since most modern video displays support resolutions that are greater than 1000

pixels wide by 1000 pixels high, most graphics cards must have a frame buffer which is

capable of storing information about more than 1,000,000 pixels (since 1000 x 1000 =

1,000,000) for each frame of a computer screen. This means that the frame buffer’s size

and data transfer rate are both important characteristics in the design of graphics cards.

Now that we’ve seen that the purpose of the GPU is to transform 3D graphics primitives

handed off to it by the computer’s CPU into a series of pixels to be displayed by the

 9

computer’s video display, we can look inside the GPU. But before we can understand the

elements that comprise a GPU, and since GPUs are just a special kind of CPU, we must

first understand how CPUs work in general.

 Ever since Charles Babbage’s original design of the analytical engine in 1837,

computer architecture has made use of a mill and a store. The modern day equivalent of

the mill is the CPU, and the modern day equivalent of the store is RAM (Random Access

Memory). The CPU can be thought of as a fast calculator that can access memory and do

arithmetic on numbers that are stored in that memory. The CPU’s purpose is to fetch

instructions from an instruction cache, decode each instruction, and then execute it. In

order to execute an instruction, the CPU must access any data in memory that is

necessary for the instruction execution to proceed. Then, after fetching the data from

memory and executing the instruction on that data, the resultant data from that

instruction’s execution must be written back to memory. These various stages of a

CPU’s execution together make up what is called the instruction pipeline. The particular

instruction pipeline of any CPU is determined by the design of the CPU and its

instruction set architecture (i.e. the set of instructions that are physically wired into the

CPU’s hardware). All modern CPUs utilize superscalar designs, whereas older CPUs

used scalar designs. In this context, the term “scalar” means that an average of one

instruction can be executed per CPU clock cycle and thus one piece of data can be output

per clock cycle. The term “superscalar” means that, on average, more than one

instruction can be executed per clock cycle, and therefore multiple pieces of data can be

returned from each stage of the pipeline in one clock cycle. A CPU can be made

 10

superscalar by breaking up its pipeline into very many distinct stages and by having

multiple functional units operate at each stage. In a scalar processor, one instruction can

operate on only one piece of data at a time. In a vector processor, one instruction can

operate on multiple pieces of data at a time. Most modern general-purpose CPUs are

superscalar processors, not vector processors. The vector processor was a common type

of processor in supercomputers in the 1980s and 1990s. Today, most general-purpose

superscalar CPUs incorporate elements of a vector processor design by providing support

for SIMD (Single Instruction, Multiple Data) instructions. The upcoming Cell processor

from Sony, Toshiba, and IBM contains eight vector microprocessors (called Synergistic

Processing Elements) that are all under the control of a superscalar CPU. Another

example of a vector processor is the Digital Signal Processor. The GPU is yet another

example of a vector processor, and much of the GPU’s high performance characteristics

can be attributed to its vector design. Now, let’s look at how a GPU fits into the overall

graphics subsystem of a computer.

 A GPU is a part of the chipset located on a modern video card. It is the part of the

chipset which is responsible for 3D graphics acceleration. The output of this graphics

chipset is sent to the frame buffer, the on-card memory which contains information about

each pixel on the screen (though the frame buffer also acts as a temporary memory

location for other data besides the individual pixel information). Every time the screen is

refreshed, the frame buffer is read (i.e. sampled) and the information contained within it

is displayed on the screen. If the display device happens to require an analog input, then

a RAMDAC (Random Access Memory Digital-to-Analog Converter) sits in between the

 11

frame buffer and the output connection to the display device. The RAMDAC takes the

digitally encoded information about each pixel that is stored in the frame buffer and

converts that digital information into an analog signal which can be understood by the

video display’s internal electronics. If the display device requires a digital input, then a

hardware transcoder on the video card converts the pixel information in the frame buffer

into the particular digital format required by the display device. This, in a nutshell, is

how video cards work. The primary bottlenecks in this design are the connection from

the host computer to the graphics card and the connection from the GPU to the graphics

card’s frame buffer. The connection from the computer to the graphics card has

traditionally been through the PCI or AGP bus, but now all modern video cards connect

to the host computer via the PCI-Express bus. The PCI-Express bus supports a

theoretical data transfer rate of 3.7 GB/s (in a PCI-Express x16 slot) in both directions.

The theoretical data transfer rate between the GPU and the frame buffer varies widely

from one graphics card to another. The transfer rate falls somewhere in the range of 4

GB/s to 50 GB/s for modern high-end graphics cards (this rate also depends on what kind

of data is being transferred to and from the frame buffer). The GPU is the key player in

the functioning of the video card, so let’s take a look inside.

 At its core, a GPU is just an implementation of the graphics pipeline. The modern

graphics pipeline is composed of multiple stages: application, command, geometry,

rasterization, texture, fragment, and display. Different people have a different view of

what the stages in the modern graphics pipeline are, and some people group the various

functions of the pipeline into different stages. My own rendition of the graphics pipeline

 12

as presented in this paper is derived from two sources who are renowned computer

graphics experts. The graphics pipeline can also be viewed as a stack, not unlike the

TCP/IP protocol stack in computer networking. In the application stage of the pipeline,

an application running on the host computer needs to display a geometric object that is

stored in the computer’s main memory. The application has information about the

vertices, or endpoints, of the geometric object. This object, its vertices, and its location

on the screen all represent a geometric primitive that needs to be sent to the graphics card

so that it can be processed by the GPU. In order to do this, the application must send a

command to the graphics card via the host computer’s operating system. In order to

achieve this, the application makes a call to the graphics API (Application Programming

Interface). The graphics API can be either OpenGL or DirectX (or possibly another

proprietary graphics API, though this is rare). The application makes a function call (or a

set of function calls) with all of the information about the geometric primitive as a

parameter to the function. This process of calling a function built into the graphics API is

a part of the command stage of the graphics pipeline. The function call can be viewed as

a command to the graphics card to do something with the geometric primitive which was

passed to the function as a parameter. The graphics API is implemented as a part of the

video card driver. The geometric primitive can be a point, a line, or a polygon, and it is

represented at this stage by its vertices. Once the command has been decoded by the

GPU, the data sent along with the command is operated on by the geometry stage of the

graphics pipeline. This geometric data corresponds to a polygon that can be manipulated.

The geometry stage is responsible for taking the vertices of the polygon passed to it by

the command stage, and performing geometric transformations on the polygon such as

 13

translation, rotation, and scaling. The reason that geometric transformations are needed

is as follows. The original shape that needs to be displayed on the screen lies in object

space, a 3D space which is centered on that object. The object must be placed into a

world that has its own coordinate system. Transforming the object from its own space

into the world space is called a modeling transformation. A person’s view of the 3D

world in which the object is embedded determines where the object must be placed

relative to the screen’s coordinate system. The screen’s coordinate system is the world

space as seen by the virtual camera (i.e. the person looking into the screen at the world).

Transforming an object’s position and orientation from world space into this camera

space is called a viewing transformation. Since the objects that must be displayed on the

2D screen must appear like they are in a 3D world, a further projection transformation of

the object is required. The projection transformation projects the 3D object onto the flat

plane (called image space) which corresponds to the screen that the person is looking at.

So, first a modeling transformation is applied to the shape, then a viewing transformation

is applied to the shape, and finally a projection transformation is applied to the shape.

The geometry stage is also responsible for lighting the resulting polygon after it has been

transformed. The Transform and Lighting Engine on a graphics card lies in the geometry

stage of the graphics pipeline. Since only the shapes that are visible on the screen need to

be manipulated by later stages of the pipeline, the geometry stage culls any parts of the

shape that will not be visible to the viewer. This process is called hidden surface

determination and it plays a large role in the efficiency of the graphics pipeline, as there

is no need for the GPU to process shapes that will not be visible. The geometry stage is

also responsible for taking the geometric primitive passed to it by the application stage

 14

and assembling the primitive into an actual geometric shape that can later be filled with

pixels. If the original primitive was a polygon, then that polygon is broken up into many

individual triangles (this process is referred to as tessellation, or triangulation). This part

of the geometry stage is called triangle setup. GPUs also have another module included

in the geometry stage. This module is called a vertex shader, or a vertex processor. The

vertex shader takes the individual vertices of a geometric shape and transforms those

vertices in various ways. It can animate the vertices, for example, or it can change the

lighting on them. Modern vertex shaders are programmable. It this programmability of

the GPU which allows for some very impressive special effects in real-time. The output

of the geometry stage is a shape which has been fully transformed and lit. This output is

then sent to the rasterization stage. The rasterization stage fills the shape with pixels. At

this stage, the color information for each vertex is interpolated across the shape (i.e. a

color gradient is formed from one vertex to the next) by the rasterizer. This is how the

rasterizer knows what color to make each pixel. Technically, at this stage of the pipeline

the shape is not filled with pixels. Rather, it is filled with candidate pixels, or potential

pixels. These candidate pixels are called fragments. The reason they are considered

candidate pixels is that they might not make it all the way to the end of the pipeline or

they might be changed in some way before they reach the end of the pipeline. The output

of the rasterization stage is a set of fragments which fill the shape that was originally fed

into the graphics pipeline. These fragments are sent to the texture stage of the graphics

pipeline. The texture stage applies a texture to each fragment sent to it. A texture is just

an image file that is overlaid on top of a shape to make the shape’s surface look more

realistic. The texture that is applied to each fragment is stored in a high-speed texture

 15

cache. Textures are also stored in a special area of the graphics card’s frame buffer for

quick access by the GPU. After a texture is combined with each fragment that makes up

the shape, the resulting fragments are sent to the fragment stage of the graphics pipeline.

The fragment stage allows for mathematical operations to be applied to each fragment to

enhance its appearance. For example, each fragment can be blended with different

colors. Shadows can be added to the fragments. Fragments can be made to appear

transparent (called alpha blending). Many different effects can be added to each

fragment. It is also at this stage of the pipeline where various tests are performed on each

fragment. One such test is the z-compare test (i.e. depth test). This test determines

whether or not the fragment will be visible. If it isn’t visible, then it is just thrown away.

A fragment might not be visible if it is hidden behind other opaque objects that show up

on the screen. In such a case, the fragment need not progress down the graphics pipeline

any more, as it won’t be made visible on the display device. All of these functions of the

fragment stage use buffers that are a part of the memory (i.e. the frame buffer) located on

the graphics card. Some of these buffers are the color buffer (used for color blending),

the stencil buffer (for creating shadows), and the z buffer (for performing the depth test).

At the fragment stage, textures can be combined and overlaid onto each fragment. Fog

can also be generated at this stage. Another important module that resides in the

fragment stage of the graphics pipeline is the fragment shader, also known as the pixel

shader or pixel processor. The fragment shader can uniquely transform the appearance of

each individual fragment that makes up the shape. The appearance of each fragment is

calculated independently of all of the other fragments. A vertex shader can’t shade pixels

at the level of detail that a fragment shader can. This is because the vertex shader can

 16

only interpolate the appearance of pixels between adjacent vertices, but fragment shaders

can shade each individual pixel independently of the others in its vicinity. Modern

fragment shaders are also programmable. This means that the graphics programmer can

alter a shape’s appearance and color at a per-pixel level. This fine-grained control over

the level of detail allows for enhanced photorealism in real-time. The output of the

fragment stage is the set of individual pixels that make up the shape. At this point, the

pixels are in their final viewable form. They are sent to the frame buffer so that they can

be displayed on the screen. The output of the fragment stage of the graphics pipeline is

input to the display stage. This is the final stage of the graphics pipeline. The display

stage is responsible for reading the contents of the frame buffer, performing digital to

analog conversion if necessary, and sending the output to the display device. If the

display device is a CRT or a projector, then gamma correction will also be performed.

The end result is the 2D arrangement of pixels in one frame of the image. The frames are

flickered in front of our eyes at a high refresh rate, and our own persistence of vision

allows us to piece these individual frames together into a moving animation sequence.

Now that we’ve taken a trip down the graphics pipeline, let’s look at the architecture of

modern GPUs.

 In order to understand the architecture of a modern GPU, it helps to take a look at an

actual one. So, to better understand the architecture of GPUs, let’s look at the NVIDIA

GeForce 6 series architecture. This architecture is used in the NVIDIA GeForce 6800

series of graphics cards. The overall architecture of a computer system looks like this:

 17

Source: GPU Gems 2, page 473, Figure 30-2

In the image above, the data transfer rates across each bus are annotated next to the bus.

The CPU depicted in this image has an 800 MHz Front Side Bus, and the GPU depicted

is a GeForce 6 series GPU. The bus connecting the North Bridge to the GPU is a PCI-

Express bus (using an x32 slot). As one can see, the GPU is capable of transferring data

along its bus to its own memory much faster than any of the other buses can transfer data.

This means that the bottleneck is generally not onboard the GPU, but rather on the

motherboard of the host computer. It also means that programs that run on the GPU and

utilize the bandwidth of the GPU’s memory bus will run very efficiently. The NVIDIA

GeForce 6 GPU is a 256-bit processor with a core clock rate of around 425 MHz. It is

onboard a graphics card that has a 256-bit memory with a memory clock rate of around

 18

550 MHz (using GDDR3 memory). It is manufactured with a 130 nm process

technology and has 222 million transistors. Below is a block diagram of the NVIDIA

GeForce 6 series architecture:

 Source: GPU Gems 2, page 474, Figure 30-3

 19

The “host” block at the top of the diagram denotes the host computer. The host computer

sends commands, vertex data, and textures to the GPU. The GeForce 6 GPU’s

implementation of the geometry stage of the graphics pipeline contains up to six

programmable vertex processors (i.e. vertex shaders). Each of these vertex processors

can operate on one piece of data simultaneously, meaning that all of them can process

vertices in parallel. Once the vertices have been processed by the programmable vertex

processors, they are sent to the remainder of the geometry stage. The vertices are

assembled together into a primitive (i.e. a point, a line, or a triangle) in the process of

primitive assembly. Then, the primitives that won’t be visible in the final image are

culled, and the pieces of the primitives that are cut off by the edges of the viewing

frustum are clipped. These steps are performed in the “cull/clip/setup” block and the

output is sent to the rasterizer. The rasterizer fills in the primitive’s shape with candidate

pixels called fragments. The rasterizer also checks each fragment’s depth to see if it will

be hidden by any other pixel in the scene. The rasterized version of the primitive is then

sent to the fragment processors (i.e. fragment shader). Note that both the vertex

processors and the fragment processors have access to the texture cache. This means that

both vertices and individual fragments can be blended with texels (texels are the

individual pixels comprising a texture). The GeForce 6 GPU’s implementation of the

fragment stage of the graphics pipeline can have up to 16 individual programmable

fragment processors. Each fragment processor can operate on four fragments at a time.

This highly parallel design means that many fragments can be processed simultaneously,

and since the whole pipeline is broken down into many stages, each part of the pipeline

can be working on different, unrelated, pieces of data at the same time. After being

 20

shaded by the fragment processors, the fragments pass over the fragment crossbar and

into 16 raster operation units. The raster operation units do another depth test to ensure

that the fragments aren’t being occluded by any other fragments in the final image,

antialiasing is performed on the fragments, and then the resultant fragments are sent to

the frame buffer. The frame buffer is split up into four partitions, and there is one

connection from the GPU to each of these memory partitions. This means that there are

four distinct connections from the GPU to the graphics card’s onboard memory. This

prevents the full memory bus on the graphics card from being tied up at one time, since

there are effectively four parallel buses over which data can be transferred from the GPU

to the frame buffer. Once the pixels have been transferred into the frame buffer, then

they are in their final form and are ready to be displayed on the screen. Below is the

GeForce 6 series architecture with its modular implementation of the different stages of

the graphics pipeline pointed out.

 21

 Source: Ajit Datar, Apurva Padhye; Advanced Computer Architecture course

 presentation; University of Minnesota Duluth

 Most of the data passing through the GeForce 6 series GPU is 32-bit floating point

data, though it can also be 16-bit floating point data. A GPU is truly designed to handle

floating point data, as most geometric data is in floating point format. Some of the

important performance metrics of a GPU are its peak pixel fill rate, its peak texel fill rate,

its peak memory bandwidth, and its triangle transform rate. The GeForce 6 series GPU

 22

has a peak pixel fill rate of 6400 MegaPixels per second, a peak texel fill rate of 6400

MegaTexels per second, a peak memory bandwidth of 35.2 GB/s, and a triangle

transform rate of 600 MegaTriangles per second. Most general-purpose CPUs don’t even

compete in the number of floating point operations per second performance when

compared to GPUs. Intel’s Pentium 4 Prescott chip, for example, can only perform at a

peak of about 12 GFLOPS, whereas the GeForce 6 can perform at a peak of over 100

GFLOPS.

 The whole process that has been discussed in this paper has been the concept of

rendering. Rendering is the process of producing the pixels of a scene from a higher-

level description of that scene’s components. There have been four major breakthroughs

in the technology behind the rendering of real-time 3D computer graphics. The first of

these breakthroughs was the concept of modeling a 3D object by connecting together a

mesh of lines. This mesh of lines that are grouped together into triangles is called a

wireframe model. By decomposing a 3D model into smaller, more manageable

geometric shapes, the graphics card could now build up a model out of its constituent

shapes. The second major breakthrough was to apply shading and lighting to the

triangles that make up the wireframe model. By doing this, shaded solids could now be

viewed on the screen and animated in real-time. The third breakthrough was to apply

textures on top of the shaded triangles that make up the model. These textures cause the

model to appear more realistic. The fourth breakthrough was to allow the appearance of

the model’s surfaces to be programmed. In this way, the graphics programmer can make

the model’s surfaces appear even more natural by animating parts of them, by adding

 23

randomness to them, and by adding a richer blend of colors and textures to them. We are

currently in this fourth generation of graphics technology with the programmable vertex

shaders and pixel shaders of modern GPUs. It was just recently that the transition took

place from a fixed-function pipeline to a programmable pipeline. The purpose behind

these different breakthroughs in graphics hardware has been to get closer to the goal of

rendering photorealistic 3D computer graphics in real-time so that, eventually, you won’t

be able to tell the difference between a real human being and a human being on the

screen. The GPU is quickly approaching that dream.

 24

Bibliography

Works Used

Kilgariff, Emmett; Fernando, Randima, eds. GPU GEMS 2. 2005.

SIGGRAPH 2005 Course 37 Notes. 2005.

Moya, Victor; Gonzalez, Carlos; Roca, Jordi; Fernandez, Agustin; Espasa, Roger.

Shader Performance Analysis on a Modern GPU Architecture. IEEE Computer Society.

2005.

Lefohn, Aaron. GPGPU IEEE 2005 Visualization Tutorial. 2005.

Datar, Ajit; Padhye, Apurva. Graphics Processing Unit Architecture. 2005.

Durand, Fredo; Cutler, Barb. Modern Graphics Hardware. 2001.

Works Consulted

http://en.wikipedia.org

CS 596 project on GPU technology

CategorySoftware Rasterization - DmWiki

DevMaster.net - Software Rendering School Part I

Software Rasterization School, Part 5 Lighting - DmWiki

Framebuffer - Wikipedia, the free encyclopedia

Graphics Processing Units (GPUs)

Howstuffworks "How Microprocessors Work"

Howstuffworks "How Graphics Cards Work"

Smart Computing Article - Central Processing Units

.: DataFuse.net - How GPU Pipelines work.

3DGPU.com

apcmag.com: Hijacking the GPU

Beyond3D - Which was nice.

Central processing unit - Wikipedia, the free encyclopedia

DriverHeaven.net - How GPU's Work

Glift: Generic GPU Data Structures

GPGPU : Developer Resources

GPU Shading and Rendering

How It Works: Graphics Boards

 25

Howstuffworks "How Graphics Cards Work"

PCI Express: An Overview : Page 1

Video Card Buying Guide

Physics processing unit - Wikipedia, the free encyclopedia

Instruction pipeline - Wikipedia, the free encyclopedia

Geometry pipelines - Wikipedia, the free encyclopedia

Graphics pipeline - Wikipedia, the free encyclopedia

Classic RISC pipeline - Wikipedia, the free encyclopedia

Superscalar - Wikipedia, the free encyclopedia

SIMD - Wikipedia, the free encyclopedia

Vector processor - Wikipedia, the free encyclopedia

MMX - Wikipedia, the free encyclopedia

Stream processing - Wikipedia, the free encyclopedia

Graphics processing unit - Wikipedia, the free encyclopedia

Central processing unit - Wikipedia, the free encyclopedia

3dfx - Wikipedia, the free encyclopedia

Graphics card - Wikipedia, the free encyclopedia

MIPS architecture - Wikipedia, the free encyclopedia

CPU design - Wikipedia, the free encyclopedia

Abstraction (computer science) - Wikipedia, the free encyclopedia

Device driver - Wikipedia, the free encyclopedia

Application programming interface - Wikipedia, the free encyclopedia

OpenGL - Wikipedia, the free encyclopedia

CPU design - Wikipedia, the free encyclopedia

MIPS architecture - Wikipedia, the free encyclopedia

Silicon Graphics - Wikipedia, the free encyclopedia

3D computer graphics - Wikipedia, the free encyclopedia

Central processing unit - Wikipedia, the free encyclopedia

Instruction pipeline - Wikipedia, the free encyclopedia

Geometry pipelines - Wikipedia, the free encyclopedia

Graphics pipeline - Wikipedia, the free encyclopedia

Classic RISC pipeline - Wikipedia, the free encyclopedia

Superscalar - Wikipedia, the free encyclopedia

SIMD - Wikipedia, the free encyclopedia

Vector processor - Wikipedia, the free encyclopedia

MMX - Wikipedia, the free encyclopedia

Stream processing - Wikipedia, the free encyclopedia

Graphics processing unit - Wikipedia, the free encyclopedia

Shader - Wikipedia, the free encyclopedia

Graphics card - Wikipedia, the free encyclopedia

Shader - Wikipedia, the free encyclopedia

Smart Computing Article - Central Processing Units

PC Architecture. A book by Michael B. Karbo

History of NVIDIA

History of ATI

History of NVIDIA

 26

History of ATI

ASE Labs: Articles - How Modern CPUs Work

How a CPU Works | Hardware Secrets

AnandTech: GPU Cheatsheet - A History of Modern Consumer Graphics Processors

Full Review NVIDIA's new GeForce256 'GPU' | Tom's Hardware

Cell (microprocessor) - Wikipedia, the free encyclopedia

AnandTech: GPU Cheatsheet - A History of Modern Consumer Graphics Processors

FastSilicon.com :: Hardware So Fast It Burns...

History of NVIDIA

Pixel Shaders

Introduction on vertex and pixel shaders

Vertex Shaders

GameDev.net -- Shader Programming Part I: Fundamentals of Vertex Shaders

Introduction on vertex and pixel shaders

Vertex Shaders and Pixel Shaders | Tom's Hardware

History of NVIDIA

Preview: NVidia's GeForce 6800 Ultra

nV News - NVIDIA GeForce 256 Review - GPU Overview

Computer graphics - Wikipedia, the free encyclopedia

3D computer graphics - Wikipedia, the free encyclopedia

Central processing unit - Wikipedia, the free encyclopedia

Geometry pipelines - Wikipedia, the free encyclopedia

Graphics pipeline - Wikipedia, the free encyclopedia

SIMD - Wikipedia, the free encyclopedia

Vector processor - Wikipedia, the free encyclopedia

Stream processing - Wikipedia, the free encyclopedia

Graphics processing unit - Wikipedia, the free encyclopedia

Shader - Wikipedia, the free encyclopedia

Graphics card - Wikipedia, the free encyclopedia

MMX - Wikipedia, the free encyclopedia

Smart Computing Article - Central Processing Units

PC Architecture. A book by Michael B. Karbo

History of NVIDIA

History of ATI

ASE Labs: Articles - How Modern CPUs Work

How a CPU Works | Hardware Secrets

AnandTech: GPU Cheatsheet - A History of Modern Consumer Graphics Processors

graphics pipeline: Information From Answers.com

Computer graphics - Wikipedia, the free encyclopedia

GameDev.net - Geometry Culling in 3D Engines

Vector graphics - Wikipedia, the free encyclopedia

Pixel Shaders

accelenation.com

GameDev.net - Real-Time Rendering Chapter 6: Special Effects

Hidden surface determination - Wikipedia, the free encyclopedia

An illustrated Guide to the Video Cards

 27

Microsoft and 3D Graphics

PLASMA online - Your hardware guide

neXe - Direct3D Graphics Pipeline

Appendix A - OpenGL Programming Guide

Nvidia GeForce 6200 TurboCache: Fast Name, Slower Speed | Tom's Hardware

Overam Mirage 9800 laptop specifications, features and pictures

nVidia Chips Comparison Table | Hardware Secrets

[H] Enthusiast - GeForce 6 Series Tech Article

Full Review NVIDIA's new GeForce256 'GPU' | Tom's Hardware

Cell (microprocessor) - Wikipedia, the free encyclopedia

AnandTech: GPU Cheatsheet - A History of Modern Consumer Graphics Processors

FastSilicon.com :: Hardware So Fast It Burns...

History of NVIDIA

Pixel Shaders

Introduction on vertex and pixel shaders

Vertex Shaders

GameDev.net -- Shader Programming Part I: Fundamentals of Vertex Shaders

Introduction on vertex and pixel shaders

Vertex Shaders and Pixel Shaders | Tom's Hardware

History of NVIDIA

Bit blit - Wikipedia, the free encyclopedia

Pipeline (computer) - Wikipedia, the free encyclopedia

Rendering (computer graphics) - Wikipedia, the free encyclopedia

Shader - Wikipedia, the free encyclopedia

Tessellation - Wikipedia, the free encyclopedia

Preview: NVidia's GeForce 6800 Ultra

nV News - NVIDIA GeForce 256 Review - Specifications

