
GPU Architecture OverviewGPU Architecture Overview

John OwensJohn Owens
UC DavisUC Davis



The Right-Hand TurnThe Right-Hand Turn

[H&P Figure 1.1]



3

Why? [Architecture Reasons]Why? [Architecture Reasons]

• ILP increasingly difficult to extract from
instruction stream

• Control hardware dominates µprocessors
– Complex, difficult to build and verify
– Takes substantial fraction of die
– Scales poorly

• Pay for max throughput, sustain average throughput
• Quadratic dependency checking

– Control hardware doesn’t do any math!
• Intel Core Duo: 48 GFLOPS, ~10 GB/s
• NVIDIA G80: 330 GFLOPS, 80+ GB/s



4

AMD AMD ““DeerhoundDeerhound”” (K8L) (K8L)

chip-architect.com



5

Why? [Technology Reasons]Why? [Technology Reasons]

• Industry moving from “instructions per
second” to “instructions per watt”
– “Power wall” now all-important
– Traditional µproc techniques are not power-efficient

• We can continue to put more transistors on
a chip …
– … but we can’t scale their voltage like we used to …
– … and we can’t clock them as fast …



Go ParallelGo Parallel

• Time of architectural
innovation
– GPUs let us explore using

hundreds of processors now, not
10 years from now

• Major CPU vendors
supporting multicore

• Interest in general-purpose
programmability on GPUs

• Universities must teach
thinking in parallel



7

WhatWhat’’s Different about the GPU?s Different about the GPU?

• The future of the desktop is parallel
– We just don’t know what kind of parallel

• GPUs and multicore are different
– Multicore: Coarse, heavyweight threads, better

performance per thread
– GPUs: Fine, lightweight threads, single-thread

performance is poor

• A case for the GPU
– Interaction with the world is visual
– GPUs have a well-established programming model
– Market for GPUs is 500M+ total/year



GPU 

The Rendering PipelineThe Rendering Pipeline

Application

Rasterization

Geometry

Composite

Compute 3D geometry
Make calls to graphics API

Transform geometry from 3D to
2D (in parallel)

Generate fragments from 2D
geometry (in parallel)

Combine fragments into image



GPU 

The The ProgrammableProgrammable Pipeline Pipeline

Application

Rasterization

Geometry

Composite

Compute 3D geometry
Make calls to graphics API

Transform geometry from 3D to
2D [vertex programs]

Generate fragments from 2D
geometry [fragment programs]

Combine fragments into image



DirectX 10 PipelineDirectX 10 Pipeline

VertexVertex
BufferBuffer

InputInput
AssemblerAssembler

VertexVertex
ShaderShader

SetupSetup
RasterizerRasterizer

OutputOutput
MergerMerger

PixelPixel
ShaderShader

GeometryGeometry
ShaderShader

IndexIndex
BufferBuffer TextureTexture TextureTexture RenderRender

TargetTarget
DepthDepth
StencilStencilTextureTexture StreamStream

BufferBuffer

Stream outStream out

MemoryMemory

memorymemory

programmableprogrammable

fixedfixed

SamplerSampler SamplerSampler SamplerSampler

ConstantConstant ConstantConstant ConstantConstant

Courtesy David Blythe, MicrosoftCourtesy David Blythe, Microsoft



11

Characteristics of GraphicsCharacteristics of Graphics

• Large computational requirements
• Massive parallelism

– Graphics pipeline designed for independent
operations

• Long latencies tolerable
• Deep, feed-forward pipelines
• Hacks are OK—can tolerate lack of accuracy
• GPUs are good at parallel, arithmetically

intense, streaming-memory problems



Application

Vertex

Geometry

Rasterization

Fragment

Display

Command

Application/
Command (CPU)

Command

Vertex

Geometry

Raster-

ization

Fragment

Display

GPU

Mem

Mem

Graphics HardwareGraphics Hardware——Task ParallelTask Parallel



13

Rage 128Rage 128



Triangle Setup

L2 Tex

Shader Instruction Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

NVIDIA GeForce 6800 3D PipelineNVIDIA GeForce 6800 3D Pipeline

Courtesy Nick Triantos, NVIDIA

Vertex

Fragment

Composite



Programmable PipelineProgrammable Pipeline

Application

Command

Per-Surface

Tessellation

Per-Vertex

Primitive Assembly

Per-Primitive

Rasterization

Per-Fragment

Image Composition?

Per-Pixel

Display

Per-Texel Texture
Memory

Pixel Ops

Object Space

Image Space

Texture Spaces

FB

[From Akeley and Hanrahan, Real-Time Graphics Architectures]



16

Transform A
to B

Process A to
A

Generalizing the PipelineGeneralizing the Pipeline

• Transform A to B
– Ex: Rasterization (triangles

to fragments)
– Historically fixed function

• Process A to A
– Ex: Fragment program
– Recently programmable,

and becoming more so



17

GeForce 8800 GPUGeForce 8800 GPU

Global Memory

Thread Execution Manager

Input Assembler

Host

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store

Thread Processors Thread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread Processors

[courtesy of Ian Buck, NVIDIA]

•Built around
programmable units

•Unified shader



Application

Vertex

Geometry

Rasterization

Fragment

Display

Command

Application/
Command (CPU)

Command

Rasterization

Display

GPU

Mem

Mem
Programmable

Unified Unified ShadersShaders



19

http://www.neoptica.com/NeopticaWhitepaper.pdf
http://www.graphicshardware.org/previous/www_2006/presentations/pharr-keynote-gh06.pdf

Towards Programmable GraphicsTowards Programmable Graphics

• Fixed function
– Configurable, but not programmable

• Programmable shading
– Shader-centric
– Programmable shaders, but fixed pipeline

• Programmable graphics
– Customize the pipeline
– Neoptica asserts the major obstacle is programming

models and tools



YesterdayYesterday’’s Vendor Supports Vendor Support

High-Level Graphics Language

OpenGL ∂ D3D ∂

Low-Level Device Driver



TodayToday’’s New Vendor Supports New Vendor Support

High-Level Graphics Language

OpenGL ∂ D3D ∂ Compute ∂

Low-Level Device Driver

High-Level 
Compute Lang.

Low-Level
∂ API

CUDA

CTM HAL
CTM CAL



22

Architecture SummaryArchitecture Summary

• GPU is a massively parallel architecture
– Many problems map well to GPU-style computing
– GPUs have large amount of arithmetic capability
– Increasing amount of programmability in the pipeline

• New features map well to GPGPU
– Unified shaders
– Direct access to compute units in new APIs

• Challenge:
– How do we make the best use of GPU hardware?

• Techniques, programming models, languages,
evaluation tools …


