
NVIDIA Research

Modern GPU

Sean Baxter

https://twitter.com/moderngpu

2013, NVIDIA CORPORATION. All rights reserved.

Code and text by Sean Baxter, NVIDIA Research.

Modern GPU is code and commentary intended to promote new and productive ways of thinking about
GPU computing.

This project is a library, an algorithms book, a tutorial, and a best-practices guide. If you are new to
CUDA, start here. If you're already familiar with CUDA, are ready for a challenge, and want to learn design
patterns for parallel programming, enjoy this series.

http://nvlabs.github.io/moderngpu/faq.html#gettingstarted
https://twitter.com/moderngpu

Table of Contents

0. FAQ

1. Introduction

Libraries
Goals
Two-phase decomposition
From scan to load-balancing search
Expand
Expand with load-balancing search
Algorithms

2. Performance

Occupancy and latency
Launch bounds
Getting more performance out of MGPU
LaunchBox

3. The Library

Framework
Load/store functions
Task range

4. Reduce and Scan

Benchmark and usage
Host functions
Algorithm
Scan operator
ScanOp
ScanOpIndex
CTAReduce
CTAScan and shfl scan
Reduce kernel
Scan kernel
ScanOpValue

5. Bulk Remove and Bulk Insert

Benchmark and usage
Host functions
Bulk remove algorithm
BinarySearchPartitions
KernelBulkRemove
Bulk insert partitioning

http://nvlabs.github.io/moderngpu/bulkinsert.html#bulkinsertpartitioning
http://nvlabs.github.io/moderngpu/bulkinsert.html#kernelbulkremove
http://nvlabs.github.io/moderngpu/bulkinsert.html#binarysearch
http://nvlabs.github.io/moderngpu/bulkinsert.html#bulkremove
http://nvlabs.github.io/moderngpu/bulkinsert.html#host
http://nvlabs.github.io/moderngpu/bulkinsert.html#benchmark
http://nvlabs.github.io/moderngpu/bulkinsert.html
http://nvlabs.github.io/moderngpu/scan.html#scanopvalue
http://nvlabs.github.io/moderngpu/scan.html#scankernel
http://nvlabs.github.io/moderngpu/scan.html#reducekernel
http://nvlabs.github.io/moderngpu/scan.html#ctascan
http://nvlabs.github.io/moderngpu/scan.html#ctareduce
http://nvlabs.github.io/moderngpu/scan.html#scanopindex
http://nvlabs.github.io/moderngpu/scan.html#scanop
http://nvlabs.github.io/moderngpu/scan.html#scanoperator
http://nvlabs.github.io/moderngpu/scan.html#algorithm
http://nvlabs.github.io/moderngpu/scan.html#host
http://nvlabs.github.io/moderngpu/scan.html#benchmark
http://nvlabs.github.io/moderngpu/scan.html
http://nvlabs.github.io/moderngpu/library.html#taskrange
http://nvlabs.github.io/moderngpu/library.html#loadstore
http://nvlabs.github.io/moderngpu/library.html#framework
http://nvlabs.github.io/moderngpu/library.html
http://nvlabs.github.io/moderngpu/performance.html#launchbox
http://nvlabs.github.io/moderngpu/performance.html#performance
http://nvlabs.github.io/moderngpu/performance.html#launchbounds
http://nvlabs.github.io/moderngpu/performance.html#occupancy
http://nvlabs.github.io/moderngpu/performance.html
http://nvlabs.github.io/moderngpu/intro.html#algorithms
http://nvlabs.github.io/moderngpu/intro.html#expandloadbalance
http://nvlabs.github.io/moderngpu/intro.html#expand
http://nvlabs.github.io/moderngpu/intro.html#loadbalancing
http://nvlabs.github.io/moderngpu/intro.html#twophase
http://nvlabs.github.io/moderngpu/intro.html#goals
http://nvlabs.github.io/moderngpu/intro.html#libraries
http://nvlabs.github.io/moderngpu/intro.html
http://nvlabs.github.io/moderngpu/faq.html

Merge Path
Bulk insert algorithm
Bulk insert host function and kernel

6. Merge

Benchmark and usage
Host functions
Algorithm

7. Mergesort

Benchmark and usage
Host functions
Algorithm
Sorting networks
Blocksort
Flexible merge partitioning
MergePathPartitions
Launching from the host

8. Segmented Sort and Locality Sort

Benchmark and usage
Host functions
Algorithm
Segmented blocksort
Early-exit
Filling the work queue
Servicing the work queue

9. Vectorized Sorted Search

Benchmark and usage
Host functions
Algorithm
Parallel sorted search
CTASortedSearch
SortedEqualityCount

10. Load-Balancing Search

Benchmark and usage
Host function
Algorithm
CTALoadBalance

11. IntervalExpand and IntervalMove

Benchmark and usage
Host functions
IntervalExpand

http://nvlabs.github.io/moderngpu/intervalmove.html#intervalexpand
http://nvlabs.github.io/moderngpu/intervalmove.html#host
http://nvlabs.github.io/moderngpu/intervalmove.html#benchmark
http://nvlabs.github.io/moderngpu/intervalmove.html
http://nvlabs.github.io/moderngpu/loadbalance.html#ctaloadbalance
http://nvlabs.github.io/moderngpu/loadbalance.html#algorithm
http://nvlabs.github.io/moderngpu/loadbalance.html#host
http://nvlabs.github.io/moderngpu/loadbalance.html#benchmark
http://nvlabs.github.io/moderngpu/loadbalance.html
http://nvlabs.github.io/moderngpu/sortedsearch.html#equalitycount
http://nvlabs.github.io/moderngpu/sortedsearch.html#ctasortedsearch
http://nvlabs.github.io/moderngpu/sortedsearch.html#parallel
http://nvlabs.github.io/moderngpu/sortedsearch.html#algorithm
http://nvlabs.github.io/moderngpu/sortedsearch.html#host
http://nvlabs.github.io/moderngpu/sortedsearch.html#benchmark
http://nvlabs.github.io/moderngpu/sortedsearch.html
http://nvlabs.github.io/moderngpu/segsort.html#servicing
http://nvlabs.github.io/moderngpu/segsort.html#filling
http://nvlabs.github.io/moderngpu/segsort.html#earlyexit
http://nvlabs.github.io/moderngpu/segsort.html#blocksort
http://nvlabs.github.io/moderngpu/segsort.html#algorithm
http://nvlabs.github.io/moderngpu/segsort.html#host
http://nvlabs.github.io/moderngpu/segsort.html#benchmark
http://nvlabs.github.io/moderngpu/segsort.html
http://nvlabs.github.io/moderngpu/mergesort.html#launch
http://nvlabs.github.io/moderngpu/mergesort.html#mergepathpartitions
http://nvlabs.github.io/moderngpu/mergesort.html#mergepartitioning
http://nvlabs.github.io/moderngpu/mergesort.html#blocksort
http://nvlabs.github.io/moderngpu/mergesort.html#sortnetworks
http://nvlabs.github.io/moderngpu/mergesort.html#algorithm
http://nvlabs.github.io/moderngpu/mergesort.html#host
http://nvlabs.github.io/moderngpu/mergesort.html#benchmark
http://nvlabs.github.io/moderngpu/mergesort.html
http://nvlabs.github.io/moderngpu/merge.html#algorithm
http://nvlabs.github.io/moderngpu/merge.html#host
http://nvlabs.github.io/moderngpu/merge.html#benchmark
http://nvlabs.github.io/moderngpu/merge.html
http://nvlabs.github.io/moderngpu/bulkinsert.html#kernelbulkinsert
http://nvlabs.github.io/moderngpu/bulkinsert.html#bulkinsert
http://nvlabs.github.io/moderngpu/bulkinsert.html#mergepath

IntervalMove

12. Relational Joins

Benchmark and usage
Host functions
Algorithm

13. Multisets

Benchmark and usage
Host functions
The four multiset operations
Balanced Path
Serial multiset operations
Multisets kernel

http://nvlabs.github.io/moderngpu/sets.html#kernel
http://nvlabs.github.io/moderngpu/sets.html#serialops
http://nvlabs.github.io/moderngpu/sets.html#balancedpath
http://nvlabs.github.io/moderngpu/sets.html#operations
http://nvlabs.github.io/moderngpu/sets.html#host
http://nvlabs.github.io/moderngpu/sets.html#benchmark
http://nvlabs.github.io/moderngpu/sets.html
http://nvlabs.github.io/moderngpu/join.html#algorithm
http://nvlabs.github.io/moderngpu/join.html#host
http://nvlabs.github.io/moderngpu/join.html#benchmark
http://nvlabs.github.io/moderngpu/join.html
http://nvlabs.github.io/moderngpu/intervalmove.html#intervalmove

0. FAQ

Downloading

You can download a snapshot of the repository here.

Users may find more flexibility if they fork this repository. At https://github.com/NVlabs/moderngpu, click
on the Fork button in the upper-right. This creates a copy of the repository in your own github account.

git clone git@github.com:yourname/moderngpu

From the command line you can clone your own fork of the project onto your local machine. You can make
changes to the project and these will be updated in your own repository. Users forking MGPU are treated to
Github's excellent suite of development tools. Use the Network Graph Visualizer to stay current with Modern
GPU updates.

Compiling

The Modern GPU library is entirely defined in headers under the include directory, except three .cpp files
that must be compiled and linked manually: src/format.cpp, src/random.cpp, and src/mgpucontext.cpp. You
cannot compile for architectures below sm_20 (Fermi), as the sm_1x compiler doesn't support all the features
used by MGPU.

All device and host functions are included from include/moderngpu.cuh; this is all you need to include to
access everything. Additionally, all functions and types are defined inside the mgpu namespace.

To compile from the command line (from the moderngpu/tests directory):

nvcc -arch=sm_20 -I ../include/ -o demo ../src/format.cpp ../src/random.cpp ^
 ../src/mgpucontext.cpp demo.cu

To specifically target multiple device architectures (necessary if you are using LaunchBox to tune kernels),
try something like this:

nvcc -gencode=arch=compute_20,code=\"sm_20,compute_20\" ^
 -gencode=arch=compute_35,code=\"sm_35,compute_35\" -I ../include -o demo ^
 ../src/format.cpp ../src/random.cpp ../src/mgpucontext.cpp demo.cu

If you are a Visual Studio user, MGPU includes a solution for VS2010 with projects for the demo and each

https://github.com/NVlabs/moderngpu/tree/master/tests
https://github.com/NVlabs/moderngpu/blob/master/include/moderngpu.cuh
https://github.com/NVlabs/moderngpu/blob/master/src/mgpucontext.cpp
https://github.com/NVlabs/moderngpu/blob/master/src/random.cpp
https://github.com/NVlabs/moderngpu/blob/master/src/format.cpp
https://github.com/blog/39-say-hello-to-the-network-graph-visualizer
https://github.com/NVlabs/moderngpu
https://github.com/NVlabs/moderngpu/archive/master.zip

benchmark. To start a new project that uses CUDA and MGPU, create a new "Win32 Project" or "Win32
Console Project." Right-click on the project in the Solution Explorer and choose "Build Customizations..."
This lists configuration files for each CUDA Toolkit installed on your system. Check the newest one:

Right-click on the project again, select "Add->Existing Items..." and add format.cpp, random.cpp, and
mgpucontext.cpp from the src directory of your Modern GPU directory.

Optional: If you want to use the same project settings as MGPU, in the menu bar select "View->Property
Manager." Right click on your project in the Property Manager and choose "Add Existing Property Sheet..."
Select vs.props from the base directory of your MGPU install.

To configure CUDA properties for the project, go back to the Solution Explorer, right click on the project,
and choose "Properties."

Make sure to compile with compute_20,sm_20 and higher; compute_1x will not build. You'll need to set
mgpu/include under "Additional Include Directories" in the C/C++->General property page. Additionally
you'll need to link against cudart.lib in Linker->Input->Additional Dependencies.

Debugging

NVIDIA has offers Nsight, a rather impressive development and debugging suite for Visual Studio and
Eclipse. I'm a bit of a luddite and mostly get by with two simple tools:

cuda-memcheck

cuda-memcheck is a post-mortem debugger for the command line. When your kernel makes an out-of-range
load/store or something else forbidden, cuda-memcheck aborts the program and prints detailed information
on the nature of the error.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

#include <cuda.h>

__global__ void Foo(int* data_global) {
 __shared__ int s[128];

 int tid = threadIdx.x;
 s[tid + 1] = tid; // out-of-range store!
 __syncthreads();

 data_global[tid] = s[tid];
}

int main(int argc, char** argv) {
 int* data;
 cudaMalloc((void**)&data, 128 * sizeof(int));
 Foo<<<1, 128>>>(data);

 cudaDeviceSynchronize();
 return 0;
}

cuda-memcheck tests.exe
========= CUDA-MEMCHECK
========= Invalid __shared__ write of size 4
========= at 0x00000020 in c:/projects/mgpulib/tests/test.cu:7:Foo(int*)
========= by thread (127,0,0) in block (0,0,0)
========= Address 0x00000200 is out of bounds
========= Saved host backtrace up to driver entry point at kernel launch time
========= Host Frame:C:\Windows\system32\nvcuda.dll (cuLaunchKernel + 0x166)
[0xc196]

cuda-memcheck reports the nature of the error (invalid __shared__ write of size 4) and the function it
occurred in. If you compile with -lineinfo (or select the appropriate box in the Visual Studio CUDA C/C++
properties), cuda-memcheck might even give you the line number, as it did in this case.

https://developer.nvidia.com/cuda-memcheck
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition

If you want more context, use cuobjdump to dump the disassembly of your kernel:

cuobjdump -sass tests.exe

Fatbin elf code:
================
arch = sm_20
code version = [1,6]
producer = cuda
host = windows
compile_size = 32bit
identifier = c:/projects/mgpulib/tests/test.cu

 code for sm_20
 Function : _Z3FooPi
 /*0000*/ /*0x00005de428004404*/ MOV R1, c [0x1] [0x100];
 /*0008*/ /*0x84001c042c000000*/ S2R R0, SR_Tid_X;
 /*0010*/ /*0xfc1fdc03207e0000*/ IMAD.U32.U32 RZ, R1, RZ, RZ;
 /*0018*/ /*0x08009c036000c000*/ SHL R2, R0, 0x2;
 /*0020*/ /*0x10201c85c9000000*/ STS [R2+0x4], R0;
 /*0028*/ /*0xffffdc0450ee0000*/ BAR.RED.POPC RZ, RZ;
 /*0030*/ /*0x00201c85c1000000*/ LDS R0, [R2];
 /*0038*/ /*0x80209c0348004000*/ IADD R2, R2, c [0x0] [0x20];
 /*0040*/ /*0x00201c8590000000*/ ST [R2], R0;
 /*0048*/ /*0x00001de780000000*/ EXIT;

cuda-memcheck reported an "invalid __shared__ write of size 4" at address 0x00000020. The disassembly
shows us the instruction at this address, and it is indeed an STS (store to shared 4 bytes).

printf

Device-side printf is available on architectures sm_20 and later. It is extremely helpful. However you don't
want 100,000 threads all printing to the console at once. Try to narrow down your problem to a single
offending CTA and print from that. Individual printf statements are treated atomically (the entire string will
come out at once), however the order in which threads print is undefined. It is helpful practice to store
arguments to shared memory, synchronize, and have thread 0 read out the elements in order and printf in a
loop.

The results of a device printf are not displayed until the next synchronizing runtime call after the kernel
launch. This could be a cudaDeviceSynchronize, cudaMalloc, or cudaMemcpy.

Although printf is among the most primitive of debugging tools, it is surprisingly effective with data-parallel
languages. Active debugging is often too fine-grained to understand the activity across an entire CTA.

Getting started

How do I get started with CUDA?

The best place to get started with CUDA is the official Programming Guide. This is an up-to-date, correct,
and concise overview of all of the device's capabilities and the APIs needed to use them.

There is a growing library of textbooks that paint a more detailed picture of GPU computing:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

• The CUDA Handbook - Nicholas Wilt

• CUDA Programming - Shane Cook

• CUDA Application Design and Development - Rob Farber

• CUDA by Example - Jason Sanders

• Programming Massively Parallel Processors - David Kirk and Wen-mei Hwu

Professor John Owens of UC Davis and Professor David Luebke, Graphics Research chief at NVIDIA,
produced a video-rich CUDA course, available for free at Udacity, that covers hardware architecture, the
CUDA toolkit, and parallel algorithms.

The CUDA Forums are the most trafficked pages for giving and receiving help. Stackoverflow also is very
popular.

Contact

To contact me on email, use moderngpu@gmail.com. Follow @moderngpu for notifications of new content.
I can often be found in #cuda on Freenode IRC.

License

The new Modern GPU library is provided under the 3-clause BSD license:

/**
 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * * Neither the name of the NVIDIA CORPORATION nor the
 * names of its contributors may be used to endorse or promote products
 * derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 **/

mailto:moderngpu@gmail.com
http://opensource.org/licenses/BSD-3-Clause
http://freenode.net/
https://twitter.com/moderngpu
http://www.stackoverflow.com/questions/tagged/cuda
https://devtalk.nvidia.com/
https://www.udacity.com/course/cs344
https://twitter.com/davedotluebke
https://twitter.com/jowens
http://www.amazon.com/Programming-Massively-Parallel-Processors-Edition/dp/0124159923
http://www.amazon.com/CUDA-Example-Introduction-General-Purpose-Programming/dp/0131387685
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Programming-Developers-Computing-Applications/dp/0124159338
http://www.amazon.com/CUDA-Handbook-Comprehensive-Guide-Programming/dp/0321809467

1. Introduction
Parallel computing is important because it enables much higher throughput than conventional systems. The
GPU is revolutionary because it does this affordably.

Libraries

Massive parallelism is the future of computing, but it comes with some challenges. Without good tools,
targeting these systems complicates development and slows productivity—we'd need to see serious
performance gains to justify the added effort. Fortunately, the CUDA software ecosystem has a number of
quality libraries which ease development, improve productivity, and help users see super-charged
performance. These packages solve many common problems, are reliable, and abstract away the complexities
of the device. With them, realizing the high-performance of GPU computing is made easy for software
professionals and made possible for the non-ninja domain expert. If you aren't already familiar with them,
check out these pre-compiled libraries that ship with the CUDA Toolkit:

• CUBLAS - The NVIDIA CUDA Basic Linear Algebra Subroutines library is a GPU-accelerated
version of the complete standard BLAS library that delivers 6x to 17x faster performance than the
latest MKL BLAS.

• CUSPARSE - The NVIDIA CUDA Sparse Matrix library provides a collection of basic linear algebra
subroutines used for sparse matrices that delivers up to 8x faster performance than the latest MKL.

• CURAND - The NVIDIA CUDA Random Number Generation library delivers high performance
GPU-accelerated random number generation (RNG). The cuRAND library delivers high quality
random numbers 8x faster using hundreds of processor cores available in NVIDIA GPUs.

• CUFFT - The NVIDIA CUDA Fast Fourier Transform library provides a simple interface for
computing FFTs up to 10x faster. By using hundreds of processor cores inside NVIDIA GPUs, cuFFT
delivers the floating point performance of a GPU without having to develop your own custom GPU ‐
FFT implementation.

• NPP - The NVIDIA Performance Primitives library is a collection of GPU-accelerated image, video,
and signal processing functions that deliver 5x to 10x faster performance than comparable CPU-only
implementations. Using NPP, developers can take advantage of over 1900 image processing and
approx 600 signal processing primitives to achieve significant improvements in application
performance in a matter of hours.

Pull the latest revisions of these versatile template libraries developed by my colleagues at NVIDIA
Research:

• Thrust - Thrust is a parallel algorithms library which resembles the C++ Standard Template Library
(STL). Thrust's high-level interface greatly enhances programmer productivity while enabling
performance portability between GPUs and multicore CPUs.

• CUB - CUB is a library of high-performance parallel primitives and other utilities for constructing
CUDA kernel software. CUB enhances productivity, performance, and portability by providing an
abstraction layer over complex block-level, warp-level, and thread-level operations.

http://nvlabs.github.io/cub/
http://thrust.github.io/
https://developer.nvidia.com/npp
https://developer.nvidia.com/cufft
https://developer.nvidia.com/curand
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cublas

Goals

Modern GPU was developed to help ambitious CUDA programmers push out the frontier. Every user's
problem is unique; real applications require functionality that existing libraries don't provide. Programmers
will have to solve original problems by getting their hands dirty and writing device code. This project covers
algorithms, idioms, and strategies to help users craft the best kernels they can.

Modern GPU is code and commentary intended to promote new and productive ways of thinking about
GPU computing. The library, moderngpu, was designed with four goals:

1. Utility

The great selling point of GPUs is their extraordinary floating-point throughput, and this has been
well exploited with compute libraries like CUBLAS and visualization APIs like OpenGL. Users have
been successful in writing kernels that chew through dense, regular, numerical problems. These are
often domain-specific operations like particle-particle interactions for physics and chemistry or image
filters for computer vision.

Difficulty occurs between the calls to these float-heavy routines. How do you gather and utilize your
results? How do you prepare inputs for the next launch? I want to push the GPU further into this
territory. The GPU has high memory bandwidth and an amazing latency-hiding architecture that is
well suited for fine-grained manipulation of data. MGPU focuses on the most generic of problems:
manipulation of arrays and fundamental CS algorithms. We look at sorting and searching, the bricks
and mortar of programming.

The biggest challenge impeding wide-spread adoption of this technology is the difficulty in finding
and exposing parallelism in irregular problems. I introduce strategies for dealing with this, and
demonstrate how to put these ideas into execution by building a high-performance, comprehensive
array-processing library.

2. Novelty

Most of the ideas in Modern GPU are new and may seem unusual even to CUDA veterans. Although
the code is very high performance, it isn't overtly concerned with the traditional nuts and bolts of
GPU programming. MGPU de-emphasizes low-level programming and focuses on making CUDA
more expressive. It emphasizes geometric reasoning and develops an idiom for solving problems by
breaking solutions into two distinct phases:

1. Find a coarse-grained partitioning of the problem that exactly load-balances work over each
thread. Scheduling—the exercise of mapping work items to CTAs (cooperative thread arrays)
and threads on the GPU—is handled in this phase.

2. Execute simple, work-efficient, sequential logic that solves the problem. Because scheduling
is part of the partitioning phase, this sequential phase runs embarrassingly parallel.

Partitioning involves a search over one or more input sequences. All the characteristic trickiness of
parallel computing is isolated to this phase. Specific problem-solving code is run independently by
each thread, and resembles code you'd have written for a CPU. By decoupling partitioning from the
work logic, we improve modularity and make both phases easier to reason about.

https://www.github.com/NVlabs/moderngpu/

This two-phase idiom comprises a new style for programming GPUs. Programmed with this idiom in
mind, a number of functions are elegantly expressed:

3. Segmented sort is a work-efficient mergesort on multiple variable-length arrays.

4. Interval move schedules multiple variable-length coarse-grained memcpys.

5. Load-balancing search coordinates work-items with the objects that scheduled them,
allowing perfect load-balancing for functions that expand and contract data.

6. Relational joins compute the outer products of variable-length duplicate ranges from two
sorted inputs. Although this functionality is very difficult to express using conventional
CUDA strategies, it comes out effortlessly with these new primitives.

Performance tuning is simple and well-understood in this framework. Each thread processes VT
(Values per Thread) items. Increasing VT assigns more work to each thread, amortizing the cost of
partitioning, which is constant per thread. Although this increases work-efficiency, it decreases
parallelism and the GPU's ability to hide latency. As described below, programmers who use this
framework may benchmark to find an optimal VT parameter for a particular device architecture, input
type, size, and distribution, without having to modify any device code.

3. Clarity

The central content of MGPU is the source code. Accordingly I've made clarity and conciseness a
point of pride. The code is organized in a very flat directory structure, in a single namespace, with no
dependencies other than the CUDA Toolkit. Routine operations that offer little of interest to the
reader have been factored out, resulting in code that is dense with algorithms. The user shouldn't have
to chase a function's flow of execution through more than a couple of files to see its entire
implementation.

For flexibility the functions are heavily templated, each parameterized over input and output types, to
support Boost-style iterators, comparators, and predicate objects. Still, this library is not an exercise in
meta-programming, and the use of generics is limited.

A call to each host-level function is demonstrated in a simple form at the top of its corresponding web
page (drawn from tests/demo.cu), and in a more complex form in its benchmark code, which
generates the performance charts. The articles are organized so that functions are rolled out with
increasing complexity and build on one another. Readers with CUDA experience who take the pages
in order should be should not be unprepared for anything presented.

4. Hackability

A quality of software that's been undervalued in recent years is hackability. Under schedule pressure,
programmers grab and modify whatever works. The world runs on code spliced from Numerical
Recipes and Sedgewick, O'Reilly books, Wikipedia samples, conference talks, powerpoints, and
message boards.

Much emphasis has been put on the idea of composability in CUDA software. For example, Thrust
combines simple functions with powerful iterators to increase functionality. While MGPU supports
these same iterators and is largely interoperable with Thrust, my philosophy is that composability is

http://en.wikipedia.org/wiki/Composability
https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
http://nvlabs.github.io/moderngpu/intro.html#performance
http://nvlabs.github.io/moderngpu/join.html
http://nvlabs.github.io/moderngpu/loadbalance.html
http://nvlabs.github.io/moderngpu/intervalmove.html
http://nvlabs.github.io/moderngpu/segsort.html

just one aspect of software reuse. This library is designed to be forked and modified. If a function
does nearly what you desire, but not exactly, creating a derivative function will not be a burden.

Two-phase decomposition

A major challenge in parallel programming—and especially in the massively fine-grained parallelism that
GPUs provide—is deciding which work to run on which processor, and when to run it. This is a problem of
scheduling or decomposition. Attempts to implement a function and manage decomposition with a single
strategy can be unwieldy or inefficient, because the user is trying to solve two problems at once.

CPU Merge implementation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

template<typename T, typename Comp>
void CPUMerge(const T* a, int aCount, const T* b, int bCount, T* dest,
 Comp comp) {

 int count = aCount + bCount;
 int ai = 0, bi = 0;
 for(int i = 0; i < count; ++i) {
 bool p;
 if(bi >= bCount) p = true;
 else if(ai >= aCount) p = false;
 else p = !comp(b[bi], a[ai]);

 dest[i] = p ? a[ai++] : b[bi++];
 }
}

Consider this sequential merge implementation. It takes two sorted inputs and loops over each output. During
each iteration, two inputs are compared and the smaller one is emitted. The implementation is simple and
work-efficient. Because it's totally sequential, there's no real consideration given to scheduling or
decomposition.

tests/parallelmerge.cu

https://github.com/NVlabs/moderngpu/blob/master/tests/parallelmerge.cu

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

template<int NT, typename InputIt1, typename InputIt2, typename OutputIt,
 typename Comp>
__global__ void ParallelMergeA(InputIt1 a_global, int aCount, InputIt2
b_global,
 int bCount, OutputIt dest_global, Comp comp) {

 typedef typename std::iterator_traits<InputIt1>::value_type T;

 int gid = threadIdx.x + NT * blockIdx.x;
 if(gid < aCount) {
 T aKey = a_global[gid];
 int lb = BinarySearch<MgpuBoundsLower>(b_global, bCount, aKey,
comp);
 dest_global[gid + lb] = aKey;
 }
}

template<int NT, typename InputIt1, typename InputIt2, typename OutputIt,
 typename Comp>
__global__ void ParallelMergeB(InputIt1 a_global, int aCount, InputIt2
b_global,
 int bCount, OutputIt dest_global, Comp comp) {

 typedef typename std::iterator_traits<InputIt2>::value_type T;

 int gid = threadIdx.x + NT * blockIdx.x;
 if(gid < bCount) {
 T bKey = b_global[gid];
 int ub = BinarySearch<MgpuBoundsUpper>(a_global, aCount, bKey,
comp);
 dest_global[gid + ub] = bKey;
 }
}

Now consider this first attempt at parallel merge. There are two kernels: ParallelMergeA, which assigns
one thread to each element in A, binary searches for the lower-bound in B, and outputs A keys to the
destination; and ParallelMergeB, which assigns one thread to each element in B, binary searches for the
upper-bound in A, and outputs B keys to the destination.

Although this implementation is highly concurrent, it's also highly inefficient. The O(n)-efficiency sequential
code is now O(n log n), as each output requires a binary search over the input. The code only runs quickly if
the number of processors is large compared to the input size. Additionally, the new code looks nothing like
the sequential version. Because we've baked scheduling logic into the problem-solving logic, we've written
code that is difficult to optimize. Perhaps even worse, it's difficult to extend—for example, how would we
support multiset operations with this PRAM-style scheduling?

include/device/ctasearch.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctasearch.cuh
http://nvlabs.github.io/moderngpu/sets.html

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

template<MgpuBounds Bounds, typename It1, typename It2, typename Comp>
MGPU_HOST_DEVICE int MergePath(It1 a, int aCount, It2 b, int bCount,
int diag,
 Comp comp) {

 typedef typename std::iterator_traits<It1>::value_type T;
 int begin = max(0, diag - bCount);
 int end = min(diag, aCount);

 while(begin < end) {
 int mid = (begin + end)>> 1;
 T aKey = a[mid];
 T bKey = b[diag - 1 - mid];
 bool pred = (MgpuBoundsUpper == Bounds) ?
 comp(aKey, bKey) :
 !comp(bKey, aKey);
 if(pred) begin = mid + 1;
 else end = mid;
 }
 return begin;
}

MGPU focuses on a two-phase strategy for execution. In the first phase we address partitioning: this phase
handles scheduling and decomposition. The goal is to map work onto each thread in a load-balanced and
work-efficient manner. All the functions in this library are parameterized over a grain size (the parameter
VT), which controls the amount of work scheduled per thread. Increasing the grain size amortizes
partitioning costs, improving work-efficiency, while simultaneously reducing occupancy and potentially
sacrificing execution efficiency. Because partitioning is not tied up with the problem-solving logic, we can
reuse this code in many functions, and optimize it by searching the grain-size parameter space.

Examples of partitioning functions used in MGPU are Merge Path, Balanced Path, and load-balancing
search. The MergePath implementation above decomposes merge-like problems, which includes
mergesort, vectorized sorted search, and the load-balancing search scheduling function. This function binary
searches both input arrays simultaneously, producing a decomposition that maps a uniform amount of work
to each thread.

include/device/ctamerge.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctamerge.cuh
http://nvlabs.github.io/moderngpu/loadbalance.html
http://nvlabs.github.io/moderngpu/sortedsearch.html
http://nvlabs.github.io/moderngpu/mergesort.html
http://nvlabs.github.io/moderngpu/loadbalance.html#algorithm
http://nvlabs.github.io/moderngpu/loadbalance.html#algorithm
http://nvlabs.github.io/moderngpu/sets.html#balancedpath
http://nvlabs.github.io/moderngpu/bulkinsert.html#mergepath

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

template<int VT, bool RangeCheck, typename T, typename Comp>
MGPU_DEVICE void SerialMerge(const T* keys_shared, int aBegin, int aEnd,
 int bBegin, int bEnd, T* results, int* indices, Comp comp) {

 T aKey = keys_shared[aBegin];
 T bKey = keys_shared[bBegin];

 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 bool p;
 if(RangeCheck)
 p = (bBegin >= bEnd) || ((aBegin < aEnd) && !comp(bKey,
aKey));
 else
 p = !comp(bKey, aKey);

 results[i] = p ? aKey : bKey;
 indices[i] = p ? aBegin : bBegin;

 if(p) aKey = keys_shared[++aBegin];
 else bKey = keys_shared[++bBegin];
 }
 __syncthreads();
}

The second phase in the strategy is the actual problem-solving logic. For efficiency and clarity we prefer that
this code resembles sequential functions. The CUDA device function SerialMerge resembles the
sequential CPU functon CPUMerge. Because concurrency was addressed in the partitioning phase, this
phase can implement GPU-specific optimizations without complicating the decomposition. In addition to its
improved work efficiency (we process VT inputs for each binary search), SerialMerge realizes extra
throughput by unrolling the serial merge loop and storing intermediates to register to conserve shared
memory and improve occupancy.

Kernels written using the two-phase decomposition are more involved than direct solutions like the naive
parallel merge, but are more efficient, easier to optimize, and more flexible; they easily accommodate
algorithmic changes to solve related problems. MGPU's functions continually stress the same few
decomposition strategies, turning them into boilerplate code that sets up the problem-specific second phase.

This figure benchmarks the two-phase implementation of Merge (square markers) against the naive parallel
version (round markers). Due to the device's advantage in memory bandwidth, even the unoptimized GPU
code beats STL by 10x (run on a Sandy Bridge i7 at 2.8ghz). The two-phase implementation beats the naive
code by 5x for large inputs.

The two-phase implementation's throughput grows as the workload increases, better filling the device. The
naive code hits its highest throughput for small problem sizes. While wider workloads run with better
execution efficiency on the device (more concurrency means better latency hiding), this benefit is
counteracted by the O(n log n) work-efficiency—the cost of the binary search grows with the log of the input
size.

Two-phase design delivers consistently high throughput of merge-like functions, while promoting code reuse
and readability.

From scan to load-balancing search

Most early work on GPU algorithms reduce to scan or scan-like patterns. Scan is a miracle of efficient
parallel communication. Radix sort, perhaps the most successful general-purpose CS algorithm to build on
GPU, is essentially a very intricate scan: because of the mechanical and regular nature of radix sort, scan
manages to both evenly distribute work over threads and solve the key-ranking problem.

Conventional wisdom is to lower every problem to scan, because we've proven that scan helps solve
problems with cooperative parallelism. The flaw in this reasoning is that we don't need to actually solve most
problems in parallel—it is simpler and more efficient to partition problems in parallel, then solve them
sequentially. Modern GPU pushes out the frontier by experimenting with new idioms and only using scan
when it is the right tool for the job.

We introduce a new pattern, load-balancing search, which can be thought of as a particular type of inverse
of scan. Access to this operator makes certain problems trivial and generally helps reduce the
circumlocutions of scan-centric parallel programming. The load-balancing search uses two-phase
decomposition to make certain dependencies explicit and further ease scheduling burdens.

Expand

Consider a vectorized fill function. It replicates each input, in order, a variable number of times. We'll call it
expand.

CPU Expand example.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

template<typename T>
void Expand(int numOutput, const int* scan, int numInput, const T*
values,
 T* output) {

 for(int i = 0; i < numInput; ++i) {
 int offset = scan[i];
 int end = (i + 1 < numInput) ? scan[i + 1] : numOutput;
 std::fill(output + offset, output + end, values[i]);
 }
}

int Scan(const int* counts, int numTerms, int* scan) {
 int x = 0;
 for(int i = 0; i < numTerms; ++i) {
 scan[i] = x;
 x += counts[i];
 }
 return x;
}

int main(int argc, char** argv) {
 const char* Alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 const int Counts[26] = {
 3, 1, 0, 0, 7, 3, 2, 14, 4, 6, 0, 2, 1,
 5, 3, 0, 5, 1, 6, 2, 0, 0, 9, 3, 2, 1
 };

 // Scan the counts
 int Offsets[26];
 int total = Scan(Counts, 26, Offsets);

 std::vector<char> results(total + 1);
 Expand(total, Offsets, 26, Alphabet, &results[0]);

 printf("%s\n", &results[0]);
 return 0;
}

AAABEEEEEEEFFFGGHHHHHHHHHHHHHHIIIIJJJJJJLLMNNNNNOOOQQQQQRSSSSSSTTWWWWWWWWWXXXYYZ

We start with a set of input values (the alphabet) and a corresponding set of counts. Scan the counts to
compute the offsets for each fill operation. Loop through the list of offsets and call std::fill to copy
each input, values[i], Counts[i] times.

Thrust provides a set of primitives (transform, scan, gather, scatter, compact) that are composed with
iterators, operators, and comparators to solve problems. The user typically calls transform, gather, and scatter
to prepare intermediate values, scans or compacts them, and uses transform, gather, and scatter to complete
the function. The difficulty is that there is no separation between two basically distinct challenges—
partitioning and work logic.

Consider this implementation of expand written with Thrust:

thrust/examples/expand.cu

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

// This example demonstrates how to expand an input sequence by
// replicating each element a variable number of times. For example,
//
// expand([2,2,2],[A,B,C]) -> [A,A,B,B,C,C]
// expand([3,0,1],[A,B,C]) -> [A,A,A,C]
// expand([1,3,2],[A,B,C]) -> [A,B,B,B,C,C]
//
// The element counts are assumed to be non-negative integers

template <typename InputIterator1,
 typename InputIterator2,
 typename OutputIterator>
OutputIterator expand(InputIterator1 first1,
 InputIterator1 last1,
 InputIterator2 first2,
 OutputIterator output)
{
 typedef typename thrust::iterator_difference<InputIterator1>::type
 difference_type;

 difference_type input_size = thrust::distance(first1, last1);
 difference_type output_size = thrust::reduce(first1, last1);

 // scan the counts to obtain output offsets for each input element
 thrust::device_vector<difference_type> output_offsets(input_size,
0);
 thrust::exclusive_scan(first1, last1, output_offsets.begin());

 // scatter the nonzero counts into their corresponding output
positions
 thrust::device_vector<difference_type> output_indices(output_size,
0);
 thrust::scatter_if
 (thrust::counting_iterator<difference_type>(0),
 thrust::counting_iterator<difference_type>(input_size),

https://github.com/thrust/thrust/blob/master/examples/expand.cu

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 output_offsets.begin(),
 first1,
 output_indices.begin());

 // compute max-scan over the output indices, filling in the holes
 thrust::inclusive_scan
 (output_indices.begin(),
 output_indices.end(),
 output_indices.begin(),
 thrust::maximum<difference_type>());

 // gather input values according to index array
 // (output = first2[output_indices])
 OutputIterator output_end = output; thrust::advance(output_end,
output_size);
 thrust::gather(output_indices.begin(),
 output_indices.end(),
 first2,
 output);

 // return output + output_size
 thrust::advance(output, output_size);
 return output;
}

Counts:
 0: 3 1 0 0 7 3 2 14 4 6
 10: 0 2 1 5 3 0 5 1 6 2
 20: 0 0 9 3 2 1

Result of exclusive_scan:
 0: 0 3 4 4 4 11 14 16 30 34
 10: 40 40 42 43 48 51 51 56 57 63
 20: 65 65 65 74 77 79

Result of scatter_if:
 0: 0 0 0 1 4 0 0 0 0 0
 10: 0 5 0 0 6 0 7 0 0 0
 20: 0 0 0 0 0 0 0 0 0 0
 30: 8 0 0 0 9 0 0 0 0 0
 40: 11 0 12 13 0 0 0 0 14 0
 50: 0 16 0 0 0 0 17 18 0 0
 60: 0 0 0 19 0 22 0 0 0 0
 70: 0 0 0 0 23 0 0 24 0 25

Result of inclusive_scan with thrust::maximum():
 0: 0 0 0 1 4 4 4 4 4 4
 10: 4 5 5 5 6 6 7 7 7 7
 20: 7 7 7 7 7 7 7 7 7 7
 30: 8 8 8 8 9 9 9 9 9 9
 40: 11 11 12 13 13 13 13 13 14 14
 50: 14 16 16 16 16 16 17 18 18 18
 60: 18 18 18 19 19 22 22 22 22 22
 70: 22 22 22 22 23 23 23 24 24 25

Result of gather:

 AAABEEEEEEEFFFGGHHHHHHHHHHHHHHIIIIJJJJJJLLMNNNNNOOOQQQQQRSSSSSSTTWWWWWWWWWXXXYYZ

As in the CPU code, an exclusive scan converts item counts to output indices. The meaning of the rest of the
implementation is somewhat obscure; I had to print the intermediate arrays to understand it. Scan is not the
most natural primitive to use here, but when all you have is a hammer...

Temporary space to hold one integer per output is allocated and zeroed. scatter_if outputs the index of
each input value to the start of the corresponding output run (the exclusive scan of count) if and only if the
count is non-zero. Because zero counts cause consecutive output indices to match, multiple threads would
attempt to store to the same address. scatter_if avoids this race condition by giving priority to the input
with the non-zero count. The call to inclusive_scan specialized over the maximum functor fills the
zeros with the largest indices encountered to the left. A gather loads input values at these indices and and
stores them to the output, completing the expand.

Expand is a trivial function, but the use of scatter_if and inclusive_scan on maximum is far from
an obvious solution. Adopting scan as the primary cooperatively-parallel function is more puzzle-solving
than problem-solving. Scan is highly composable and Thrust lets you solve problems without writing new
kernels. However, because you're trying to satisfy the logic of the scan function instead of targeting your
specific needs, it may require non-intuitive design.

Expand with load-balancing search

MGPU introduces the Load-Balancing Search, a pattern that helps developers write elegant implementations
of functions like expand. Although this search is available as a host-callable function, it is best invoked from
inside a kernel. The MGPU idiom is less composable than Thrust's: users will need to write their own
kernels. The solutions are much more intuitive, however, because the parallel demands of the architecture
(i.e. scheduling) are satisfied in the partitioning phase, and the problem-specific logic is executed in a simple,
sequential fasion. The implementation of IntervalExpand is a more direct solution to the expand
problem: it loads input elements just once from global into shared memory and cooperatively fills the output
arrays. The function makes only a single pass over the data and requires no auxiliary storage.

As problems become less scan-like, a gather/scatter/scan solution becomes more difficult to understand and
express, and the value of composability decreases.

include/kernels/intervalmove.cuh

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

template<typename Tuning, typename IndicesIt, typename ValuesIt,
 typename OutputIt>
MGPU_LAUNCH_BOUNDS void KernelIntervalExpand(int destCount,
 IndicesIt indices_global, ValuesIt values_global, int sourceCount,
 const int* mp_global, OutputIt output_global) {

 typedef MGPU_LAUNCH_PARAMS Tuning;
 const int NT = Tuning::NT;
 const int VT = Tuning::VT;
 typedef typename std::iterator_traits<ValuesIt>::value_type T;

 union Shared {
 int indices[NT * (VT + 1)];
 T values[NT * VT];
 };

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/intervalmove.cuh
http://nvlabs.github.io/moderngpu/loadbalance.html

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

 __shared__ Shared shared;
 int tid = threadIdx.x;
 int block = blockIdx.x;

 // Compute the input and output intervals this CTA processes.
 int4 range = CTALoadBalance<NT, VT>(destCount, indices_global,
sourceCount,
 block, tid, mp_global, shared.indices, true);

 // The interval indices are in the left part of shared memory
(moveCount).
 // The scan of interval counts are in the right part
(intervalCount).
 destCount = range.y - range.x;
 sourceCount = range.w - range.z;

 // Copy the source indices into register.
 int sources[VT];
 DeviceSharedToReg<NT, VT>(NT * VT, shared.indices, tid, sources);

 // Load the source fill values into shared memory. Each value is
fetched
 // only once to reduce latency and L2 traffic.
 DeviceMemToMemLoop<NT>(sourceCount, values_global + range.z, tid,
 shared.values);

 // Gather the values from shared memory into register. This uses a
shared
 // memory broadcast - one instance of a value serves all the
threads that
 // comprise its fill operation.
 T values[VT];
 DeviceGather<NT, VT>(destCount, shared.values - range.z, sources,
tid,
 values, false);

 // Store the values to global memory.
 DeviceRegToGlobal<NT, VT>(destCount, values, tid, output_global +
range.x);
}

AAABEEEEEEEFFFGGHHHHHHHHHHHHHHIIIIJJJJJJLLMNNNNNOOOQQQQQRSSSSSSTTWWWWWWWWWXXXYYZ

The first half of KernelIntervalMove is boilerplate. mp_global points to coarse-grained partitioning
information computed in prior to the launch. CTALoadBalance uses this to subdivide the input and output
ranges into intervals that fit exactly in CTA shared memory.

 0: 0 0 0 1 4 4 4 4 4 4
 10: 4 5 5 5 6 6 7 7 7 7
 20: 7 7 7 7 7 7 7 7 7 7
 30: 8 8 8 8 9 9 9 9 9 9

 40: 11 11 12 13 13 13 13 13 14 14
 50: 14 16 16 16 16 16 17 18 18 18
 60: 18 18 18 19 19 22 22 22 22 22
 70: 22 22 22 22 23 23 23 24 24 25
 80: 0 3 4 4 4 11 14 16 30 34
 90: 40 40 42 43 48 51 51 56 57 63
 100: 65 65 65 74 77 79

CTALoadBalance fills shared memory with two non-descending sequences: references to the generating
source object for each destination object (in green), and the scan of source object item counts (in black). It's
not coincidence that the array of source references is exactly the same as the array of gather indices
computed by Thrust's expand function. With one boilerplate call we've already solved the problem!
CTALoadBalance does as much work as the scatter_if and inclusive scan on maximum, yet never
has to materialize intermediates into global memory, and so requires no storage.

The kernel moves on to load the source indices into register, freeing up shared memory. It cooperatively
loads the referenced source values into shared memory (the 26 letters of the alphabet). Each thread uses the
source indices to gather up to VT values, then stores them to the output array. This implementation is much
faster than the scan-based version using Thrust. As developers gain more exposure to the patterns involved,
code written in this idiom will become easy to read and write.

Because it delivers gather indices so readily, it may seem that CTALoadBalance is just part of an expand
implementation. In fact, the load-balancing search is a highly general tool. Rather than solving the expand
problem, it simply partitions for this class of problems. In the case of expand, the code that is executed per
work-item is trivial (we just copy from the source to the destination). Interval move (a vectorized memcpy)
and relational join (including full outer join) are implemented with the same partitioning boilerplate, but with
additional problem-specific logic. The load-balancing search introduces a new pattern for GPU computing,
one that I hope will push out the frontier and allow users to run more ambitious calculations.

Algorithms

The algorithms in this project primarily operate on multiple sorted inputs and produce one sorted output. The
collection comprises an attempt at addressing the lack of data structures on GPU. Although we don't have
self-balancing trees to serve as a data store, we can use multiset union and intersection to add and remove
records by key. We can use bulk insert and bulk remove for fine-grained modification of arrays given sorted
indices. Vectorized sorted search is a high-throughput search with desirable work-complexity characteristics
to help locate records quickly.

Although many of these functions take sorted inputs, this is not an impractical requirement. The load-
balancing search pattern, introduced in the expand example, takes a sorted array, but this is typically
generated by scanning a sequence of non-negative work-item counts.

Modern GPU covers ten functions:

1. Reduce and Scan - Standard reduce and scan with a few special features. This shows where we've
been and the following sections show where we're going with GPU computing.

2. Bulk Remove and Bulk Insert - The first routines that use coarse-grained partitioning. Remove and
insert items given a sorted sequence of indices. Merge Path partitioning is introduced to serve bulk
insert.

3. Merge - Uses Merge Path for fine-grained partitioning. The first routine that does not use scan.

http://nvlabs.github.io/moderngpu/merge.html
http://nvlabs.github.io/moderngpu/bulkinsert.html
http://nvlabs.github.io/moderngpu/scan.html
http://nvlabs.github.io/moderngpu/join.cuh
http://nvlabs.github.io/moderngpu/intervalmove.cuh

Develops many patterns for the routines that follow.

4. Mergesort - Recursively merge sorted sequences. Develops a useful and reusable CTA blocksort.
Mergesort's throughput is usually beaten by radix sort for uniform random inputs, but the highly-
organized structure of mergesort allows for optimizations on conditioned inputs.

5. Segmented Sort and Locality Sort - Segmented sort is probably the most versatile GPU sort. This
allows us to sort many variable-length arrays in parallel. A list of segment head indices or an array of
head flag bits is provided to define segment intervals. Segmented sort is fast: not only is segmentation
supported for negligible cost, the function takes advantage of early-exit opportunities to improve
throughput over vanilla mergesort. Locality sort is a useful variant that detects regions of approximate
sortedness without requiring annotations.

6. Vectorized Sorted Search - Run many concurrent searches where both the needles and haystack
arrays are sorted. This input condition lets us recast the function as a sequential process resembling
merge, rather than as a traditional binary search. Complexity improves from A log B to A + B, and
because we touch every input, a search can retrieve not just the lower-bound of A into B but
simultaneously the upper-bound of B into A, plus flags for all elements indicating if matches in the
other array exist.

7. Load-Balancing Search - Load-balancing search is a specialization of vectorized sorted search. It
coordinates output items with the input objects that generated them. The CTA load-balancing search
is a fundamental tool for partitioning irregular problems.

8. IntervalExpand and IntervalMove - Schedule multiple variable-length fill, gather, scatter, or move
operations. Partitioning is handled by load-balancing search. Small changes in problem logic enable
different behaviors. These functions are coarse-grained counterparts to Bulk Remove and Bulk Insert.

9. Relational joins - Sort-merge joins supporting inner, left, right, and outer variants. Uses vectorized
sorted search to match keys between input arrays and load-balancing search to manage Cartesian
products.

10.Multisets - Replace Merge Path partitioning with the sophisticated Balanced Path to search for key-
rank matches. The new partitioning strategy is combined with four different serial set operations to
support CUDA analogs of std::set_intersection, set_union, set_difference, and
set_symmetric_difference.

http://nvlabs.github.io/moderngpu/sets.html
http://nvlabs.github.io/moderngpu/join.html
http://nvlabs.github.io/moderngpu/intervalmove.html
http://nvlabs.github.io/moderngpu/loadbalance.html
http://nvlabs.github.io/moderngpu/sortedsearch.html
http://nvlabs.github.io/moderngpu/segsort.html
http://nvlabs.github.io/moderngpu/mergesort.html

2. Performance

Occupancy and latency

Latency-oriented systems (CPUs) use large caches, branch prediction, and speculative fetching to avoid stalls
on data dependencies. GPUs, by contrast, are throughput-oriented systems that use massive parallelism to
hide latency. Occupancy is a measure of thread parallelism in a CUDA program. Instruction-level
Parallelism is a measure of parallelism within threads. The higher the occupancy and ILP, the more
opportunities an SM has to put compute and load/store units to work each cycle. Threads waiting on data
dependencies and barriers are taken out of consideration until their hazards are resolved.

Kernels may be limited by DRAM to L2 cache bandwidth, L2 to SM bandwidth, texture bandwidth, FFMA,
DFMA, integer, or shared memory performance. In some sense, being limited by bandwidth is a victory
condition for optimization: a routine is fully exploiting at least one capability of the device. Performance can
then only be improved by redesigning the code to use less of the limiting resource.

More often, and especially for codes that involve many subsystems, a kernel is latency limited. This state of
under-occupancy occurs when there is insufficient parallelism to hide instruction latency. Many highly-
optimized routines become latency limited as work efficiency improves. As code becomes leaner the GPU
has more free units than it has instructions to execute, a consequence of optimizing away unnecessary
operations.

Important: The performance of latency-limited kernels is difficult to reason about. Optimizations that reduce
work (or improve work efficiency) might not improve—and could even hinder—throughput. Focus on
reducing latency on the most-congested path.

There are five resource limits that cap occupancy:

 sm_20 sm_30 sm_35

Max Threads (SM) 1536 2048 2048

Max CTAs (SM) 8 16 16

Shared Memory Capacity (SM) 48 KB 48 KB 48 KB

Register File Capacity (SM) 128 KB 256 KB 256 KB

Max Registers (Thread) 63 63 255

1. Max Threads - You may be under-occupied even with 100% occupancy (1536 or 2048 threads
running concurrently per SM). This is likely caused by poor ILP: increase the program's parallelism
by register blocking to process multiple elements per thread. In MGPU most kernels are register
blocked with grain size VT. You may also want to reduce the CTA size, so that barriers don't stall as
many threads: smaller CTAs lead to better overlapped execution than larger ones.

2. Max CTAs - If you launch small blocks, your occupancy will be constrained by a hardware limit on
resident CTAs. On Kepler, blocks must be at least 128 threads wide to hit maximum occupancy (16
CTAs/SM). Using smaller blocks reduces occupancy; larger blocks compromise overlapped

execution. In the absence of performance data, start with blocks of 128 or 256 threads.

3. Shared Memory Capacity - Many optimized register-blocked kernels are limited by shared memory
capacity. Fermi has a 2.7:1 ratio of register file to shared memory. Kepler SMs have higher arithmetic
throughput and latency (the two often increase together), but hasn't increased shared memory
capacity, giving a ratio of 5.3:1. At 100% occupancy, a thread has 32 registers (128 bytes) but only 24
bytes of shared memory. Register blocking for eight values per thread, with shared memory sized to
accommodate all the values at once (for key exchange and other critical operations), implies no higher
than 1536 threads/SM occupancy (75%). More aggressive register blocking drops this further.
Operating at less than maximum occupancy does not imply under-occupancy, as ILP may be
sufficient to cover latencies.

4. Register File Capacity - Register file is more copious than shared memory, and in the inverted cache
hierarchy that GPUs are designed with, it's larger than even L2 cache. Still, code may be limited by
RF capacity. Do mental live analysis while writing your kernel to reduce register usage. If your kernel
uses more registers than you expect, try re-ordering load and store procedures to move out results
before reading more inputs.

5. Max Registers - sm_20 and sm_30 devices have a limit of 63 registers per thread. If the back-end
code generator cannot fit the working set of the kernel into 63 registers, it provisions local memory
(driver-managed global memory) to spill state. Kernels with spill assume additional latency. sm_35
devices have access to 255 registers per thread. While this relieves a register pressure problem for
many procedures, it may also cause an additional drop in occupancy. sm_30 kernels that are limited
by RF capacity will run at 50% occupancy (63 registers/thread). The same kernel running on sm_35
may only achieve 12.5% occupancy, because each thread now consumes four times as much of the
RF.

For all performance-critical kernels, compile with -Xptxas="-v". This passes a request through the
NVVM compiler to the PTX assembler to output register, shared memory, and spill information for all
kernels on each target architecture.

ptxas : info : Compiling entry function 'KernelFoo' for 'sm_20'
ptxas : info : Function properties for KernelFoo
 48 bytes stack frame, 48 bytes spill stores, 36 bytes spill loads
ptxas : info : Used 63 registers, 11264 bytes smem, 64 bytes cmem[0]

ptxas : info : Compiling entry function 'KernelFoo' for 'sm_35'
ptxas : info : Function properties for KernelFoo
 0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas : info : Used 80 registers, 11264 bytes smem, 352 bytes cmem[0]

The above kernel is too-aggressively register blocked. It hits the 63 register limit and spills on Fermi,
achieving 25% occupancy. The function on Fermi is limited by RF capacity - launching four 128-thread
CTAs consumes the entire register file.

Because of sm_35's per-thread register increase, the same code doesn't spill on GK110 Kepler. Thanks to the
doubled RF capacity, it not limited by that, either. However, the code still runs at only 25% occupancy,
because it's limited by shared memory capacity. Each CTA uses 11KB of shared memory, and since the SMs
only have 48KB to share, only four 128-thread CTAs may be scheduled per SM (25% occupancy).

ptxas : info : Compiling entry function 'KernelFoo' for 'sm_20'
ptxas : info : Function properties for KernelFoo
 0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas : info : Used 48 registers, 6144 bytes smem, 64 bytes cmem[0]

http://nvlabs.github.io/moderngpu/http%7C//en.wikipedia.org/wiki/Live_variable_analysis

ptxas : info : Compiling entry function 'KernelFoo' for 'sm_35'
ptxas : info : Function properties for KernelFoo
 0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas : info : Used 48 registers, 6144 bytes smem, 352 bytes cmem[0]

Reducing the grain size VT improves occupancy by tackling less work per thread, requiring less state, and
thereby consuming less resource. Five CTAs per SM are scheduled on Fermi - the kernel is RF capacity
limited (five kernel use 30720/32768 registers). Both sm_30 and sm_35 fare better here. Eight CTAs are
scheduled per SMX, limited by shared memory capacity (eight CTAs use all 49152 bytes).

Important: If a kernel spills even after you decrease grain size, you may be inadvertently dynamically
indexing into an array that you intended to have reside in register. Use only literals, constant expressions, and
unrolled loop iterators to index into register arrays. A compiler warning about an "unknown pragma" that
refers back to a #pragma unroll attribute indicates that some construct is preventing the loop from
unrolling, turning static indexes into dynamic ones, and likely causing spill. Although spilling may help
performance by increasing occupancy in complex kernels, you should never allow spill that's caused by
inadvertent dynamic indexing; this always hurts performance.

Launch bounds

CTA size and shared memory consumption are specified by the programmer; these are easily adjusted. RF
usage, on the other hand, is a consequence of choices made by the register allocator in the back-end code
generator. The __launch_bounds__ kernel attribute gives the user more control over occupancy by
providing a cap on per-thread register usage. Tag the kernel with the CTA size and the desired number of
CTAs per SM. The code generator now caps register usage by re-ordering instructions to reduce live
variables. It spills the overflow.

ptxas : info : Compiling entry function 'KernelFoo' for 'sm_20'
ptxas : info : Function properties for KernelFoo
 40 bytes stack frame, 40 bytes spill stores, 24 bytes spill loads
ptxas : info : Used 36 registers, 6144 bytes smem, 64 bytes cmem[0]

ptxas : info : Compiling entry function 'KernelFoo' for 'sm_35'
ptxas : info : Function properties for KernelFoo
 0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas : info : Used 48 registers, 6144 bytes smem, 352 bytes cmem[0]

The previous tuning of KernelFoo was tagged with __launch_bounds__(128, 7) to guarantee that
7 CTAs run on each SM. The function now spills on Fermi, but uses only 36 registers per thread
(32256/32768 registers per SM). The generated code is unchanged on Kepler, which remains limited to 8
CTAs/SMX by shared memory capacity.

Getting more performance from MGPU

Most MGPU kernels are parameterized over NT (number of threads per CTA) and VT (values per thread, the
grain size). The product of these two, NV (number of values per CTA), is the tile size. Increasing tile size
amortizes the cost of once-per-thread and once-per-CTA operations, improving work efficiency. On the other
hand, increasing grain size consumes more shared memory and registers, reducing occupancy and the ability
to hide latency.

The constants NT, VT, and the __launch_bounds__ argument OCC (for occupancy, the minimum
number of CTAs per SM) are tuning parameters. Finding optimal tuning parameters is an empirical

process. Different hardware architectures, data types, input sizes and distributions, and compiler versions all
effect parameter selection. User-tuning of MGPU library functions may improve throughput by 50%
compared to the library's hard-coded defaults.

MGPU library functions have hard-coded and somewhat arbitrary parameters. The tuning space for type- and
behavior-parameterized kernels is simply too large to explore in a project with Modern GPU's goals and
scope.

1
2
3
4
5
6
7
8
9

// Copy and modify the host function to expose parameters for easier
tuning.
template<int NT, int VT, int OCC, typename GatherIt, typename ScatterIt,
 typename InputIt, typename OutputIt>
MGPU_HOST void IntervalMove2(ScatterIt scatter_global, const int*
scan_global,
 int intervalCount, int moveCount, InputIt input_global,
 OutputIt output_global, CudaContext& context) {
 // Parameters NT, VT, and OCC are passed in and override the host
 // defaults.
 ...

Identify performance-critical routines and the contexts from which they are invoked. Copy the MGPU host
functions that launch the relevant kernels and edit them to expose tuning parameters to the caller. Run the
code on actual data and deployment hardware through the included benchmark programs, testing over a
variety of parameters, to understand the performance space. Use the optimal settings to create specialized
entry points to get the best throughput from your GPU.

Important: The omnipresent grain size parameter VT is almost always an odd integer in MGPU code. This
choice allows us to step over bank-conflict issues that would otherwise need to be resolved with padding and
complicated index calculations. Kernels execute correctly on even grain sizes, but expect diminished
performance on these. Omit even grain sizes when searching the tuning space.

Mergesort tuning benchmark from tests/benchmarklaunchbox.cu

We've benchmarked MGPU's keys-only mergesort on GTX 480 and GTX Titan, specialized for both 32- and
64-bit integer types. You can see the function's sensitivity to tuning parameters. Note the best-performing
configurations for each device and data-type:

 GTX 480 (Fermi) GTX Titan (Kepler)

32-bit int 128x23 256x11

64-bit int 128x11 256x5

Parallelism (occupancy) decreases and work-efficiency increases as the grain size goes up. Kepler parts
require much higher occupancy than Fermi to reach top performance—the SM is much wider (6 FFMA units
up from 2 on Fermi), but per-SM shared memory remains the same at 48KB, badly underoccupying the
device at larger grain sizes. Because Fermi runs well at lower occupancy, it benefits from scheduling 128-
thread blocks, even at the cost of an additional merge pass. Smaller blocks improve effective occupancy by
stalling fewer threads at a synchronization.

Due to the GPU's raw power even untuned codes run excellently, often an order-of-magnitude beyond what
you can achieve on the CPU. Tuning benchmarks may be the easiest way to squeeze 20-30% out of your
code. It also informs the programmer of the performance landscape, leading to more productive profiling if
they decide to go the extra mile. It's always good to tune before profiling so that you don't waste time
optimizing code just to get to a local maxima.

Important: The hard-coded tuning parameters for MGPU functions were selected for decent performance on
large arrays of 32- and 64-bit data types running on Kepler architecture. Users targeting Fermi devices may
want to increase grain sizes significantly, as codes on that generation run better at lower occupancies. In all

https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarklaunchbox.cu

cases, finding optimal tuning parameters for specific data types and distributions, input sizes, and
architectures, is the easiest way to improve performance of well-written code.

LaunchBox

Once suitable tuning parameters have been discovered, specialize the host functions over data type (with
function overloading or partial template specialization) and input size (with a runtime check and multiple
launches). Specializing tuning parameters for different device architectures is more difficult.

The NVCC front-end strips out __device__ and __host__ tags. It calls the host compiler (Visual C++
or GCC) once for the host code and invokes the NVVM back-end once for each architecture. If we were to
specialize tuning for each device by branching over compute capability (determined at runtime with
cudaDeviceProp::major and minor) and making a different chevron launch for each one, we'd end
up compiling the cross product of all tunings over all architectures. Even though an sm_20 client will never
actually launch kernels specialized with sm_30 or sm_35 tunings, that code would still be included with your
binary because the multi-pass build process can't use dead code elimination on launches contingent on a
runtime check.

CUDA defines a __CUDA_ARCH__ macro for the compute capability of the architecture that is currently
being built in the multi-pass system. Although this macro is not available to the host at runtime, it can be
used from inside a kernel's source to allow the kernel to change its own behavior. The macro is typically used
to let a kernel opt into features that aren't available on all devices: e.g. the popc instruction counts the set
bits in word, replacing a loop, when __CUDA_ARCH__ >= 200. We use this macro to guide the build
process and only generate device code for the architectures it will run on.

MGPU introduces LaunchBox, a structure that specializes kernels for different compute capabilities without
generating the cross product of each parameterization and architecture. Think of LaunchBox as concatenating
the tuning parameters for all architectures into a single type and specializing the kernel over that type. The
kernel reads the relevant parameters from the LaunchBox and changes its own implementation accordingly.

tests/testlaunchbox.cuh

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

// LaunchBox-specialized kernel Foo uses MGPU_LAUNCH_BOUNDS kernel to
control
// register usage. The typename Tuning is obligatory, and must be
chosen for
// the MGPU_LAUNCH_BOUNDS and MGPU_LAUNCH_PARAMS macros to work.
template<typename Tuning>
MGPU_LAUNCH_BOUNDS void Foo() {
 typedef MGPU_LAUNCH_PARAMS Params;
 if(!blockIdx.x && !threadIdx.x)
 printf("Launch Foo<<<%d, %d>>> with NT=%d VT=%d OCC=%d\n",
 gridDim.x, blockDim.x, Params::NT, Params::VT,
Params::OCC);
}

// Use the built-in LaunchBoxVT type to specialize for NT, VT, and
OCC.
void LaunchFoo(int count, CudaContext& context) {
 typedef LaunchBoxVT<
 128, 7, 4, // sm_20 NT=128, VT=7, OCC=4

https://github.com/NVlabs/moderngpu/blob/master/tests/testlaunchbox.cu

52
53
54
55
56
57
58
59

 256, 9, 5, // sm_30 NT=256, VT=9, OCC=5
 256, 15, 3 // sm_35 NT=256, VT=15, OCC=3
 > Tuning;

 // GetLaunchParamaters returns (NT, VT) for the arch vesion of the
provided
 // CudaContext. The product of these is the tile size.
 int2 launch = Tuning::GetLaunchParams(context);
 int NV = launch.x * launch.y;
 int numBlocks = MGPU_DIV_UP(count, NV);

 Foo<Tuning><<<numBlocks, launch.x>>>();
}

Opt into LaunchBox by templating your kernel over Tuning (Tuning is an obligatory name). The
MGPU_LAUNCH_BOUNDS macro, which includes the __global__ tag, generates the
__launch_bounds__ attribute with the NT and OCC parameters specified at the launch site. The macro
uses __CUDA_ARCH__ to discriminate between compute capabilities, binding to the static values
corresponding to the currently-executing NVVM compiler pass. Typedef the MGPU_LAUNCH_PARAMS
macro to access the tuning parameters inside the kernel.

Use LaunchBox to specialize the mergesort benchmark above:

• Specialize 32-bit mergesort for Fermi and Kepler with LaunchBoxVT<128, 23, 0, 256,
11, 0>.

• Specialize 64-bit mergesort for Fermi and Kepler with LaunchBoxVT<128, 11, 0, 256, 5,
0>.

These tunings for sm_20 and sm_30 are inherited by other platforms (sm_21 inherits sm_20; sm_35+ inherits
sm_30). We choose not to constrain register count by leaving the occupancy parameter zero.

Most users will only need the LaunchBoxVT structure, a specialization that makes tuning more succinct.
Specialize this template over (NT, VT, OCC) for sm_20, sm_30, and sm_35. Default template arguments
inherit parameters from the earlier-generation architecture, so LaunchBoxVT<128, 7> is equivalent to
LaunchBoxVT<128, 7, 0, 128, 7, 0, 128, 7, 0>.

Use the static method GetLaunchParams, passing the CudaContext object, to return the (NT, VT)
arguments for the compute capability of the currently-selected device. The product of these is the tile size.
Use it to calculate the launch's grid size. Finally, specialize the kernel over Tuning and launch the grid with
launch.x (NT) threads.

tests/testlaunchbox.cuh

62
63
64
65
66
67
68
69

// LaunchBox-specialized kernel Bar introduces its own set of launch
parameters.
template<int NT_, int VT_, int OCC_, int P1_, typename T1_>
struct BarParams {
 enum { NT = NT_, VT = VT_, OCC = OCC_, P1 = P1_ };
 typedef T1_ T1;
};
template<typename Tuning>

https://github.com/NVlabs/moderngpu/blob/master/tests/testlaunchbox.cu

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

MGPU_LAUNCH_BOUNDS void Bar() {
 typedef MGPU_LAUNCH_PARAMS Params;
 if(!blockIdx.x && !threadIdx.x) {
 printf("Launch Bar<<<%d, %d>>> with NT=%d VT=%d OCC=%d\n",
 gridDim.x, blockDim.x, Params::NT, Params::VT,
Params::OCC);
 printf("\t\tP1 = %d sizeof(TT1) = %d\n", Params::P1,
 sizeof(typename Params::T1));
 }
}

void LaunchBar(int count, CudaContext& context) {
 typedef LaunchBox<
 BarParams<128, 7, 4, 20, short>, // sm_20
 BarParams<256, 9, 5, 30, float>, // sm_30
 BarParams<256, 15, 3, 35, double> // sm_35
 > Tuning;
 int2 launch = Tuning::GetLaunchParams(context);

 int nv = launch.x * launch.y;
 int numBlocks = MGPU_DIV_UP(count, nv);
 Bar<Tuning><<<numBlocks, launch.x>>>();
}

LaunchBoxVT inherits the more generic LaunchBox type and provides some syntactic sugar. LaunchBox
takes three types as arguments and typedefs those to Sm20, Sm30, and Sm35. When devices based on the
Maxwell architecture are released, LaunchBox will add additional typedefs. The LaunchBox technique
inherits parameter tunings to avoid versioning difficulties. Although LaunchBox puts no restrictions on its
specialization types, constants NT and VT must be included if the host code wishes to use
LaunchBox::GetLaunchParams (the client can elect not to use this), and NT and OCC must be
included to support MGPU_LAUNCH_BOUNDS (ditto).

GeForce GTX 570 : 1464.000 Mhz (Ordinal 0)
15 SMs enabled. Compute Capability sm_20
FreeMem: 778MB TotalMem: 1279MB.
Mem Clock: 1900.000 Mhz x 320 bits (152.000 GB/s)
ECC Disabled

Launching Foo with 1000000 inputs:
Launch Foo<<<1117, 128>>> with NT=128 VT=7 OCC=4

Launching Bar with 1000000 inputs:
Launch Bar<<<1117, 128>>> with NT=128 VT=7 OCC=4
 P1 = 20 sizeof(TT1) = 2

Launching Foo and Bar prints the above. The host function correctly coordinates the launch with the
statically- specialized kernel.

There is one small caveat: if LaunchBox is used to specialize kernels for architectures that are not compiled
with -gencode on the command line, LaunchBox::GetLaunchParams could return a different set of
tuning parameters than those that the kernel actually gets specialized over. If, for example, the program is
compiled for targets sm_20 and sm_30 but is executed on an sm_35 device, the kernel that is launched would
be for sm_30 (the largest targeted architectured not greater than the architecture of the device), however the
host side would configure the launch with the tuning parameters for sm_35.

To properly coordinate between the static device-side and dynamic host-side interfaces, we implement
GetLaunchParams so that it uses the highest targeted architecture not greater than the device's compute
capability when selecting dynamic launch parameters.

include/device/launchbox.cuh

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

// Returns (NT, VT) from the sm version.
template<typename Derived>
struct LaunchBoxRuntime {
 static int2 GetLaunchParams(CudaContext& context) {
 int sm = context.CompilerVersion();
 if(sm < 0) {
 cudaFuncAttributes attr;
 cudaFuncGetAttributes(&attr, LBVerKernel);
 sm = 10 * attr.ptxVersion;
 context.Device().SetCompilerVersion(sm);
 }

 // TODO: Add additional architectures as devices are released.
 if(sm >= 350)
 return make_int2(Derived::Sm35::NT, Derived::Sm35::VT);
 else if(sm >= 300)
 return make_int2(Derived::Sm30::NT, Derived::Sm30::VT);
 else
 return make_int2(Derived::Sm20::NT, Derived::Sm20::VT);
 }
};

The first time GetLaunchParams is called, CudaDevice::CompilerVersion is unset, and we call
cudaFuncGetAttributes on a place-holder method LBVerKernel. (Although it is never launched,
taking the address of this kernel keeps it in our program.) This bit of CUDA introspection returns the target
architecture of the compiled kernel (and presumably all other kernels in the program) through
cudaFuncAttributes::ptxVersion. LaunchBox allows the CUDA runtime to coordinate the host
and device sides of the call. All subsequent LaunchBox invocations are ready to go with the compiler
version.

https://github.com/NVlabs/moderngpu/blob/master/include/device/launchbox.cuh

3. The Library

Framework

To ease development MGPU includes a sample framework, defined in util/mgpucontext.h. At the start of
your program create a CudaContext object. This encapsulates an event, a timer, a stream, and an allocator.
Allocations made through this context are recycled after being freed, reducing calls to cudaMalloc.

include/util/mgpucontext.h

275
276
277
278
279
280

ContextPtr CreateCudaDevice(int ordinal);
ContextPtr CreateCudaDevice(int argc, char** argv, bool printInfo =
false);

ContextPtr CreateCudaDeviceStream(int ordinal);
ContextPtr CreateCudaDeviceStream(int argc, char** argv,
 bool printInfo = false);

Call CreateCudaDevice to create a context on the default stream or CreateCudaDeviceStream to
create a context on the new stream. The (argc, argv) overloads parse the command-line arguments for a
device ordinal. You can pass true for printInfo to print device attributes:

1
2
3
4

int main(int argc, char** argv) {
 ContextPtr context = CreateCudaDevice(argc, argv, true);
 return 0;
}

GeForce GTX 480 : 1401.000 Mhz (Ordinal 1)
15 SMs enabled. Compute Capability sm_20
FreeMem: 1086MB TotalMem: 1535MB.
Mem Clock: 1848.000 Mhz x 384 bits (177.408 GB/s)
ECC Disabled

MGPU context and device objects are managed with the reference-counting pointer types ContextPtr and
DevicePtr. MGPU-allocated memory is reference counted with intrusive_ptr<
CudaDeviceMem<type> > which is bound to the MGPU_MEM(type) macro for ease of use.

1
2
3
4
5
6
7
8
9
10
11
12

#include "moderngpu.cuh"

using namespace mgpu;

int main(int argc, char** argv) {
 ContextPtr context = CreateCudaDevice(argc, argv);

 MGPU_MEM(uint) data = context->Malloc<uint>(1000);

 MGPU_MEM(int) a = context->FillAscending<int>(50, 0, 5);
 MGPU_MEM(float) b = context->GenRandom<float>(50, 0.0f, 10.0f);
 MGPU_MEM(double) c = context->SortRandom<double>(50, 0.0, 20.0);

https://github.com/NVlabs/moderngpu/blob/master/include/util/mgpucontext.h
https://github.com/NVlabs/moderngpu/blob/master/include/util/mgpucontext.h

13
14
15
16
17
18
19
20
21
22
23
24

 printf("A:\n");
 PrintArray(*a, "%6d", 10);

 printf("\nB:\n");
 PrintArray(*b, "%6.2lf", 10);

 printf("\nC:\n");
 PrintArray(*c, "%6.2lf", 10);

 return 0;
}

A:
 0: 0 5 10 15 20 25 30 35 40 45
 10: 50 55 60 65 70 75 80 85 90 95
 20: 100 105 110 115 120 125 130 135 140 145
 30: 150 155 160 165 170 175 180 185 190 195
 40: 200 205 210 215 220 225 230 235 240 245

B:
 0: 8.15 1.35 9.06 8.35 1.27 9.69 9.13 2.21 6.32 3.08
 10: 0.98 5.47 2.78 1.88 5.47 9.93 9.58 9.96 9.65 9.68
 20: 1.58 7.26 9.71 9.81 9.57 1.10 4.85 7.98 8.00 2.97
 30: 1.42 0.05 4.22 1.12 9.16 6.40 7.92 8.78 9.59 5.04
 40: 6.56 7.98 0.36 3.61 8.49 2.12 9.34 6.81 6.79 3.99

C:
 0: 0.64 0.69 0.73 0.92 1.02 1.94 2.50 2.52 2.98 3.42
 10: 3.48 3.74 4.20 5.54 6.04 6.33 6.34 7.63 7.84 8.17
 20: 8.44 8.77 8.91 9.16 9.50 9.75 9.80 9.81 12.93 13.11
 30: 13.27 13.90 14.12 14.19 14.81 14.86 15.09 15.15 15.28 15.31
 40: 15.88 15.90 15.95 16.15 16.44 16.47 17.45 18.42 19.00 19.88

CudaContext::Malloc allocates memory from its caching allocator. The class supports a variety of
methods to fill device memory with data to accelerate testing and debugging. FillAscending,
GenRandom, and SortRandom are demonstrated above. PrintArray prints CudaDeviceMem arrays
to the console using printf-style format specifiers.

When MGPU_MEM-wrapped objects fall out of scope, the underlying device memory is inserted into a
weighted least-recently-used cache. Subsequent queries check the pool and reuse allocations of a similar size
before calling cudaMalloc. Once a program gets hot, the client can make small requests from
CudaContext with high confidence that the call will return immediately.

Users can opt-out of the default caching allocator by deriving CudaAlloc and providing their own
implementation, or simply by using CudaAllocSimple, which calls cudaFree immediately on device
memory falling out of scope.

include/util/mgpucontext.h

https://github.com/NVlabs/moderngpu/blob/master/include/util/mgpucontext.h
http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used

116
117
118
119
120
121
122
123
124
125
126
127

class CudaAlloc : public CudaBase {
public:
 virtual cudaError_t Malloc(size_t size, void** p) = 0;
 virtual bool Free(void* p) = 0;
 virtual ~CudaAlloc() { }

 const CudaDevice& Device() const { return *_device; }
 CudaDevice& Device() { return *_device; }
protected:
 CudaAlloc(CudaDevice* device) : _device(device) { }
 DevicePtr _device;
};

CudaAlloc is an interface that defines two abstract methods for users to implement: Malloc allocates
size bytes and returns the pointer in p. Free releases memory allocated by Malloc.

1
2
3
4

int main(int argc, char** argv) {
 ContextPtr context = CreateCudaDevice(argc, argv, true);
 AllocPtr standardAlloc(new CudaAllocSimple(&context->Device()));
 context->SetAllocator(standardAlloc);

Instantiate your allocator and associate it with the device context with CudaContext::SetAllocator.
The provided caching allocator is not optimal for all applications; use the simple allocator to get back to a
baseline.

1
2
3
4
5
6
7
8
9

int main(int argc, char** argv) {
 ContextPtr context = CreateCudaDevice(argc, argv, true);

 // Cast CudaAlloc* to CudaAllocBuckets*
 CudaAllocBuckets* buckets = dynamic_cast<CudaAllocBuckets*>
 (context->GetAllocator());

 // Set the capacity of the LRU cache to 500MB.
 buckets->SetCapacity(500000000);

You can set the capacity of the LRU cache dynamically. CudaContext::GetAllocator returns a
CudaContext* pointer to the currently-selected allocator. Because we know it's a caching allocator, we
use RTTI's dynamic_cast to retrieve a CudaAllocBuckets* pointer. We call SetCapacity with a
request of 500MB to set the cache size. If the size of an allocation request plus the size of items allocated in
the cache exceeds 500MB, the caching allocator frees the least-recently-used requests to make space for the
new memory.

include/kernels/bulkremove.cuh

143
144
145

 KernelBulkRemove<Tuning><<<numBlocks, launch.x, 0,
context.Stream()>>>(
 source_global, sourceCount, indices_global, indicesCount,
 partitionsDevice->get(), dest_global);

The context object attempts to support CUDA streams in as non-obtrusive a manner as possible. All MGPU
host functions take a CudaContext object by reference and pass the stream handle to the launch chevrons.
This enqueues the kernel launch into the stream that attached to the context.

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/bulkremove.cuh

Some MGPU functions—namely reduce, join, and some variants of scan and vectorized sorted search—use
cudaMemcpyDeviceToHost to move kernel outputs into host memory. This is a synchronizing function;
it will cause the thread to wait on the transfer, preventing it from queueing launches on other streams. If this
creates scheduling inefficiences, the programmer can split apart the host function, use cudaMemcpyAsync
to asynchronously move data into CPU-pinned memory, and overlap scheduling of operations on other
threads. This is an invasive and application-specific way to program, so it is not directly support by the
MGPU library.

Load/store functions

MGPU functions are aggressively register-blocked. Register blocking amortizes per-CTA and per-thread
costs by increasing the number of items processed per thread. To improve clarity and reduce errors, common
routines for moving portions of data between memory spaces (global memory, shared memory, and register)
have been factored into functions in the include/device/loadstore.cuh header.

The common template argument VT is the kernel's grain size; it specifies the number of values processed per
thread. The argument NT is the number of threads in the CTA.

Most of these functions operate in strided order, in which elements are assigned to threads according to NT
* i + tid, where i is the index of the element in the register and tid is the thread ID. Data should be loaded and
stored in strided order, as this organizes warp transfers into cache lines, which maximizes data throughput.

Many MGPU algorithms work with data in thread order, in which elements are assigned to threads
according to VT * tid + i. Each thread has access to VT consecutive elements which makes performing
sequential operations like scan and merge very easy. However data should not be loaded or stored to global
memory in thread order, as warp transfers would touch VT different cache lines, wasting memory bandwidth.

By choosing an odd number for VT we avoid bank conflicts that would otherwise be incurred when re-
ordering data between strided and thread orders. Within a warp, all banks (VT * tid + i) % 32 are accessed
exactly once for each step i when VT is odd. If VT is a power-of-two, you can expect VT-way conflicts at
each step.

Load/store function prototypes are found in mgpudevice.cuh. Most functions have names matching the
pattern Device[Source]To[Dest]:

include/mgpudevice.cuh

76
77
78
79
80
81
82

// For 0 <= i < VT:
// index = NT * i + tid;
// if(index < count) reg[i] = data[index];
// Synchronize after load.
template<int NT, int VT, typename InputIt, typename T>
MGPU_DEVICE void DeviceSharedToReg(int count, InputIt data, int tid,
 T* reg, bool sync = true);

Functions of this form are parameterized over NT and VT arguments—these are typically communicated to
the kernel using the LaunchBox mechanism. The first argument is the count of items to move across the
entire CTA. If NT * VT == count, an optimized implementation may be used which eliminates per-item
predication to reduce latency and promote parallelism. The second argument is the source data, and its
memory space should match the [Source] part of the function name. The third argument is the thread ID. The
fourth argument is the destination data and its memory space should match the [Dest] part of the function

http://nvlabs.github.io/moderngpu/performance.html#launchbox
https://github.com/NVlabs/moderngpu/blob/master/include/mgpudevice.cuh
https://github.com/NVlabs/moderngpu/blob/master/include/device/loadstore.cuh

name. The final argument is used to hit a __syncthreads after the operation. Data movement functions
with Shared in the name synchronize by default; other functions do not.

Data can be loaded from shared memory into registers in thread order with DeviceSharedToThread.
Data can be stored to shared from registers in thread order with DeviceThreadToShared. A common
practice is to:

1. Cooperatively load data into register in strided order and store to shared memory with
DeviceGlobalToShared.

2. Read out values in thread order into register with DeviceSharedToThread.

3. Operate on data that is now sequentially ordered by thread. Scan works in this manner.

4. Store results from register in thread order into shared memory with DeviceThreadToShared.

5. Cooperatively load data from shared memory into register in strided order and store to global
memory with DeviceSharedToGlobal.

Regimented application of these utility functions to move data between global memory, shared memory, and
register helps highlight the novel aspects of the kernel (the stuff in step 3).

Task range

Work can be divided into CTAs with two strategies:

1. Process one tile per CTA and make the grid a function of your data size. The hardware schedules
blocks and fine-grained load balancing keeps the SMs busy.

2. Evenly divide your data into a fixed number of CTAs (ideally a function of device width) and
dynamically loop through tiles. Oversubscribe CTAs to SMs to remedy warp-biasing artifacts of the
hardware. This technique requires more tweaking than the one-tile-per-CTA division, but may also
enable algorithmic improvements. Atomic counters can be integrated to facilitate work-stealing,
resulting in the "persistent CTAs" idiom of scheduling.

I prefer the first strategy for work division unless there is a compelling algorithmic opportunity to assume
tile-scheduling responsibilities. The reduce kernel, covered on the next page, provides such an opportunity.
Because the version of KernelReduce which exploits the commutative property only runs a CTAReduce
at the end of each CTA rather than the end of each tile, it makes sense to amortize this cost by running many
tiles through each CTA.

Multiple tiles can be evenly balanced over a fixed number of CTAs using an easy trick which requires no
division on the device (division is very slow on the GPU).

include/kernels/reduce.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/reduce.cuh
http://nvlabs.github.io/moderngpu/scan.html

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

// We have a large reduction so balance over many CTAs. Launch up to
25
// per CTA for oversubscription.
const int NT = 128;
const int VT = 9;
typedef LaunchBoxVT<NT, VT> Tuning;
int2 launch = Tuning::GetLaunchParams(context);
const int NV = launch.x * launch.y;

int numTiles = MGPU_DIV_UP(count, NV);
int numBlocks = std::min(context.NumSMs() * 25, numTiles);
int2 task = DivideTaskRange(numTiles, numBlocks);

// Reduce on the GPU.
MGPU_MEM(T) reductionDevice = context.Malloc<T>(numBlocks);
KernelReduce<Tuning><<<numBlocks, launch.x, 0, context.Stream()>>>(
 data_global, count, task, reductionDevice->get(), op);

Data is divided into tiles of size NV (number of Values per Thread). The number of CTAs is set to a small
multiple of the number of SMs or the number of tiles, whichever is smaller. We use the C runtime function
div() to compute both the quotient and remainder of the tile count over the CTA count. Each CTA
reconstructs its range of tiles from this pair of terms. The number of tiles assigned to each CTA differ by no
more than one, with the earlier CTAs being assigned the additional tiles.

After setting tuning parameters, the host calls LaunchBox::GetLaunchParams to retrieve (NT, VT).
The product of these is the tile size, and it's used to compute the number of tiles in the launch. A call to
DivideTaskRange evenly distributes tiles over CTAs. The returned task structure is passed to the kernel.

include/device/deviceutil.cuh

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

MGPU_HOST int2 DivideTaskRange(int numItems, int numWorkers) {
 div_t d = div(numItems, numWorkers);
 return make_int2(d.quot, d.rem);
}

MGPU_HOST_DEVICE int2 ComputeTaskRange(int block, int2 task) {
 int2 range;
 range.x = task.x * block;
 range.x += min(block, task.y);
 range.y = range.x + task.x + (block < task.y);
 return range;
}

MGPU_HOST_DEVICE int2 ComputeTaskRange(int block, int2 task, int
blockSize,
 int count) {
 int2 range = ComputeTaskRange(block, task);
 range.x *= blockSize;
 range.y = min(count, range.y * blockSize);
 return range;
}

https://github.com/NVlabs/moderngpu/blob/master/include/device/deviceutil.cuh

NumTiles = 1234. NumCTAs = 20. d.quot = 61. d.rem = 14.
CTA begin end count
 0: (0, 62: 62)
 1: (62, 124: 62)
 2: (124, 186: 62)
 3: (186, 248: 62)
 4: (248, 310: 62)
 5: (310, 372: 62)
 6: (372, 434: 62)
 7: (434, 496: 62)
 8: (496, 558: 62)
 9: (558, 620: 62)
 10: (620, 682: 62)
 11: (682, 744: 62)
 12: (744, 806: 62)
 13: (806, 868: 62)
 14: (868, 929: 61)
 15: (929, 990: 61)
 16: (990, 1051: 61)
 17: (1051, 1112: 61)
 18: (1112, 1173: 61)
 19: (1173, 1234: 61)

A problem with 1234 tiles and 20 CTAs calls div() to compute the quot/rem pair(61, 14), which is passed
to the kernel as task. Call DivideTaskRange to handle the division and casting; the int2 it returns
may be passed directly to the kernel.

ComputeTaskRange returns the interval of tiles for the block. The four-argument overload accepts the
block size and item count to compute a range in values rather than tiles. This is called from inside a kernel to
establish the kernel's operating range.

include/kernels/reduce.cuh

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

// Run a high-throughput reduction over multiple CTAs. Used as the
upsweep phase
// for global reduce and global scan.
template<typename Tuning, typename InputIt, typename Op>
MGPU_LAUNCH_BOUNDS void KernelReduce(InputIt data_global, int count,
 int2 task, typename Op::value_type* reduction_global, Op op) {

 typedef MGPU_LAUNCH_PARAMS Params;
 const int NT = Params::NT;
 const int VT = Params::VT;
 const int NV = NT * VT;

 KERNEL BOILERPLATE HERE
 ...

 int tid = threadIdx.x;
 int block = blockIdx.x;
 int first = VT * tid;

 int2 range = ComputeTaskRange(block, task, NV, count);

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/reduce.cuh

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

 // total is the sum of encountered elements. It's undefined on the
first
 // loop iteration.
 value_type total = op.Extract(op.Identity(), -1);
 bool totalDefined = false;

 // Loop through all tiles defined by ComputeTaskRange.
 while(range.x < range.y) {
 int count2 = min(NV, count - range.x);

 // Read tile data into register.
 input_type inputs[VT];
 DeviceGlobalToReg<NT, VT>(count2, data_global + range.x, tid,
inputs);

 KERNEL BODY HERE
 ...

 // Update range pointer to advance to next tile.
 range.x += NV;
 totalDefined = true;
 }

On the device side, MGPU_LAUNCH_PARAMS identifies the nested tuning-parameters type for the
compute capability. The tile size, NV, is the product of the number of threads per CTA, NT, and the number
of values per thread, VT. ComputeTaskRange takes the task structure and returns the range of tiles for the
CTA to process.

4. Reduce and Scan
Reduce and scan are core primitives of parallel computing. This implementation supports user-defined binary
operations and defines an interface for handling different input, intermediate, and result types.

Algorithmically, reduce and scan show where we've been with GPU computing—the following sections
show where we're going.

Benchmark and usage

Scan benchmark from tests/benchmarkscan.cu

Scan demonstration from tests/demo.cu

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarkscan.cu

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

void DemoScan(CudaContext& context) {
 printf("\n\nREDUCTION AND SCAN DEMONSTRATION:\n\n");

 // Generate 100 random integers between 0 and 9.
 int N = 100;
 MGPU_MEM(int) data = context.GenRandom<int>(N, 0, 9);
 printf("Input array:\n");
 PrintArray(*data, "%4d", 10);

 // Run a global reduction.
 int total = Reduce(data->get(), N, context);
 printf("Reduction total: %d\n\n", total);

 // Run an exclusive scan.
 total = Scan<MgpuScanTypeExc>(data->get(), N, context);
 printf("Exclusive scan:\n");
 PrintArray(*data, "%4d", 10);
 printf("Scan total: %d\n", total);
}

REDUCTION AND SCAN DEMONSTRATION:

Input array:
 0: 8 1 9 8 1 9 9 2 6 3
 10: 0 5 2 1 5 9 9 9 9 9
 20: 1 7 9 9 9 1 4 7 8 2
 30: 1 0 4 1 9 6 7 8 9 5
 40: 6 7 0 3 8 2 9 6 6 3
 50: 7 7 7 4 3 4 6 1 1 3
 60: 7 7 0 3 2 8 0 1 0 9
 70: 8 8 6 1 3 7 9 4 0 6
 80: 4 1 3 2 7 0 7 0 1 4
 90: 4 4 4 4 6 7 7 9 7 8
Reduction total: 492

Exclusive scan:
 0: 0 8 9 18 26 27 36 45 47 53
 10: 56 56 61 63 64 69 78 87 96 105
 20: 114 115 122 131 140 149 150 154 161 169
 30: 171 172 172 176 177 186 192 199 207 216
 40: 221 227 234 234 237 245 247 256 262 268
 50: 271 278 285 292 296 299 303 309 310 311
 60: 314 321 328 328 331 333 341 341 342 342
 70: 351 359 367 373 374 377 384 393 397 397
 80: 403 407 408 411 413 420 420 427 427 428
 90: 432 436 440 444 448 454 461 468 477 484
Scan total: 492

Max-index benchmark from tests/benchmarkscan.cu

Max-index demonstration from tests/demo.cu

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

void DemoMaxIndex(CudaContext& context) {
 printf("\n\nMAX-INDEX DEMONSTRATION:\n\n");

 // Generate 100 random integers between 0 and 9.
 int N = 100;
 MGPU_MEM(int) data = context.GenRandom<nt>(N, 0, N);
 printf("Input array:\n");
 PrintArray(*data, "%4d", 10);

 // Run a global reduction.
 typedef ScanOpMaxIndex<int> Op;
 Op::Pair pair = Reduce(data->get(), N, Op(), context);
 printf("Max-index reduction: %d at position %d\n", pair.value,
pair.index);

 // Run an exclusive scan.
 Scan<MgpuScanTypeExc>(data->get(), N, data->get(), Op(), &pair,
false,
 context);
 printf("\nMax-index exclusive scan:\n");
 PrintArray(*data, "%4d", 10);
 printf("Scan total: %d at position %d\n", pair.value, pair.index);
}

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarkscan.cu

MAX-INDEX DEMONSTRATION:

Input array:
 0: 27 71 68 0 66 71 16 65 12 46
 10: 50 78 96 57 34 88 59 81 22 1
 20: 75 82 25 82 51 94 70 41 89 42
 30: 96 58 55 15 14 76 15 23 26 81
 40: 84 99 25 33 82 30 24 1 93 21
 50: 35 91 19 85 25 96 62 78 47 99
 60: 35 6 83 80 59 60 55 74 92 70
 70: 28 68 76 39 76 56 38 21 57 53
 80: 7 40 5 35 53 59 78 35 94 97
 90: 13 15 57 39 47 39 1 73 34 39
Max-index reduction: 99 at position 41

Max-index exclusive scan:
 0: -1 0 1 1 1 1 1 1 1 1
 10: 1 1 11 12 12 12 12 12 12 12
 20: 12 12 12 12 12 12 12 12 12 12
 30: 12 12 12 12 12 12 12 12 12 12
 40: 12 12 41 41 41 41 41 41 41 41
 50: 41 41 41 41 41 41 41 41 41 41
 60: 41 41 41 41 41 41 41 41 41 41
 70: 41 41 41 41 41 41 41 41 41 41
 80: 41 41 41 41 41 41 41 41 41 41
 90: 41 41 41 41 41 41 41 41 41 41
Scan total: 99 at position 41

Host functions

include/mgpuhost.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/mgpuhost.cuh

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

//
//////////
// kernels/reduce.cuh

// Reduce input and return variable in host memory. Note that this
calls
// cudaMemcpyDeviceToHost, a synchronous operation that may interrupt
queueing
// on streams.
template<typename InputIt, typename Op>
MGPU_HOST typename Op::value_type Reduce(InputIt data_global, int count,
Op op,
 CudaContext& context);

// T = std::iterator_traits<InputIt>::value_type.
// Reduce with Op = ScanOp<ScanOpTypeAdd, T>.
template<typename InputIt>
MGPU_HOST typename std::iterator_traits<InputIt>::value_type
Reduce(InputIt data_global, int count, CudaContext& context);

//
//////////
// kernels/scan.cuh

// Scan inputs in device memory.
// MgpuScanType may be:
// MgpuScanTypeExc (exclusive) or
// MgpuScanTypeInc (inclusive).
// If total is non-zero, the reduction of the input is returned in
host memory.
// This incurs a synchronization so may not be appropriate for
programs
// using stream.
// If totalAtEnd is true, the reduction is stored at
dest_global[count].
template<MgpuScanType Type, typename InputIt, typename OutputIt,
typename Op>
MGPU_HOST void Scan(InputIt data_global, int count, OutputIt
dest_global, Op op,
 typename Op::value_type* total, bool totalAtEnd, CudaContext&
context);

// Specialization Scan:
// Returns the reduction as a variable in host memory.
// Uses Op = ScanOp<ScanOpTypeAdd, T>
// totalAtEnd = false
template<MgpuScanType Type, typename InputIt>
MGPU_HOST typename std::iterator_traits<InputIt>::value_type
Scan(InputIt data_global, int count, CudaContext& context);

// Specialization with MgpuScanTypeExc.

template<typename InputIt>
MGPU_HOST typename std::iterator_traits<InputIt>::value_type
Scan(InputIt data_global, int count, CudaContext& context);

Algorithm

Further Reading: For a detailed introduction to reduction networks read NVIDIA's Mark Harris on
Optimizing Parallel Reduction in CUDA.

Reduce and scan (prefix sum) are core primitives in parallel computing. Reduce is the sum of elements in an
input sequence:

Input: 1 7 4 0 9 4 8 8 2 4 5 5 1 7 1 1 5 2 7
6
Reduction: 87

Scan generalizes this operator, reducing inputs for every interval from the start to the current element.
Exclusive scan is the sum of all inputs from the beginning to the element before the current element.
Inclusive scan is the exclusive scan plus the current element. You can convert from inclusive to exclusive
scan with a component-wise subtraction of the input array, or by shifting the scan one element to the right:

Input: 1 7 4 0 9 4 8 8 2 4 5 5 1 7 1 1 5 2 7
6
Exclusive: 0 1 8 12 12 21 25 33 41 43 47 52 57 58 65 66 67 72 74
81
Inclusive: 1 8 12 12 21 25 33 41 43 47 52 57 58 65 66 67 72 74 81
87

Note that the last element of inclusive scan is the reduction of the inputs.

Parallel evaluation of reduce and scan requires cooperative scan networks which sacrifice work efficiency to
expose parallelism. Consider the cooperative scan network based on the Kogge-Stone adder. n inputs are
processed in log(n) passes. On pass 0, element i - 1 (if in range) is added into element i, in parallel. On pass
1, element i - 2 is added into element i. On pass 2, element i - 4 is added into element i, and so on.

Input: 1 7 4 0 9 4 8 8 2 4 5 5 1 7 1 1 5 2 7
6

Inclusive scan network by offset:
 1: 1 8 11 4 9 13 12 16 10 6 9 10 6 8 8 2 6 7 9
13
 2: 1 8 12 12 20 17 21 29 22 22 19 16 15 18 14 10 14 9 15
20
 4: 1 8 12 12 21 25 33 41 42 39 40 45 37 40 33 26 29 27 29
30
 8: 1 8 12 12 21 25 33 41 43 47 52 57 58 65 66 67 71 66 69
75
 16: 1 8 12 12 21 25 33 41 43 47 52 57 58 65 66 67 72 74 81
87

Exclusive: 0 1 8 12 12 21 25 33 41 43 47 52 57 58 65 66 67 72 74
81

On each pass, the element in red (column 17 - offset) is added into the element in green (column 17) and
stored at column 17 on the next line. By the last pass this chain of adders has communicated the sum of all

http://en.wikipedia.org/wiki/Kogge%E2%80%93Stone_adder
http://en.wikipedia.org/wiki/Prefix_sum
http://nvlabs.github.io/moderngpu/http%7C//developer.download.nvidia.com/assets/cuda/files/reduction.pdf

elements between columns 0 and 16 into column 17.

The sequential implementation runs in O(n) operations with O(n) latency. The parallel version has O(n log n)
work efficiency, but by breaking the serial dependencies, improves latency to O(log n) on machines with n
processors. Most workloads have many more inputs than the device has processors. We amortize the super-
linear cooperative scan network cost by processing subsequences of the input with work-efficient serial
functions. The partials are run through the parallel scan network, which costs O(p log p), where the number
of processors p « n. Finally the scanned partials are added back into the inputs in linear time to complete
operation.

This outlines a common pattern in GPU computing:

1. Upsweep to send partial reductions to the spine.
2. Scan the spine of partials with a low-latency cooperative function.
3. Downsweep to distribute the scanned partials from the spine to each of the inputs.

Input array: 20 threads and 5 elements/thread:
 1 7 4 0 9 4 8 8 2 4 5 5 1 7 1 1 5 2 7
6
 1 4 2 3 2 2 1 6 8 5 7 6 1 8 9 2 7 9 5
4
 3 1 2 3 3 4 1 1 3 8 7 4 2 7 7 9 3 1 9
8
 6 5 0 2 8 6 0 2 4 8 6 5 0 9 0 0 6 1 3
8
 9 3 4 4 6 0 6 6 1 8 4 9 6 3 7 8 8 2 9
1

Partial reduction by threads (Upsweep):
 21 26 19 21 12 22 31 27 12 17 27 30 21 20 20 18 26 21 29
28

Parallel scan of partials (Spine):
 1: 21 47 45 40 33 34 53 58 39 29 44 57 51 41 40 38 44 47 50
57
 2: 21 47 66 87 78 74 86 92 92 87 83 86 95 98 91 79 84 85 94
104
 4: 21 47 66 87 99 121 152 179 170 161 169 178 187 185 174 165 179 183 185
183
 8: 21 47 66 87 99 121 152 179 191 208 235 265 286 306 326 344 349 344 354
361
 16: 21 47 66 87 99 121 152 179 191 208 235 265 286 306 326 344 370 391 420
448

Exclusive scan of partials:
 0 21 47 66 87 99 121 152 179 191 208 235 265 286 306 326 344 370 391
420

Add exclusive scan of partials into exclusive sequential scan of input array
(Downsweep):
 0 1 8 12 12 21 25 33 41 43 47 52 57 58 65 66 67 72 74
81
 87 88 92 94 97 99 101 102 108 116 121 128 134 135 143 152 154 161 170
175
 179 182 183 185 188 191 195 196 197 200 208 215 219 221 228 235 244 247 248
257
 265 271 276 276 278 286 292 292 294 298 306 312 317 317 326 326 326 332 333
336
 344 353 356 360 364 370 370 376 382 383 391 395 404 410 413 420 428 436 438
447

The figure above uses 20 threads to cooperatively scan 100 inputs. During the upsweep phase, each thread
reduces five inputs using a work-efficient serial loop. The 20 partials are then scanned in parallel using five
Kogge-Stone passes. During the downsweep phase, each thread sequentially adds its five inputs into the
scanned partial from the spine. By increasing the grain size (the parameter VT in MGPU kernels) we do more
linear-complexity work to amortize the O(n log n) scan network cost.

Scan operators

Modern GPU defines a scan operator interface to increase the flexibility of the Reduce and Scan functions.
The library provides several implementations to satisfy common needs. Note that participating operations do
not need to support the commutative property (A + B need not necessarily equal B + A), although they must
be associative, otherwise parallelism is impossible.

include/device/ctascan.cuh

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

struct ScanOpInterface {
 enum { Commutative }; // False to require non-commutative
treatment.

 typedef X input_type;
 typedef Y value_type;
 typedef Z result_type;

 // Extract() takes inputs loaded from global memory and converts
to
 // value_type.
 MGPU_HOST_DEVICE value_type Extract(input_type t, int index);

 // Plus() operates on two value_types. Reduce and Scan do not rely
on the
 // Plus function being commutative - value t1 always represents
values that
 // occur earlier in the input stream than t2.
 MGPU_HOST_DEVICE value_type Plus(value_type t1, value_type t2);

 // Combine() prepares a value for storage. Values are combined
with the
 // original input_type element at the same slot. Combine() is not
used with
 // Reduce, as Reduce only returns value_types.
 MGPU_HOST_DEVICE result_type Combine(input_type t1, value_type
t2);

 // Identity() returns an input_type that interacts benignly with
any other
 // value_type in Plus(). The Identity() value_type is always
extracted with
 // the index -1. Identity() elements appear at the end of the
stream (in the
 // partial last tile) or are returned as the first element for an
exclusive

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctascan.cuh

 // scan.
 MGPU_HOST_DEVICE input_type Identity();
};

ScanOpInterface is a blueprint for customizing the behavior of MGPU Reduce and Scan. Do not
derive this type, simply make a new type that implements its three typedefs and four methods. Specialize
CTAReduce, Reduce, CTAScan, and Scan over this new type. Although fancy iterators can provide
much of the flexibility of ScanOpInterface, MGPU defines a pipeline that makes the process easier to
reason about.

When dealing with data inside a CTA (CTAReduce and CTAScan), only the Plus and Identity
methods are used. All data is typed to value_type. Combine() supports operators that don't have the
commutative property; if the operator defines Commutative = false, the first argument always
represents expressions formed from inputs that come before the inputs of the second argument's expression.
Guaranteeing the order of operands requires a CTA-wide reduction for every tile of data processed. This adds
considerable overhead. Set Commutative = true unless your operator is emphatically non-
commutative. The ScanOpMaxIndex<> operator demonstrated in the benchmark and usage section is non-
commutative for purposes of demonstration, not of performance.

The scan interface defines three types: input_type, value_type, result_type. Inputs loaded from
device memory are kept in register. Extract() is called on each element and passed its index. It returns
value_type. The Extract() method allows the user to bind an index to the value for implementing
max-index/min-index reductions, or to strip out flag bits that aren't subject to the scan logic. All folding
operations are performed on value_type. Scanned values are converted to result_type before being
stored to device memory. The Combine() method is passed the scanned value along with the original
input_type value. The user can discard the value from a max-index operation or re-apply the flags that
were masked out during the Extract().

For type consistency, the Identity() method returns input_type. It is extracted with index -1. By
providing the identity as input_type, we can Combine() the reduction value_type with the identity
and store it to the last element plus one.

ScanOp

include/device/ctascan.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctascan.cuh
http://nvlabs.github.io/moderngpu/scan.html#benchmark

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

// Basic scan operators.
enum ScanOpType {
 ScanOpTypeAdd,
 ScanOpTypeMul,
 ScanOpTypeMin,
 ScanOpTypeMax
};

template<ScanOpType OpType, typename T>
struct ScanOp {
 enum { Commutative = true };
 typedef T input_type;
 typedef T value_type;
 typedef T result_type;

 MGPU_HOST_DEVICE value_type Extract(input_type t, int index)
{ return t; }
 MGPU_HOST_DEVICE value_type Plus(value_type t1, value_type t2) {
 switch(OpType) {
 case ScanOpTypeAdd: t1 += t2; break;
 case ScanOpTypeMul: t1 *= t2; break;
 case ScanOpTypeMin: t1 = min(t1, t2); break;
 case ScanOpTypeMax: t1 = max(t1, t2); break;
 }
 return t1;
 }
 MGPU_HOST_DEVICE result_type Combine(input_type t1, value_type t2)
{
 return t2;
 }
 MGPU_HOST_DEVICE input_type Identity() { return _ident; }

 MGPU_HOST_DEVICE ScanOp(input_type ident) : _ident(ident) { }
 MGPU_HOST_DEVICE ScanOp() {
 switch(OpType) {
 case ScanOpTypeAdd: _ident = 0; break;
 case ScanOpTypeMul: _ident = 1; break;
 case ScanOpTypeMin: _ident = numeric_limits<T>::max();
break;
 case ScanOpTypeMax: _ident = numeric_limits<T>::lowest();
break;
 }
 }

 input_type _ident;
};
typedef ScanOp<ScanOpTypeAdd, int> ScanOpAdd;

ScanOp is a basic operator that performs add, mul, min, or max functions. MGPU includes a subset of
std::numeric_limits<> (in the mgpu namespace) with methods __device__-tagged to support
specialization of ScanOp over built-in types. The typedef ScanOpAdd is provided for convenience - a
partial sum on integers is by far the most common scan operator in MGPU kernels.

ScanOpIndex

include/device/ctascan.cuh

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

template<typename T>
struct ScanOpIndex {
 enum { Commutative = false };
 struct Pair { int index; T value; };

 typedef T input_type;
 typedef Pair value_type;
 typedef int result_type;
 MGPU_HOST_DEVICE value_type Extract(T t, int index) {
 Pair p = { index, t };
 return p;
 }
 MGPU_HOST_DEVICE int Combine(T t1, value_type t2) {
 return t2.index;
 }
 MGPU_HOST_DEVICE input_type Identity() {
 return _identity;
 }
 MGPU_HOST_DEVICE ScanOpIndex(T identity) : _identity(identity) { }
 T _identity;
};

template<typename T>
struct ScanOpMinIndex : ScanOpIndex<T> {
 typedef typename ScanOpIndex<T>::value_type value_type;
 MGPU_HOST_DEVICE value_type Plus(value_type t1, value_type t2) {
 if(t2.value < t1.value) t1 = t2;
 return t1;
 }
 MGPU_HOST_DEVICE ScanOpMinIndex(T max_ = numeric_limits<T>::max())
:
 ScanOpIndex<T>(max_) { }
};
template<typename T>
struct ScanOpMaxIndex : ScanOpIndex<T> {
 typedef typename ScanOpIndex<T>::value_type value_type;
 MGPU_HOST_DEVICE value_type Plus(value_type t1, value_type t2) {
 if(t2.value > t1.value) t1 = t2;
 return t1;
 }
 MGPU_HOST_DEVICE ScanOpMaxIndex(T min_ =
numeric_limits<T>::lowest()) :
 ScanOpIndex<T>(min_) { }
};

ScanOpIndex is the base class for min-index and max-index operators. Commutative = false is a
request for the reduction kernel to treat the operator as non-commutative. The operator uses type-morphing to
change type T input to integer output. On Extract(), the value and index are moved into a pair which is

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctascan.cuh

returned. The Plus() operator only compares the values - because the inputs of the left expression come
before the inputs of the right expression, the user is guaranteed, in case of multiple min- or max-elements, to
receive the index of the left-most one. Combine() discards the value and returns the left-most index of an
extremum.

Important: MGPU kernels aggressively union together types to conserve shared memory. Don't specialize
MGPU kernels over types that have non-trivial constructors or destructors. C++ 11 relaxes this restriction, as
will this library when CUDA supports the new union semantics. If your type cannot be unioned, cast to an
equivalent POD type.

CTAReduce

CTAReduce recursively folds inputs. Specialize with a power-of-two number of threads and a scan operator.
This is a work-efficient operation requiring n total additions and log(n) passes.

Inputs in thread order: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fold elements 8-15 0 1 2 3 4 5 6 7
into 0-7: 8 9 10 11 12 13 14 15

Fold elements 4-7 0 1 2 3
into 0-3: 8 9 10 11
 4 5 6 7
 12 13 14 15

Fold elements 2-3 0 1
into 0-1: 8 9
 4 5
 12 13
 2 3
 10 11
 6 7
 14 15

Thread 0 folds in element 1:
Reduction = 0 + 8 + 4 + 12 + 2 + 10 + 6 + 14 + 1 + 9 + 5 + 13 + 3 + 11 + 7 + 15

Folding the data in thread order correctly reduces inputs only for operations that support the commutative
property. Prefix sum would work, but max-index would not necessarily return the left-most extrema. We
need to permute the inputs such that the reduction is in ascending order. Scatter element 0 into position 0,
element 1 into position 8, element 2 into position 4, etc.

Permuted input order: 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Fold elements 8-15 0 8 4 12 2 10 6 14
into 0-7: 1 9 5 13 3 11 7 15

Fold elements 4-7 0 8 4 12
into 0-3: 1 9 5 13
 2 10 6 14
 3 11 7 15

Fold elements 2-3 0 8
into 0-1: 1 9
 2 10
 3 11
 4 12

 5 13
 6 14
 7 15

Thread 0 folds in element 1:
Reduction = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15

Fortunately this permutation is trivial to calculate. We simply reverse the bits in the thread ID and scatter.
Devices of compute capability 2.0 (Fermi) and later support a hardware bit reverse intrinsic __brev.

include/device/ctascan.cuh

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

template<int NT, typename Op = ScanOpAdd>
struct CTAReduce {
 typedef typename Op::value_type T;
 enum { Size = NT };
 enum { Capacity = NT + NT / WARP_SIZE };
 struct Storage { T shared[Capacity]; };

 MGPU_DEVICE static T Reduce(int tid, T x, Storage& storage, Op op =
Op()) {
 // Reverse the bits of the source thread ID and make a
conflict-free
 // store using a 33-stride spacing.
 int dest = brev(tid)>> (32 - sLogPow2<NT>::value);
 storage.shared[dest + dest / WARP_SIZE] = x;
 __syncthreads();

 // Fold the data in half with each pass.
 int src = tid + tid / WARP_SIZE;
 #pragma unroll
 for(int destCount = NT / 2; destCount >= 1; destCount /= 2) {
 if(tid < destCount) {
 // On the first pass, read this thread's data out of
shared
 // memory.
 if(NT / 2 == destCount) x = storage.shared[src];
 int src2 = destCount + tid;
 x = op.Plus(x, storage.shared[src2 + src2 /
WARP_SIZE]);
 storage.shared[src] = x;
 }
 __syncthreads();
 }
 T total = storage.shared[0];
 __syncthreads();
 return total;
 }
};

CTA reduction is defined as a type to unite a storage structure and a static method in the same scope. Callers
should union CTAReduce<>::Storage into their shared memory structure to optimize occupancy. The
bit-reversal permutation causes bank conflicts by mapping multiple lanes in a warp to the same bank which

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctascan.cuh

this method avoids by adding a padding index every 32 slots.

Important: When mapping adjacent threads into the same bank, avoid conflicts by adding a padding element
every 32 slots. Set index = index + index / WARP_SIZE and reserve NT + NT /
WARP_SIZE shared memory slots.

Simulation of bank-conflict resolution on 16 banks:
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 31 x 32 33 34 35 36 37 38 39 40 41 42 43 44 45
 46 47 x 48 49 50 51 52 53 54 55 56 57 58 59 60
 61 62 63 x 64 65 66 67 68 69 70 71 72 73 74 75
 76 77 78 79 x 80 81 82 83 84 85 86 87 88 89 90
 91 92 93 94 95 x 96 97 98 99 100 101 102 103 104 105
 106 107 108 109 110 111 x 112 113 114 115 116 117 118 119 120
 121 122 123 124 125 126 127 x 128 129 130 131 132 133 134 135
 136 137 138 139 140 141 142 143 x 144 145 146 147 148 149 150
 151 152 153 154 155 156 157 158 159 x 160 161 162 163 164 165
 166 167 168 169 170 171 172 173 174 175 x 176 177 178 179 180
 181 182 183 184 185 186 187 188 189 190 191 x 192 193 194 195
 196 197 198 199 200 201 202 203 204 205 206 207 x 208 209 210
 211 212 213 214 215 216 217 218 219 220 221 222 223 x 224 225
 226 227 228 229 230 231 232 233 234 235 236 237 238 239 x 240
 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 x

CTAScan and shfl scan

include/device/ctascan.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctascan.cuh

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

template<int NT, typename Op = ScanOpAdd>
struct CTAScan {
 typedef typename Op::value_type T;
 enum { Size = NT, Capacity = 2 * NT + 1 };
 struct Storage { T shared[Capacity]; };

 MGPU_DEVICE static T Scan(int tid, T x, Storage& storage, T* total,
 MgpuScanType type = MgpuScanTypeExc, Op op = Op()) {

 storage.shared[tid] = x;
 int first = 0;
 __syncthreads();

 #pragma unroll
 for(int offset = 1; offset < NT; offset += offset) {
 if(tid >= offset)
 x = op.Plus(storage.shared[first + tid - offset], x);
 first = NT - first;
 storage.shared[first + tid] = x;
 __syncthreads();
 }
 *total = storage.shared[first + NT - 1];
 if(MgpuScanTypeExc == type)
 x = tid ?
 storage.shared[first + tid - 1] :
 op.Extract(op.Identity(), -1);
 __syncthreads();

 return x;
 }
 MGPU_DEVICE static T Scan(int tid, T x, Storage& storage) {
 T total;
 return Scan(tid, x, storage, &total, MgpuScanTypeExc, Op());
 }
};

CTAScan is a basic implemenation that uses double buffering to reduce synchronization. To further reduce
latency we utilize the shfl instruction available on Kepler. This feature supports inter-lane communication
inside a warp with a only a single trip over the shared memory cross-bar. Although CUDA C++ includes a
__shfl intrinsic, we choose to access the instruction using inline PTX to save the returned predicate flag.
The current CUDA backend copies predicate flags into registers when they are returned as bool types,
resulting in wasted instructions if we were to build a shuffle intrinsic that returned both value and predicate.
Best performance is achieved by executing both the shfl and the add in inline PTX.

include/device/intrinsics.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/intrinsics.cuh

100
101
102
103
104
105
106
107
108
109
110
111
112
113

MGPU_DEVICE int shfl_add(int x, int offset, int width = WARP_SIZE) {
 int result = 0;
#if __CUDA_ARCH__ >= 300
 int mask = (WARP_SIZE - width)<< 8;
 asm(
 "{.reg .s32 r0;"
 ".reg .pred p;"
 "shfl.up.b32 r0|p, %1, %2, %3;"
 "@p add.s32 r0, r0, %4;"
 "mov.s32 %0, r0; }"
 : "=r"(result) : "r"(x), "r"(offset), "r"(mask), "r"(x));
#endif
 return result;
}

The mov instruction is elided by the compiler, creating a warp scan in a tight sequence of five shfl and five
predicated add instructions. The shfl_add function scans multiple segments within a warp, where width
is a power-of-two segment size.

include/device/ctascan.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctascan.cuh

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

#if __CUDA_ARCH__ >= 300

template<int NT>
struct CTAScan<NT, ScanOpAdd> {
 // Define WARP_SIZE segments that are NT / WARP_SIZE large.
 // Each warp makes log(SegSize) shfl_add calls.
 // The spine makes log(WARP_SIZE) shfl_add calls.
 enum { Size = NT, NumSegments = WARP_SIZE, SegSize = NT /
NumSegments };
 enum { Capacity = NumSegments + 1 };
 struct Storage { int shared[Capacity + 1]; };

 MGPU_DEVICE static int Scan(int tid, int x, Storage& storage, int*
total,
 MgpuScanType type = MgpuScanTypeExc, ScanOpAdd op =
ScanOpAdd()) {

 int lane = (SegSize - 1) & tid;
 int segment = tid / SegSize;

 // Scan each segment using shfl_add.
 int scan = x;
 #pragma unroll
 for(int offset = 1; offset < SegSize; offset *= 2)
 scan = shfl_add(scan, offset, SegSize);

 // Store the reduction (last element) of each segment into
storage.
 if(SegSize - 1 == lane) storage.shared[segment] = scan;
 __syncthreads();

 // Warp 0 does a full shfl warp scan on the partials. The
total is
 // stored to shared[NumSegments]. (NumSegments = WARP_SIZE)
 if(tid < NumSegments) {
 int y = storage.shared[tid];
 int scan = y;
 #pragma unroll
 for(int offset = 1; offset < NumSegments; offset *= 2)
 scan = shfl_add(scan, offset, NumSegments);
 storage.shared[tid] = scan - y;
 if(NumSegments - 1 == tid) storage.shared[NumSegments] =
scan;
 }
 __syncthreads();

 // Add the scanned partials back in and convert to exclusive
scan.
 scan += storage.shared[segment];
 if(MgpuScanTypeExc == type) scan -= x;
 *total = storage.shared[NumSegments];
 __syncthreads();

The CTA shuffle scan implementation takes the form of warp-synchronous programming but without the
need for volatile memory qualifiers. We choose to divide the input into 32 equal segments. For 256 threads,
we have a segment size of eight, and this is scanned in three calls to shfl_add. The last thread in each
segment stores the partial sum to shared memory. After a barrier the partials are warp-scanned with five
invocations of shfl_add.

The choice to scan small segments in the upsweep (8 threads/segment) and scan large segments in the spane
(32 threads/segment) has significant consequence for work efficiency: in the 256-thread example, each of the
eight warps makes three calls to shfl_add in the upsweep, and the spine warp makes five calls, for 29
shuffles in all. By contrast, setting the segment size to 32 performs a five-pass warp scan in the upsweep and
a three-pass scan over the eight partials in the spine, calling shfl_add 43 times. Changing the fan-out of
scan networks can have implications for both the latency and efficiency.

Reduce kernel

include/kernels/reduce.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/reduce.cuh

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

// Run a high-throughput reduction over multiple CTAs. Used as the
upsweep phase
// for global reduce and global scan.
template<typename Tuning, typename InputIt, typename Op>
MGPU_LAUNCH_BOUNDS void KernelReduce(InputIt data_global, int count,
 int2 task, typename Op::value_type* reduction_global, Op op) {

 typedef MGPU_LAUNCH_PARAMS Params;
 const int NT = Params::NT;
 const int VT = Params::VT;
 const int NV = NT * VT;
 typedef typename Op::input_type input_type;
 typedef typename Op::value_type value_type;
 typedef CTAReduce<NT, Op> R;

 union Shared {
 typename R::Storage reduce;
 input_type inputs[NV];
 };
 __shared__ Shared shared;

 int tid = threadIdx.x;
 int block = blockIdx.x;
 int first = VT * tid;

 int2 range = ComputeTaskRange(block, task, NV, count);

 // total is the sum of encountered elements. It's undefined on the
first
 // loop iteration.
 value_type total = op.Extract(op.Identity(), -1);
 bool totalDefined = false;

 while(range.x < range.y) {
 int count2 = min(NV, count - range.x);

 // Read terms into register.
 input_type inputs[VT];
 DeviceGlobalToReg<NT, VT>(count2, data_global + range.x, tid,
inputs);

 if(Op::Commutative) {
 // This path exploits the commutative property of the
operator.
 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 int index = NT * i + tid;
 if(index < count2) {
 value_type x = op.Extract(inputs[i], range.x +
index);
 total = (i || totalDefined) ? op.Plus(total, x) :
x;
 }

We cover the Reduce kernel in detail, as most MGPU kernels are similarly constructed. The first template
argument is Tuning, indicating the kernel uses the LaunchBox tuning mechanism. The
MGPU_LAUNCH_BOUNDS macro expands to a __launch_bounds__ attribute and __global__
tag. Input data is accepted with a template argument InputIt to support iterators in addition to pointers.
MGPU provides counting_iterator and step_iterator, and users can pass their own or any of
the custom iterators included with Thrust.

The tuning parameters NT and VT are pulled from the Tuning argument by way of the
MGPU_LAUNCH_PARAMS macro. As described in the library overview, the grain size VT should be odd to
avoid bank conflicts when reading out values from shared memory in thread order.

CTAReduce is specialized over the scan operator and its storage is made part of the union. The task range is
computed and the CTA loops—sizing the grid to the device rather than the data results in a smaller spine
with lower-latency scan.

Data is loaded from the input iterator into shared memory using DeviceGlobalToShared. All device
methods in loadstore.cuh that move to or from shared memory include an implicit synchronization—this can
be disabled by passing false to the default last argument. After the data is loaded, threads read VT terms
starting at VT * tid and call Extract() to change the data type from input_type to value_type.
The Plus method on the scan operator combines values into x. The larger the grain size, the smaller the
relative cost of the cooperative CTA reduction which follows. The reduction for the iteration, x, is added into
the cumulative reduction for the CTA, total, and the loop continues until the task is complete. The CTA
reduction is stored to global memory as a value_type. This may be copied to the host, combined with the
other partials, and returned. Or it may be fed into another kernel to compute a global scan.

Scan kernel

include/kernels/scan.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/scan.cuh
https://github.com/NVlabs/moderngpu/blob/master/include/device/loadstore.cuh
http://nvlabs.github.io/moderngpu/library.html#taskrange
http://nvlabs.github.io/moderngpu/library.html#loadstore

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

template<int NT, int VT, MgpuScanType Type, typename InputIt, typename
OutputIt,
 typename Op>
__global__ void KernelParallelScan(InputIt cta_global, int count, Op
op,
 typename Op::value_type* total_global, typename Op::result_type*
end_global,
 OutputIt dest_global) {

 typedef typename Op::input_type input_type;
 typedef typename Op::value_type value_type;
 typedef typename Op::result_type result_type;
 const int NV = NT * VT;

 typedef CTAScan<NT, Op> S;
 union Shared {
 typename S::Storage scan;
 input_type inputs[NV];
 result_type results[NV];
 };
 __shared__ Shared shared;

 int tid = threadIdx.x;

 // total is the sum of encountered elements. It's undefined on the
first
 // loop iteration.
 value_type total = op.Extract(op.Identity(), -1);
 bool totalDefined = false;
 int start = 0;
 while(start < count) {
 // Load data into shared memory.
 int count2 = min(NV, count - start);
 DeviceGlobalToShared<NT, VT>(count2, cta_global + start, tid,
 shared.inputs);

 // Transpose data into register in thread order. Reduce terms
serially.
 input_type inputs[VT];
 value_type values[VT];
 value_type x = op.Extract(op.Identity(), -1);
 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 int index = VT * tid + i;
 if(index < count2) {
 inputs[i] = shared.inputs[index];
 values[i] = op.Extract(inputs[i], start + index);
 x = i ? op.Plus(x, values[i]) : values[i];
 }
 }
 __syncthreads();

 // Scan the reduced terms.

KernelParallelScan is launched on a single block and completely scans its input. It is structured as a
persistent CTA, looping until all inputs have been processed. This spine function takes actions that resemble
a global scan, but in miniature:

1. DeviceGlobalToShared cooperatively loads elements as input_type and stores into shared
memory.

2. Threads loop through the values in a serial reduction, calling Extract() to convert inputs to
value_type and generating partials with application of Plus().

3. The CTA cooperatively scans the partials with CTAScan. Note that the storage for this method is
unioned into the Shared structure.

4. Threads loop through the values in a serial downsweep, calling Combine() to add values with the
previous scan result, producing an array of result_type which are stored in shared memory. Note
that inclusive scans sum before storing, and exclusive scans store before summing.

5. DeviceSharedToGlobal cooperatively stores result_type data into global memory.

ScanOpValue

include/device/ctascan.cuh

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

// Override the Extract and Combine behavior of the base operator.
This prevents
// the Scan kernel from extracting or combining values twice.
template<typename Base>
struct ScanOpValue : public Base {
 typedef typename Base::value_type input_type;
 typedef typename Base::value_type value_type;
 typedef typename Base::value_type result_type;
 MGPU_HOST_DEVICE value_type Extract(value_type t, int index)
{ return t; }
 MGPU_HOST_DEVICE value_type Combine(value_type t1, value_type t2)
{
 return t2;
 }
 MGPU_HOST_DEVICE value_type Identity() {
 return Base::Extract(Base::Identity(), -1);
 }
 MGPU_HOST_DEVICE ScanOpValue(Base base) : Base(base) { }
};

Because KernelParallelScan does double-duty both spine-scanning partials for large inputs and
completely scanning elements for small inputs, we could potentially run into problems with the type system.
The kernel calls Extract() and Combine() to convert between types, but when used to scan the spine of
partials, inputs are already in value_type (but we expect them in input_type). Before launching
KernelParallelScan to scan the spine of partials, the host encapsulates the user-provided scan operator
in ScanOpValue to suppress type morphing. Extract() and Combine() are overridden to pass
value_type arguments straight throughe. This shim class inherits its Commutative property from the
base class.

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctascan.cuh

KernelScanDownsweep, which runs the downsweep for large input arrays, operates in much the same
way as KernelParallelScan.

5. Bulk Remove and Bulk Insert
Bulk Remove and Bulk Insert are high-throughput functions for fine-grained parallel array surgery. Bulk
Remove compacts an array by removing all elements specified by index. Bulk Insert merges two arrays in
parallel by insertion index. Merge Path partitioning for load balancing is introduced here.

Benchmark and usage

Bulk Remove benchmark from tests/benchmarkinsert.cu

Bulk Remove demonstration from tests/demo.cu

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarkinsert.cu

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

void DemoBulkRemove(CudaContext& context) {
 printf("\n\nBULK REMOVE DEMONSTRATION:\n\n");

 // Use CudaContext::FillAscending to generate 100 integers between
0 and 99.
 int N = 100;
 MGPU_MEM(int) data = context.FillAscending<int>(N, 0, 1);

 printf("Input array:\n");
 PrintArray(*data, "%4d", 10);

 // Remove every 3rd element from the exclusive scan. Use
 // CudaContext::FillAscending to generate removal indices for
every 3rd
 // integer between 0 and 99.
 int RemoveCount = MGPU_DIV_UP(N, 3);
 MGPU_MEM(int) remove = context.FillAscending(RemoveCount, 0, 3);
 MGPU_MEM(int) data2 = context.Malloc<int>(N - RemoveCount);

 BulkRemove(data->get(), N, remove->get(), RemoveCount, data2-
>get(),
 context);
 printf("\nRemoving every 3rd element:\n");
 PrintArray(*data2, "%4d", 10);
}

BULK REMOVE DEMONSTRATION:

Input array:
 0: 0 1 2 3 4 5 6 7 8 9
 10: 10 11 12 13 14 15 16 17 18 19
 20: 20 21 22 23 24 25 26 27 28 29
 30: 30 31 32 33 34 35 36 37 38 39
 40: 40 41 42 43 44 45 46 47 48 49
 50: 50 51 52 53 54 55 56 57 58 59
 60: 60 61 62 63 64 65 66 67 68 69
 70: 70 71 72 73 74 75 76 77 78 79
 80: 80 81 82 83 84 85 86 87 88 89
 90: 90 91 92 93 94 95 96 97 98 99

Removing every 3rd element:
 0: 1 2 4 5 7 8 10 11 13 14
 10: 16 17 19 20 22 23 25 26 28 29
 20: 31 32 34 35 37 38 40 41 43 44
 30: 46 47 49 50 52 53 55 56 58 59
 40: 61 62 64 65 67 68 70 71 73 74
 50: 76 77 79 80 82 83 85 86 88 89
 60: 91 92 94 95 97 98

Bulk Insert benchmark from tests/benchmarkinsert.cu

Bulk Insert demonstration from tests/demo.cu

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

void DemoBulkInsert(CudaContext& context) {
 printf("\n\nBULK INSERT DEMONSTRATION:\n\n");

 // Use CudaContext::FillAscending to generate 100 integers between
0 and 99.
 int N = 100;
 MGPU_MEM(int) data = context.FillAscending<int>(N, 0, 1);

 printf("Input array:\n");
 PrintArray(*data, "%4d", 10);

 // Insert new elements before every 5 input starting at index 2.
 // Use step_iterator for insertion positions and content.
 int InsertCount = MGPU_DIV_UP(N - 2, 5);
 MGPU_MEM(int) data2 = context.Malloc<int>(N + InsertCount);
 mgpu::step_iterator<int> insertData(1000, 10);
 mgpu::step_iterator<int> insertIndices(2, 5);

 BulkInsert(insertData, insertIndices, InsertCount, data->get(), N,
 data2->get(), context);

 printf("\nInserting before every 5th element starting at item
2:\n");
 PrintArray(*data2, "%4d", 10);

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarkinsert.cu

}

BULK INSERT DEMONSTRATION:

Input array:
 0: 0 1 2 3 4 5 6 7 8 9
 10: 10 11 12 13 14 15 16 17 18 19
 20: 20 21 22 23 24 25 26 27 28 29
 30: 30 31 32 33 34 35 36 37 38 39
 40: 40 41 42 43 44 45 46 47 48 49
 50: 50 51 52 53 54 55 56 57 58 59
 60: 60 61 62 63 64 65 66 67 68 69
 70: 70 71 72 73 74 75 76 77 78 79
 80: 80 81 82 83 84 85 86 87 88 89
 90: 90 91 92 93 94 95 96 97 98 99

Inserting before every 5th element starting at item 2:
 0: 0 1 1000 2 3 4 5 6 1010 7
 10: 8 9 10 11 1020 12 13 14 15 16
 20: 1030 17 18 19 20 21 1040 22 23 24
 30: 25 26 1050 27 28 29 30 31 1060 32
 40: 33 34 35 36 1070 37 38 39 40 41
 50: 1080 42 43 44 45 46 1090 47 48 49
 60: 50 51 1100 52 53 54 55 56 1110 57
 70: 58 59 60 61 1120 62 63 64 65 66
 80: 1130 67 68 69 70 71 1140 72 73 74
 90: 75 76 1150 77 78 79 80 81 1160 82
 100: 83 84 85 86 1170 87 88 89 90 91
 110: 1180 92 93 94 95 96 1190 97 98 99

Host functions

include/mgpuhost.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/mgpuhost.cuh

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

//
//////////
// kernels/bulkremove.cuh

// Compact the elements in source_global by removing elements
identified by
// indices_global. indices_global must be unique, sorted, and range
between 0
// and sourceCount - 1. The number of outputs is sourceCount -
indicesCount.

// IndicesIt should resolve to an integer type. iterators like
step_iterator
// are supported.

// If sourceCount = 10, indicesCount = 6, and indices = (1, 3, 4, 5,
7, 8), then
// dest = A0 A2 A6 A9. (All indices between 0 and sourceCount - 1
except those
// in indices_global).
template<typename InputIt, typename IndicesIt, typename OutputIt>
MGPU_HOST void BulkRemove(InputIt source_global, int sourceCount,
 IndicesIt indices_global, int indicesCount, OutputIt dest_global,
 CudaContext& context);

//
//////////
// kernels/bulkinsert.cuh

// Combine aCount elements in a_global with bCount elements in
b_global.
// Each element a_global[i] is inserted before position
indices_global[i] and
// stored to dest_global. The insertion indices are relative to the B
array,
// not the output. Indices must be sorted but not necessarily unique.

// If aCount = 5, bCount = 3, and indices = (1, 1, 2, 3, 3), the
output is:
// B0 A0 A1 B1 A2 B2 A3 A4.
template<typename InputIt1, typename IndicesIt, typename InputIt2,
 typename OutputIt>
MGPU_HOST void BulkInsert(InputIt1 a_global, IndicesIt indices_global,
 int aCount, InputIt2 b_global, int bCount, OutputIt dest_global,
 CudaContext& context);

Bulk Remove algorithm

Bulk Remove and Bulk Insert are intermediate forms between functions of the scan idiom and functions of
MGPU's two-phase idiom. These functions search over their inputs to establish coarse-grained partitionings.

Sorted indices are loaded into CTAs and scatter and scan operations remove or insert items with fine-grained
control.

Data:
 0: 0 1 2 3 4 5 6 7 8 9
 10: 10 11 12 13 14 15 16 17 18 19
 20: 20 21 22 23 24 25 26 27 28 29
 30: 30 31 32 33 34 35 36 37 38 39
 40: 40 41 42 43 44 45 46 47 48 49
 50: 50 51 52 53 54 55 56 57 58 59
 60: 60 61 62 63 64 65 66 67 68 69
 70: 70 71 72 73 74 75 76 77 78 79
 80: 80 81 82 83 84 85 86 87 88 89
 90: 90 91 92 93 94 95 96 97 98 99

Remove indices:
 0: 1 4 5 7 10 14 15 16 18 19
 10: 27 29 31 32 33 36 37 39 50 59
 20: 60 61 66 78 81 83 85 90 91 96
 30: 97 98 99

For Bulk Remove, we start with a full tile of values plus the interval of remove indices that map into the tile.

Flags:
 0: 1 0 1 1 0 0 1 0 1 1
 10: 0 1 1 1 0 0 0 1 0 0
 20: 1 1 1 1 1 1 1 0 1 0
 30: 1 0 0 0 1 1 0 0 1 0
 40: 1 1 1 1 1 1 1 1 1 1
 50: 0 1 1 1 1 1 1 1 1 0
 60: 0 0 1 1 1 1 0 1 1 1
 70: 1 1 1 1 1 1 1 1 0 1
 80: 1 0 1 0 1 0 1 1 1 1
 90: 0 0 1 1 1 1 0 0 0 0

A tile-sized buffer of flags is initialized to 1. Poking in 0 will remove the value at that position. Threads
scatter 0s for all elements listed in the remove indices array.

Scan of flags:
 0: 0 1 1 2 3 3 3 4 4 5
 10: 6 6 7 8 9 9 9 9 10 10
 20: 10 11 12 13 14 15 16 17 17 18
 30: 18 19 19 19 19 20 21 21 21 22
 40: 22 23 24 25 26 27 28 29 30 31
 50: 32 32 33 34 35 36 37 38 39 40
 60: 40 40 40 41 42 43 44 44 45 46
 70: 47 48 49 50 51 52 53 54 55 55
 80: 56 57 57 58 58 59 59 60 61 62
 90: 63 63 63 64 65 66 67 67 67 67

Reduced data:
 0: 0 2 3 6 8 9 11 12 13 17
 10: 20 21 22 23 24 25 26 28 30 34
 20: 35 38 40 41 42 43 44 45 46 47
 30: 48 49 51 52 53 54 55 56 57 58
 40: 62 63 64 65 67 68 69 70 71 72
 50: 73 74 75 76 77 79 80 82 84 86
 60: 87 88 89 92 93 94 95

An exclusive scan is run on the flags. Flags that were 1 prior to the scan reserve one slot for their values;

flags that were 0 reserve no space. The scanned offsets in green had set flags. Values at the green locations in
the tile scatter their values to shared memory at their corresponding scanned locations. In this example,
element 0 is stored to location 0; element 1 is skipped (its flag is 0); element 2 is stored to location 1; etc.

BinarySearchPartitions

How do we find the interval of removal indices to load into the CTA, and where does each CTA store its
Bulk Remove output? By insisting on sorted indices (and no duplicate indices) both questions have simple
answers:

1. Remove indices are partioned with a lower-bound binary search, where the keys are the starting
offsets for each tile, i.e., multiplies of the block size.

2. Destination offsets for each tile are inferred from the the tile's input offset (a multiple of the block
size) and the removal index offset from 1. Because Bulk Remove requires indices both sorted and
unique, a CTA knows where to stream given only its block ID and the location of the first remove
index in its range. If NV = 1000, block 8 that loads removal indices (2113, 2423) streams exactly 690
values (1000 - (2423 - 2113)) starting at output position 5887 (8 * 1000 - 2113).

include/kernels/search.cuh

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

template<int NT, MgpuBounds Bounds, typename It, typename Comp>
__global__ void KernelBinarySearch(int count, It data_global, int
numItems,
 int nv, int* partitions_global, int numSearches, Comp comp) {

 int gid = NT * blockIdx.x + threadIdx.x;
 if(gid < numSearches) {
 int p = BinarySearch<Bounds>(data_global, numItems,
 min(nv * gid, count), comp);
 partitions_global[gid] = p;
 }
}

template<MgpuBounds Bounds, typename It1, typename Comp>
MGPU_MEM(int) BinarySearchPartitions(int count, It1 data_global, int
numItems,
 int nv, Comp comp, CudaContext& context) {

 const int NT = 64;
 int numBlocks = MGPU_DIV_UP(count, nv);
 int numPartitionBlocks = MGPU_DIV_UP(numBlocks + 1, NT);
 MGPU_MEM(int) partitionsDevice = context.Malloc<int>(numBlocks +
1);

 KernelBinarySearch<NT, Bounds>
 <<<numPartitionBlocks, NT, 0, context.Stream()>>>(count,
data_global,
 numItems, nv, partitionsDevice->get(), numBlocks + 1, comp);
 return partitionsDevice;

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/search.cuh

}

Many host functions call BinarySearchPartitions to partition problems before calling the logic
kernel. If the CTA size is 1000, this launch finds intervals in the argument array with values between 0 and
999, 1000 and 1999, etc. For BulkRemove it maps the correct remove indices into each tile.

Thrust includes a function remove_if that compacts inputs given a corresponding array of predicates. This
interface requires multiple trips through the input: the first trip simply counts the number of elements not to
remove. Modern GPU functions usually accept sorted arrays of indices (to remove, to insert, or to mark
segment heads) because it eliminates a pass that would otherwise need to run just to calculate output
locations and sizes.

KernelBulkRemove

include/kernels/bulkremove.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/bulkremove.cuh
http://thrust.github.io/doc/group__stream__compaction.html#ga5760a32d1a99d89732206f48b75138ea

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

template<typename Tuning, typename InputIt, typename IndicesIt,
 typename OutputIt>
MGPU_LAUNCH_BOUNDS void KernelBulkRemove(InputIt source_global, int
sourceCount,
 IndicesIt indices_global, int indicesCount, const int* p_global,
 OutputIt dest_global) {

 typedef MGPU_LAUNCH_PARAMS Params;
 typedef typename std::iterator_traits<InputIt>::value_type T;
 const int NT = Params::NT;
 const int VT = Params::VT;
 const int NV = NT * VT;
 typedef CTAScan<NT, ScanOpAdd> S;
 union Shared {
 int indices[NV];
 typename S::Storage scan;
 };
 __shared__ Shared shared;

 int tid = threadIdx.x;
 int block = blockIdx.x;
 int gid = block * NV;
 sourceCount = min(NV, sourceCount - gid);

 // Search for begin and end iterators of interval to load.
 int p0 = p_global[block];
 int p1 = p_global[block + 1];

 // Set the flags to 1. The default is to copy a value.
 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 int index = NT * i + tid;
 shared.indices[index] = index < sourceCount;
 }
 __syncthreads();

 // Load the indices into register.
 int begin = p0;
 int indexCount = p1 - p0;
 int indices[VT];
 DeviceGlobalToReg<NT, VT>(indexCount, indices_global + p0, tid,
indices);

 // Set the counter to 0 for each index we've loaded.
 #pragma unroll
 for(int i = 0; i < VT; ++i)
 if(NT * i + tid < indexCount)
 shared.indices[indices[i] - gid] = 0;
 __syncthreads();

 // Run a raking scan over the flags. We count the set flags - this
is the
 // number of elements to load in per thread.

After partitioning, the host launches KernelBulkRemove. The results of the binary search are loaded into
p0 and p1. Flags are initialized to 1 as described, except those for last-tile elements which extend past the end
of the input: these are set to 0. DeviceGlobalToReg loads indices (p0, p1) into register. Because the
indices are unique, there cannot be more than NV indices in the interval (p0, p1), so we can safely load into
register with an unrolled loop. We use the local removal indices (the offset of the start of the tile is subtracted
from each removal index) and poke 0s into shared memory.

Each thread loads VT flags starting at VT * tid. These are summed and passed to CTAReduce. Scanned
flags with corresponding set indices (the scan of flags in green from three figures above) are compacted by
conditionally streaming not to VT * tid but to each thread's count scan. Because we had to load flags in
thread order (VT * tid + i) rather than strided order (NT * i + tid), it is more efficient to invert the problem
from a scatter to a gather.

Finally, the threads cooperatively load sourceCount - indexCount indices in strided order, gather
the values from global memory, and store directly to output at dest_global + gid - p0.

Bulk Insert partitioning

The complementary function requires a bit more sophistication to write. Remove is easy, because the array
can only get smaller. Insert is harder because the array may grow arbitrarily large, causing load-balancing
problems. If we were to assign a fixed amount of inputs (say, 1000) to BulkInsert as we do with
BulkRemove, we may not be able to hold the input indices or the expanded array in the CTA's register or
shared memory resources.

The caller may want to insert 1000 or even 1,000,000 elements before the first input. How does the kernel
handle thousands of consecutive 0s in the insert indices array? Unlike the remove case, we cannot disallow
duplicate insert indices without loss of functionality. If BinarySearchPartition mapped 10,000 insert
requests into a single tile, the kernel would have to dynamically loop through these requests to fulfill them
within the capacity constraints of the device. This is expressly against our philosophy that the logic code
should not handle scheduling - that is the domain of the partioning phase.

The solution is to generalize the partitioning code to search over two inputs simultaneously: we want to
balance the source data with the insertion requests. For NV = 1000, loading 712 inputs implies we can load
no more than 288 indices. This way both the new and the old values get merged without overflowing the
resources available for the block.

Searching on two sorted arrays is fortunately very easy. For each tile index i, we look for splitters Ai and Bi

such that Ai + Bi = NV * i. CTA i loads input from the interval (Ai, Ai+1) and insertion indices from the

interval (NV * i - Ai, NV * (i + 1) - Ai+1). The total number of loaded items is clearly NV. If we can simply

calculate the partitions Ai we'll have solved Bulk Insert.

Merge Path

include/device/ctasearch.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctasearch.cuh

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

template<MgpuBounds Bounds, typename It1, typename It2, typename Comp>
MGPU_HOST_DEVICE int MergePath(It1 a, int aCount, It2 b, int bCount,
int diag,
 Comp comp) {

 typedef typename std::iterator_traits<It1>::value_type T;
 int begin = max(0, diag - bCount);
 int end = min(diag, aCount);

 while(begin < end) {
 int mid = (begin + end)>> 1;
 T aKey = a[mid];
 T bKey = b[diag - 1 - mid];
 bool pred = (MgpuBoundsUpper == Bounds) ?
 comp(aKey, bKey) :
 !comp(bKey, aKey);
 if(pred) begin = mid + 1;
 else end = mid;
 }
 return begin;
}

MergePath is a binary search over two sorted arrays that uses a constraint, diag, to reduce the search to
one dimension. The search resembles the basic binary search in that we establish an interval over the array a,
and loop while begin < end. The primary difference is that instead of comparing a[mid] to a fixed
query, we utilize the constraint and compare to b[diag - 1 - mid].

This routine is sound analytically but makes little intuitive sense. Fortunately a 2012 paper Merge Path -
Parallel Merging Made Simple by Saher Odeh, Oded Green, Zahi Mwassi, Oz Shmuli, and Yitzhak Birk,
provides a visualization for this search to help understand and apply it in diverse situations.

Further Reading: Read Merge Path - Parallel Merging Made Simple to better understand a partitioning
strategy that's employed repeatedly in the MGPU algorithms.

http://www.cc.gatech.edu/~ogreen3/_docs/Merge_Path_-_Parallel_Merging_Made_Simple.pdf
http://www.cc.gatech.edu/~ogreen3/_docs/Merge_Path_-_Parallel_Merging_Made_Simple.pdf

Consider merging the array on the top with the array on the right. Start with the cursor (a pair of pointers to
the head of each list) at the upper-left corner. Compare the heads of the lists and advance in the direction of
the smaller key; advance to the right if the keys are equal. The curve in green is the Merge Path. It is a
visualization of the history of decisions in executing a serial merge.

We draw red cross-diagonals over the Merge Path curve. The portion of the path enclosed by consecutive
cross-diagonals map the intervals from each source array that contribute to one interval of the merge output.

In this example, the first partition is assigned keys 0, 0 from A and 0, 0 from B; the second interval is
assigned key 1 from A and keys 1, 1, 1 from B; etc. All partitions are assigned exactly four inputs (and
because of the nature of the merge function, four outputs), and each partition can be processed in parallel
without communication. If keys in A and B match, the use of use of lower-bound semantics in the
MergePath binary search assigns the matching keys in A to the earlier partitions and the matching keys in
B to the later partitions, which agrees with the behavior of std::merge.

This illustration shows a merge divided into six partitions of equal size plus one partial partition at the lower-
right. The eight cross-diagonals (in red) intersect the Merge Path to establish tile partitions (in black).
Because the Merge Path can only move down and right (and not diagonal), the length of the curve bounded
by two consecutive cross-diagonals is constant and equal to the inter-diagonal spacing. The intersection of
the Merge Path projects upwards to define the interval of values in A inside the partition; it projects to the
right to define the interval of values in B. The number of steps required for the binary search is the log of the
cross-diagonal length.

Important: Merge Path is the history of comparisons made during a sequential merge operation. We want to
find the intersection of the Merge Path with regularly-spaced cross-diagonals without actually constructing
the Merge Path. We binary search along cross-diagonals, sampling and comparing elements from inputs A
and B until we've ascertained where the Merge Path would be, if we had constructed it.

In the CUDA code above, the constraint parameter diag is the distance from the origin that the cross-
diagonal intersects the x-axis. Consider tile 3's partition in this figure. A search along cross-diagonal 3
returns the pair (a3, b3), and the search along cross-diagonal 4 returns (a4, b4). Because of the constraint that

ai + bi = diag, we need only deal with the coverage interval of A: (a3, a4). When needed, the coverage

interval of B is can be computed as (diag3 - a3, diag4 - a4).

How is this applicable to load-balancing Bulk Insert? Consider the array across the top (A) as the sorted list
of insertion indices; the array on the right (B) is a counting_iterator<int> representing the positions
of the source elements. Bulk Insert is essentially a merge operation where the keys of A are the insertion
indices and the keys of B are the natural numbers. Computing the intersection of the Merge Path curve with
the cross-diagonal using a constrained binary search solves Bulk Insert's partioning needs.

Bulk insert algorithm

After mapping a source and insert elements into each tile we can run the actual Bulk Insert logic. This is a
scan-oriented kernel and follows the patterns of Bulk Remove.

Insert indices:
 0: 1 12 13 14 14 18 20 38 39 44
 10: 45 50 50 50 54 56 59 63 68 69
 20: 74 75 84 84 88 111 111 119 121 123
 30: 126 127 144 153 157 159 163 169 169 175
 40: 178 183 190 194 195 196 196 201 219 219
 50: 253 256 259 262 262 266 272 273 278 283
 60: 284 291 296 297 302 303 306 306 317 318
 70: 318 319 319 320 320 323 326 329 330 334
 80: 340 349 352 363 366 367 369 374 381 383
 90: 383 384 386 388 388 389 393 398 398 399
Tile size = 100 ACount = 22 BCount = 78

Counters:
 0: 0 1 0 0 0 0 0 0 0 0
 10: 0 0 0 1 0 1 0 1 1 0
 20: 0 0 0 1 0 0 1 0 0 0
 30: 0 0 0 0 0 0 0 0 0 0
 40: 0 0 0 0 0 1 0 1 0 0
 50: 0 0 0 1 0 1 0 0 0 0
 60: 0 1 1 1 0 0 0 0 1 0
 70: 0 1 0 0 0 1 0 0 0 0
 80: 1 0 0 0 0 0 1 0 1 0
 90: 0 0 0 0 1 0 1 0 0 0

Our example starts with 400 source elements and 100 insertions. A Merge Path search determines that the
first tile of 100 elements (NV = 100) should load 22 from A (the insertion array) and 78 from B (the source
array). This should be clear from the figure—the insert indices range from 1 to 75 and the implicit source
indices range from 0 to 77. Adjusting the Merge Path either way would invalidate the ordering. For example,
setting ACount to 23 and BCount to 77 would attempt an insert at position 84 when only source elements 0
to 76 have been loaded.

We allocate and initialize 100 flags to zero. Ones are poked in for each insert index at the index's location
plus its value. That is, indices[0] = 1 sets the flag at location 1 (0 + 1); indices[1] = 12 sets the flag at location
13 (1 + 12); indices[2] = 13 sets the flag at location 15 (2 + 13); and so on. Duplicate insertion indices are
admissible, as they won't set flags at the same location, because their ranks are different.

 Scan of counters:
 0: 0 0 1 1 1 1 1 1 1 1
 10: 1 1 1 1 2 2 3 3 4 5
 20: 5 5 5 5 6 6 6 7 7 7
 30: 7 7 7 7 7 7 7 7 7 7
 40: 7 7 7 7 7 7 8 8 9 9
 50: 9 9 9 9 10 10 11 11 11 11
 60: 11 11 12 13 14 14 14 14 14 15
 70: 15 15 16 16 16 16 17 17 17 17
 80: 17 18 18 18 18 18 18 19 19 20
 90: 20 20 20 20 20 21 21 22 22 22

Gather indices:
 0: 22 0 23 24 25 26 27 28 29 30
 10: 31 32 33 1 34 2 35 3 4 36
 20: 37 38 39 5 40 41 6 42 43 44
 30: 45 46 47 48 49 50 51 52 53 54

 40: 55 56 57 58 59 7 60 8 61 62
 50: 63 64 65 9 66 10 67 68 69 70
 60: 71 11 12 13 72 73 74 75 14 76
 70: 77 15 78 79 80 16 81 82 83 84
 80: 17 85 86 87 88 89 18 90 19 91
 90: 92 93 94 95 20 96 21 97 98 99

As with Bulk Remove, an exclusive scan is computed across the flags. If the flag was set (indicating an
insertion at this position) then we'll gather at that scan offset. If the flag was cleared we subtract the scan
from the output rank and add aCount (the number of inserted vertices). This segregates the gather into two
forms: inserted values (in green) are referenced by their ranks; source values (in black) are referenced by
their ranks plus the number of inserted values.

The loadstore.cuh function DeviceTransferMergeValues interprets gather indices in this format and
performs the data transfer. This mechanism is used by other merge-like functions (merge, mergesort,
segmented sort, multisets) to move the values in key/value pair operations.

Bulk insert host function and kernel

include/kernels/bulkinsert.cuh

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

template<typename InputIt1, typename IndicesIt, typename InputIt2,
 typename OutputIt>
MGPU_HOST void BulkInsert(InputIt1 a_global, IndicesIt indices_global,
 int aCount, InputIt2 b_global, int bCount, OutputIt dest_global,
 CudaContext& context) {

 const int NT = 128;
 const int VT = 7;
 typedef LaunchBoxVT<NT, VT> Tuning;
 int2 launch = Tuning::GetLaunchParams(context);
 const int NV = launch.x * launch.y;

 MGPU_MEM(int) partitionsDevice =
MergePathPartitions<MgpuBoundsLower>(
 indices_global, aCount, mgpu::counting_iterator<int>(0),
bCount, NV, 0,
 mgpu::less<int>(), context);

 int numBlocks = MGPU_DIV_UP(aCount + bCount, NV);
 KernelBulkInsert<Tuning><<<numBlocks, launch.x, 0,
context.Stream()>>>(
 a_global, indices_global, aCount, b_global, bCount,
 partitionsDevice->get(), dest_global);
}

The host function creates a LaunchBoxVT type to provide tuning parameters to the kernel. We choose a
configuration with 128 threads and 7 values per thread as a default, but users who want performance are
encouraged to customize this type for their own architectures, data types, and array sizes.

The call to MergePathPartitions runs a MergePath binary search to assign intervals of insert
indices and intervals of source data to each CTA. You can imagine the insert indices written along the top of

http://nvlabs.github.io/moderngpu/mergesort.html#mergepathpartitions
http://nvlabs.github.io/moderngpu/performance.html#launchbox
https://github.com/NVlabs/moderngpu/blob/master/include/kernels/bulkinsert.cuh
https://github.com/NVlabs/moderngpu/blob/master/include/device/loadstore.cuh

the Merge Path diagram and the natural numbers (corresponding to the positions of the source data) written
along the right. A cross-diagonal every NV elements finds an equal partitioning of insert and source elements
for each CTA. The intersections of the cross-diagonals with the Merge Path are stored in
partitionsDevice, which is passed to the kernel as mp_global.

include/kernels/bulkinsert.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/bulkinsert.cuh

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

// Insert the values from a_global into the positions marked by
indices_global.
template<typename Tuning, typename InputIt1, typename IndicesIt,
 typename InputIt2, typename OutputIt>
MGPU_LAUNCH_BOUNDS void KernelBulkInsert(InputIt1 a_global,
 IndicesIt indices_global, int aCount, InputIt2 b_global, int
bCount,
 const int* mp_global, OutputIt dest_global) {

 typedef MGPU_LAUNCH_PARAMS Params;
 typedef typename std::iterator_traits<InputIt1>::value_type T;
 const int NT = Params::NT;
 const int VT = Params::VT;
 const int NV = NT * VT;

 typedef CTAScan<NT, ScanOpAdd> S;
 union Shared {
 int indices[NV];
 typename S::Storage scan;
 };
 __shared__ Shared shared;

 int tid = threadIdx.x;
 int block = blockIdx.x;

 int4 range = ComputeMergeRange(aCount, bCount, block, 0, NV,
mp_global);
 int a0 = range.x; // A is array of values to insert.
 int a1 = range.y;
 int b0 = range.z; // B is source array.
 int b1 = range.w;
 aCount = a1 - a0;
 bCount = b1 - b0;

 // Initialize the indices to 0.
 #pragma unroll
 for(int i = 0; i < VT; ++i)
 shared.indices[NT * i + tid] = 0;
 __syncthreads();

 // Load the indices.
 int indices[VT];
 DeviceGlobalToReg<NT, VT>(aCount, indices_global + a0, tid,
indices);

 // Set the counters for all the loaded indices. This has the
effect of
 // pushing the scanned values to the right, causing the B data to
be
 // inserted to the right of each insertion point.
 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 int index = NT * i + tid;

KernelBulkInsert is a straight-forward implementation of the routine described in the algorithm
section. Because this function was written in the two-phase decomposition methodology, the important
business of mapping work to CUDA cores has already been performed by the time this kernel is launched.
ComputeMergeRange reassembles source intervals from the mp_global array, communicating the
partitoining of the previous launch to the work-logic kernel.

Kernels are tuned by increasing VT to amortize per-CTA and per-thread costs, improving work-efficiency.
Consequently most programs run underoccupied, especially on Kepler. A nice property of both Bulk Remove
and Bulk Insert is that only the 32-bit indices are staged in shared memory. Specializing on 64-bit data-types
doesn't decrease occupancy on Kepler, which has sufficient RF capacity to accommodate the larger types.
Working on 64-bit types increases the atom of transfer to and from global memory while keeping the cost of
compute constant. This results in significantly higher throughput (up to 220 GB/s for Bulk Remove on GTX
Titan) on 64-bit types compared to 32-bit types (158 GB/s).

http://nvlabs.github.io/moderngpu/mergesort.html#mergepartitioning
http://nvlabs.github.io/moderngpu/bulkinsert.html#bulkinsertalgorithm
http://nvlabs.github.io/moderngpu/bulkinsert.html#bulkinsertalgorithm

6. Merge
Merge two sorted sequences in parallel. This implementation supports custom iterators and comparators. It
achieves throughputs greater than half peak bandwidth. MGPU's two-phase approach to scheduling is
developed here.

Benchmark and usage

Merge Keys benchmark from tests/benchmarkmerge.cu

Merge keys demonstration from tests/demo.cu

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarkmerge.cu

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

void DemoMergeKeys(CudaContext& context) {
 printf("\n\nMERGE KEYS DEMONSTRATION:\n\n");

 // Use CudaContext::SortRandom to generate 100 sorted random
integers
 // between 0 and 99.
 int N = 100;
 MGPU_MEM(int) aData = context.SortRandom<int>(N, 0, 99);
 MGPU_MEM(int) bData = context.SortRandom<int>(N, 0, 99);

 printf("A:\n");
 PrintArray(*aData, "%4d", 10);
 printf("\nB:\n");
 PrintArray(*bData, "%4d", 10);

 // Merge the two sorted sequences into one.
 MGPU_MEM(int) cData = context.Malloc<int>(2 * N);
 MergeKeys(aData->get(), N, bData->get(), N, cData->get(),
mgpu::less<int>(),
 context);

 printf("\nMerged array:\n");
 PrintArray(*cData, "%4d", 10);
}

MERGE KEYS DEMONSTRATION:

A:
 0: 0 0 3 4 4 7 7 7 8 8
 10: 9 10 11 12 13 13 13 14 14 15
 20: 16 16 18 18 19 22 23 23 25 25
 30: 26 26 28 31 34 34 35 36 38 39
 40: 40 43 43 43 44 44 45 46 47 49
 50: 50 50 50 51 52 52 53 53 54 54
 60: 55 57 60 60 62 62 62 65 66 67
 70: 68 68 71 72 74 74 76 77 79 80
 80: 80 81 82 82 85 85 85 86 86 86
 90: 91 91 91 92 96 97 97 98 98 99

B:
 0: 1 3 4 4 4 5 5 8 9 10
 10: 11 12 13 16 16 18 18 21 22 23
 20: 24 24 25 27 28 29 30 30 30 31
 30: 32 33 34 34 35 36 36 36 37 37
 40: 38 38 39 40 40 41 43 43 44 45
 50: 45 48 48 48 49 49 49 49 50 51
 60: 54 54 55 57 62 62 64 64 65 66
 70: 68 71 73 74 75 75 77 78 78 79
 80: 80 81 81 81 82 82 87 87 88 90
 90: 90 90 91 91 92 94 94 95 95 98

Merged array:
 0: 0 0 1 3 3 4 4 4 4 4
 10: 5 5 7 7 7 8 8 8 9 9
 20: 10 10 11 11 12 12 13 13 13 13
 30: 14 14 15 16 16 16 16 18 18 18

 40: 18 19 21 22 22 23 23 23 24 24
 50: 25 25 25 26 26 27 28 28 29 30
 60: 30 30 31 31 32 33 34 34 34 34
 70: 35 35 36 36 36 36 37 37 38 38
 80: 38 39 39 40 40 40 41 43 43 43
 90: 43 43 44 44 44 45 45 45 46 47
 100: 48 48 48 49 49 49 49 49 50 50
 110: 50 50 51 51 52 52 53 53 54 54
 120: 54 54 55 55 57 57 60 60 62 62
 130: 62 62 62 64 64 65 65 66 66 67
 140: 68 68 68 71 71 72 73 74 74 74
 150: 75 75 76 77 77 78 78 79 79 80
 160: 80 80 81 81 81 81 82 82 82 82
 170: 85 85 85 86 86 86 87 87 88 90
 180: 90 90 91 91 91 91 91 92 92 94
 190: 94 95 95 96 97 97 98 98 98 99

Merge Pairs benchmark from tests/benchmarkmerge.cu

Merge pairs demonstration from tests/demo.cu

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarkmerge.cu

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

void DemoMergePairs(CudaContext& context) {
 printf("\n\nMERGE PAIRS DEMONSTRATION:\n\n");

 int N = 100;
 MGPU_MEM(int) aKeys = context.SortRandom<int>(N, 0, 99);
 MGPU_MEM(int) bKeys = context.SortRandom<int>(N, 0, 99);
 MGPU_MEM(int) aVals = context.FillAscending<int>(N, 0, 1);
 MGPU_MEM(int) bVals = context.FillAscending<int>(N, N, 1);

 printf("A:\n");
 PrintArray(*aKeys, "%4d", 10);
 printf("\nB:\n");
 PrintArray(*bKeys, "%4d", 10);

 // Merge the two sorted sequences into one.
 MGPU_MEM(int) cKeys = context.Malloc<int>(2 * N);
 MGPU_MEM(int) cVals = context.Malloc<int>(2 * N);
 MergePairs(aKeys->get(), aVals->get(), N, bKeys->get(), bVals-
>get(), N,
 cKeys->get(), cVals->get(), mgpu::less<int>(), context);

 printf("\nMerged keys:\n");
 PrintArray(*cKeys, "%4d", 10);
 printf("\nMerged values (0-99 are A indices, 100-199 are B
indices).\n");
 PrintArray(*cVals, "%4d", 10);
}

MERGE PAIRS DEMONSTRATION:

A:
 0: 1 1 2 4 8 8 10 11 11 11
 10: 13 14 14 16 16 17 18 18 19 19
 20: 19 20 21 22 22 22 23 23 23 24
 30: 24 25 26 26 26 28 29 30 31 31
 40: 32 34 35 35 37 38 40 42 42 43
 50: 43 43 44 44 45 47 47 47 48 50
 60: 53 54 54 55 57 58 58 59 60 62
 70: 63 64 64 65 68 70 71 72 73 76
 80: 77 78 79 79 80 81 83 84 87 88
 90: 90 90 92 92 93 94 96 97 99 99

B:
 0: 0 1 1 2 3 3 6 9 9 10
 10: 12 13 15 16 17 18 18 19 22 23
 20: 23 23 23 24 25 26 26 28 29 29
 30: 31 31 32 32 33 33 33 35 36 38
 40: 39 40 40 41 42 47 47 47 48 48
 50: 48 49 50 50 50 50 51 51 52 54
 60: 57 58 59 60 60 61 61 62 63 65
 70: 67 67 68 69 71 71 71 72 74 74
 80: 76 76 77 79 80 84 85 88 88 88
 90: 89 90 90 91 93 95 96 96 97 98

Merged keys:

 0: 0 1 1 1 1 2 2 3 3 4
 10: 6 8 8 9 9 10 10 11 11 11
 20: 12 13 13 14 14 15 16 16 16 17
 30: 17 18 18 18 18 19 19 19 19 20
 40: 21 22 22 22 22 23 23 23 23 23
 50: 23 23 24 24 24 25 25 26 26 26
 60: 26 26 28 28 29 29 29 30 31 31
 70: 31 31 32 32 32 33 33 33 34 35
 80: 35 35 36 37 38 38 39 40 40 40
 90: 41 42 42 42 43 43 43 44 44 45
 100: 47 47 47 47 47 47 48 48 48 48
 110: 49 50 50 50 50 50 51 51 52 53
 120: 54 54 54 55 57 57 58 58 58 59
 130: 59 60 60 60 61 61 62 62 63 63
 140: 64 64 65 65 67 67 68 68 69 70
 150: 71 71 71 71 72 72 73 74 74 76
 160: 76 76 77 77 78 79 79 79 80 80
 170: 81 83 84 84 85 87 88 88 88 88
 180: 89 90 90 90 90 91 92 92 93 93
 190: 94 95 96 96 96 97 97 98 99 99

Merged values (0-99 are A indices, 100-199 are B indices)
 0: 100 0 1 101 102 2 103 104 105 3
 10: 106 4 5 107 108 6 109 7 8 9
 20: 110 10 111 11 12 112 13 14 113 15
 30: 114 16 17 115 116 18 19 20 117 21
 40: 22 23 24 25 118 26 27 28 119 120
 50: 121 122 29 30 123 31 124 32 33 34
 60: 125 126 35 127 36 128 129 37 38 39
 70: 130 131 40 132 133 134 135 136 41 42
 80: 43 137 138 44 45 139 140 46 141 142
 90: 143 47 48 144 49 50 51 52 53 54
 100: 55 56 57 145 146 147 58 148 149 150
 110: 151 59 152 153 154 155 156 157 158 60
 120: 61 62 159 63 64 160 65 66 161 67
 130: 162 68 163 164 165 166 69 167 70 168
 140: 71 72 73 169 170 171 74 172 173 75
 150: 76 174 175 176 77 177 78 178 179 79
 160: 180 181 80 182 81 82 83 183 84 184
 170: 85 86 87 185 186 88 89 187 188 189
 180: 190 90 91 191 192 193 92 93 94 194
 190: 95 195 96 196 197 97 198 199 98 99

Host functions

include/mgpuhost.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/mgpuhost.cuh

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

//
//////////
// kernels/merge.cuh

// MergeKeys merges two arrays of sorted inputs with C++-comparison
semantics.
// aCount items from aKeys_global and bCount items from bKeys_global
are merged
// into aCount + bCount items in keys_global.
// Comp is a comparator type supporting strict weak ordering.
// If !comp(b, a), then a is placed before b in the output.
template<typename KeysIt1, typename KeysIt2, typename KeysIt3, typename
Comp>
MGPU_HOST void MergeKeys(KeysIt1 aKeys_global, int aCount, KeysIt2
bKeys_global,
 int bCount, KeysIt3 keys_global, Comp comp, CudaContext& context);

// MergeKeys specialized with Comp = mgpu::less<T>.
template<typename KeysIt1, typename KeysIt2, typename KeysIt3>
MGPU_HOST void MergeKeys(KeysIt1 aKeys_global, int aCount, KeysIt2
bKeys_global,
 int bCount, KeysIt3 keys_global, CudaContext& context);

// MergePairs merges two arrays of sorted inputs by key and copies
values.
// If !comp(bKey, aKey), then aKey is placed before bKey in the
output, and
// the corresponding aData is placed before bData. This corresponds to
*_by_key
// functions in Thrust.
template<typename KeysIt1, typename KeysIt2, typename KeysIt3, typename
ValsIt1,
 typename ValsIt2, typename ValsIt3, typename Comp>
MGPU_HOST void MergePairs(KeysIt1 aKeys_global, ValsIt1 aVals_global,
 int aCount, KeysIt2 bKeys_global, ValsIt2 bVals_global, int bCount,
 KeysIt3 keys_global, ValsIt3 vals_global, Comp comp, CudaContext&
context);

// MergePairs specialized with Comp = mgpu::less<T>.
template<typename KeysIt1, typename KeysIt2, typename KeysIt3, typename
ValsIt1,
 typename ValsIt2, typename ValsIt3>
MGPU_HOST void MergePairs(KeysIt1 aKeys_global, ValsIt1 aVals_global,
 int aCount, KeysIt2 bKeys_global, ValsIt2 bVals_global, int bCount,
 KeysIt3 keys_global, ValsIt3 vals_global, CudaContext& context);

Two-stage design

Further Reading: Read GPU Merge Path - A GPU Merging Algorithm by Oded Green, Robert McColl, and
David A. Bader for another discussion on using Merge Path partitioning to implement merge with CUDA.

http://www.cc.gatech.edu/~ogreen3/_docs/GPU%20Merge%20Path%20-%20A%20GPU%20Merging%20Algorithm.pdf

CPU Merge implementation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

template<typename T, typename Comp>
void CPUMerge(const T* a, int aCount, const T* b, int bCount, T* dest,
 Comp comp) {

 int count = aCount + bCount;
 int ai = 0, bi = 0;
 for(int i = 0; i < count; ++i) {
 bool p;
 if(bi >= bCount) p = true;
 else if(ai >= aCount) p = false;
 else p = !comp(b[bi], a[ai]);

 dest[i] = p ? a[ai++] : b[bi++];
 }
}

Merge is the simplest function that is constructed in the two-phase style promoted by this project. Developing
algorithms in the two-phase style begins with writing down a serial implementation. CPUMerge is a good
point of reference because it consumes one input and emits one output per iteration. Our goal is to:

1. Divide the domain into partitions of exactly the same size. We use the Merge Path ideas covered on
the previous page to assist with partitioning and scheduling. A coarse-grained search over the inputs
in global memory breaks the problem into tiles with workloads of constant size. A fine-grained search
over the inputs in shared memory breaks the problem into threads with workloads of constant size.

2. Develop a serial merge, like CPUMerge above, that is executed in parallel and in isolation by each
thread to process distinct intervals of the problem. Rather than running over the entire input, as in
CPUMerge, each thread performs exactly VT iterations, consuming VT input and emitting VT
output. This strategy has the same linear work efficiency as a standard sequential merge (parallel
algorithms often choose to sacrifice work efficiency to gain concurrency).

By decoupling scheduling and work, the two-phase strategy assists the programmer in developing readable
and composable algorithms. We'll show in a future page how to replace the serial portion of the parallel
merge to execute high-throughput vectorized sorted searches.

Algorithm

include/device/ctamerge.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctamerge.cuh
http://nvlabs.github.io/moderngpu/sortedsearch.html
http://nvlabs.github.io/moderngpu/bulkinsert.html

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

template<int NT, int VT, typename It1, typename It2, typename T, typename
Comp>
MGPU_DEVICE void DeviceMergeKeysIndices(It1 a_global, It2 b_global,
int4 range,
 int tid, T* keys_shared, T* results, int* indices, Comp comp) {

 int a0 = range.x;
 int a1 = range.y;
 int b0 = range.z;
 int b1 = range.w;
 int aCount = a1 - a0;
 int bCount = b1 - b0;

 // Load the data into shared memory.
 DeviceLoad2ToShared<NT, VT, VT>(a_global + a0, aCount, b_global +
b0,
 bCount, tid, keys_shared);

 // Run a merge path to find the start of the serial merge for each
thread.
 int diag = VT * tid;
 int mp = MergePath<MgpuBoundsLower>(keys_shared, aCount,
 keys_shared + aCount, bCount, diag, comp);

 // Compute the ranges of the sources in shared memory.
 int a0tid = mp;
 int a1tid = aCount;
 int b0tid = aCount + diag - mp;
 int b1tid = aCount + bCount;

 // Serial merge into register.
 SerialMerge<VT, true>(keys_shared, a0tid, a1tid, b0tid, b1tid,
results,
 indices, comp);
}

MGPU Merge merges two sorted inputs with C++ std::merge ordering semantics. As in Bulk Insert, the
source inputs are partitioned into equal size-interval pairs by calling MergePathPartitions. We
double-down on this divide-and-conquer strategy by calling MergePath a second time, locally searching
over the keys in a tile.

DeviceMergeKeysIndices is a re-usable CTA-level function that merges keys provided in shared
memory. The caller secifies the tile's intervals over A and B in the range argument. range is derived by
ComputeMergeRange using the intersections of the tile's cross-diagonals with the Merge Path, as
illustrated here. DeviceLoad2ToShared performs an optimized, unrolled, cooperative load of a variable
number of contiguous elements from two input arrays. Loaded keys are stored in shared memory: A's
contributions in (0, aCount) and B's contributions in (aCount, aCount + bCount).

http://nvlabs.github.io/moderngpu/bulkinsert.html#mergepath
http://nvlabs.github.io/moderngpu/mergesort.html#mergepartitioning
http://nvlabs.github.io/moderngpu/mergesort.html#mergepathpartitions
http://nvlabs.github.io/moderngpu/bulkinsert.html#bulkinsert

MergePath is called by all threads in parallel to find their individual partitions. This is a faster search than
the global partitioning search because shared memory has much lower latency, and intra-CTA cross-
diagonals are much shorter than global cross-diagonals, resulting in binary searches that converge after fewer
iterations. The intra-CTA Merge Path searches are conducted in the tile's local coordinate system. Cross-
diagonals are given indices VT * tid.

The starting cursor for each thread (a0tid and b0tid) is handed to SerialMerge, which loads keys from
shared memory, merges them, and returns a fragment of the result in register.

include/device/ctamerge.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctamerge.cuh

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

template<int VT, bool RangeCheck, typename T, typename Comp>
MGPU_DEVICE void SerialMerge(const T* keys_shared, int aBegin, int aEnd,
 int bBegin, int bEnd, T* results, int* indices, Comp comp) {

 T aKey = keys_shared[aBegin];
 T bKey = keys_shared[bBegin];

 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 bool p;
 if(RangeCheck)
 p = (bBegin >= bEnd) || ((aBegin < aEnd) && !comp(bKey,
aKey));
 else
 p = !comp(bKey, aKey);

 results[i] = p ? aKey : bKey;
 indices[i] = p ? aBegin : bBegin;

 if(p) aKey = keys_shared[++aBegin];
 else bKey = keys_shared[++bBegin];
 }
 __syncthreads();
}

Partitioning doesn't really differentiate merge from similar functions, as all it does is handle scheduling. The
soul of this function is SerialMerge. Incredible throughput is achieved because Merge Path isn't simply a
very good partitioning; it's an exact partition. The merge kernel is tuned to a specific (odd) number of values
per thread. For a CTA with 128 threads (NT) and 11 values per thread (VT), each tile loads and merges 1408
inputs (NV). These inputs aren't simply merged cooperatively, though. They are merged independently by the
128 threads, 11 per thread, which is far better.

Because each thread merges precisely 11 elements, the SerialMerge routine can unroll its loop. Accesses
to the output arrays results and indices are now static (the iterator for unrolled loops is treated as a
constant by the compiler). Because we're using only static indexing, the outputs can be stored in register
rather than shared memory. RF capacity is much higher than shared memory capacity, and the performance
tuning strategy of increasing grain size to amortize partitioning costs always results in underoccupied kernels.
Storing outputs in register cuts the kernel's shared memory footprint in half, doubling occupancy, and
boosting performance.

Important: Structure your code to only dynamically index either the sources or the destinations (not both).
Use loop unrolling to statically index the complementary operations in register, then synchronize and swap.
Exact partitioning facilitates this pattern, which doubles occupancy to improve latency-hiding.

Keys are returned into results. indices (the locations of keys in shared memory) are also returned to
facilitate a value gather for sort-by-key. For key-only merge, operations involving indices should be
eliminated by the compiler.

Note that the next item in each sequence is fetched prior to the start of the next iteration. This reduces two
shared loads per thread to just one, which reduces bank conflicts across the warp. Unfortunately it may also
cause us to read off the end of the B array. To prevent an illegal access failure in the kernel, allocate at leats
one extra slot in shared memory. This doesn't compromise occupancy at all, because we use odd numbered

VT parameters—we can reserve up to a full additional slot per thread before the extra provisioning reduces
the number of concurrent CTAs per SM.

Important: If fetching the next iteration's data at the end of the loop body, allocate an extra slot in shared
memory to prevent illegal access violations.

include/device/ctamerge.cuh

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

template<int NT, int VT, bool HasValues, typename KeysIt1, typename
KeysIt2,
 typename KeysIt3, typename ValsIt1, typename ValsIt2, typename
KeyType,
 typename ValsIt3, typename Comp>
MGPU_DEVICE void DeviceMerge(KeysIt1 aKeys_global, ValsIt1
aVals_global,
 KeysIt2 bKeys_global, ValsIt2 bVals_global, int tid, int block,
int4 range,
 KeyType* keys_shared, int* indices_shared, KeysIt3 keys_global,
 ValsIt3 vals_global, Comp comp) {

 KeyType results[VT];
 int indices[VT];
 DeviceMergeKeysIndices<NT, VT>(aKeys_global, bKeys_global, range,
tid,
 keys_shared, results, indices, comp);

 // Store merge results back to shared memory.
 DeviceThreadToShared<VT>(results, tid, keys_shared);

 // Store merged keys to global memory.
 int aCount = range.y - range.x;
 int bCount = range.w - range.z;
 DeviceSharedToGlobal<NT, VT>(aCount + bCount, keys_shared, tid,
 keys_global + NT * VT * block);

 // Copy the values.
 if(HasValues) {
 DeviceThreadToShared<VT>(indices, tid, indices_shared);
 DeviceTransferMergeValues<NT, VT>(aCount + bCount,
 aVals_global + range.x, bVals_global + range.z, aCount,
 indices_shared, tid, vals_global + NT * VT * block);
 }
}

DeviceMerge, one level closer to the kernel, invokes DeviceMergeKeysIndices and receives the
merged results and indices in register. Each thread uses DeviceThreadtoShared to store its merged
keys to shared memory at VT * tid + i, synchronizes, and calls DeviceSharedToGlobal to
cooperatively make coalesced stores to the destination array. DeviceTransferMergeValues
(discussed here) uses the indices to gather values from global memory and store them back, coalesced, to
vals_global.

DeviceMerge does the heavy lifting for both MGPU's merge and mergesort kernels.

http://nvlabs.github.io/moderngpu/bulkinsert.html#bulkinsert
https://github.com/NVlabs/moderngpu/blob/master/include/device/ctamerge.cuh

To recap merge:

1. Prior to the merge kernel, use MergePathPartitions for coarse-grained exact partitioning.

2. At the start of the kernel, ComputeMergeRange determines the intervals to load from arrays A and
B. DeviceLoad2ToShared loads these into shared memory; first A, then B.

3. MergePath searches keys in shared memory to find a fine-grained partitioning of data, with VT
items per thread.

4. Each thread makes VT trips through an unrolled loop, dynamically indexing into shared memory
retrieving keys, comparing them, and emitting the smaller key to an array in register, using the static
loop iterator.

5. After synchronization each thread writes its values back at VT * tid + i (thread order). The values are
cooperatively transferred to the destination in global memory using coalesced stores.

6. Indices are stored to shared memory (writing from thread order into strided order).
DeviceTransferMergeValues uses these to gather merged values from the input. It makes
coalesced stores to the destination.

Much of the MGPU Merge implementation is shared with Mergesort—these portions are covered on the next
page.

7. Mergesort
A high-throughput mergesort that is perfectly load-balanced over all threads. Develops partitioning and
scheduling functions that are used throughout these pages. This mergesort is the basis for high-performance
segmented and locality sorts that work with structured data (i.e. non-uniformly random).

Benchmark and usage

Sort Keys benchmark from tests/benchmarksort.cu

Sort keys demonstration from tests/demo.cu

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarksort.cu

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

void DemoSortKeys(CudaContext& context) {
 printf("\n\nSORT KEYS DEMONSTRATION:\n\n");

 // Use CudaContext::GenRandom to generate 100 random integers
between 0 and
 // 199.
 int N = 100;
 MGPU_MEM(int) data = context.GenRandom<int>(N, 0, 99);

 printf("Input:\n");
 PrintArray(*data, "%4d", 10);

 // Mergesort keys.
 MergesortKeys(data->get(), N, mgpu::less<int>(), context);

 printf("\nSorted output:\n");
 PrintArray(*data, "%4d", 10);
}

SORT KEYS DEMONSTRATION:

Input:
 0: 5 95 68 53 4 87 7 93 52 66
 10: 9 28 81 6 81 23 72 70 14 19
 20: 65 42 51 93 97 14 64 64 80 47
 30: 45 43 43 24 82 50 8 90 13 7
 40: 17 71 39 61 83 18 80 39 6 27
 50: 39 85 52 90 41 61 65 18 62 51
 60: 29 82 43 35 1 81 98 29 16 17
 70: 10 49 37 19 19 86 48 20 33 61
 80: 95 87 92 39 5 94 73 16 26 97
 90: 42 56 54 59 94 13 41 56 98 55

Sorted output:
 0: 1 4 5 5 6 6 7 7 8 9
 10: 10 13 13 14 14 16 16 17 17 18
 20: 18 19 19 19 20 23 24 26 27 28
 30: 29 29 33 35 37 39 39 39 39 41
 40: 41 42 42 43 43 43 45 47 48 49
 50: 50 51 51 52 52 53 54 55 56 56
 60: 59 61 61 61 62 64 64 65 65 66
 70: 68 70 71 72 73 80 80 81 81 81
 80: 82 82 83 85 86 87 87 90 90 92
 90: 93 93 94 94 95 95 97 97 98 98

.

Sort Pairs benchmark from tests/benchmarksort.cu

Sort pairs demonstration from tests/demo.cu

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

void DemoSortPairs(CudaContext& context) {
 printf("\n\nSORT PAIRS DEMONSTRATION:\n\n");

 // Use CudaContext::GenRandom to generate 100 random integers
between 0 and
 // 99.
 int N = 100;
 MGPU_MEM(int) keys = context.GenRandom<int>(N, 0, 99);
 MGPU_MEM(int) vals = context.FillAscending<int>(N, 0, 1);

 printf("Input keys:\n");
 PrintArray(*keys, "%4d", 10);

 // Mergesort pairs.
 MergesortPairs(keys->get(), vals->get(), N, mgpu::less<int>(),
context);

 printf("\nSorted keys:\n");
 PrintArray(*keys, "%4d", 10);

 printf("\nSorted values:\n");
 PrintArray(*vals, "%4d", 10);
}

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarksort.cu

Input:
 0: 30 31 70 12 66 73 53 24 69 82
 10: 66 18 17 31 12 88 99 67 17 73
 20: 3 6 56 13 88 8 66 0 19 45
 30: 36 63 46 52 98 49 15 33 85 25
 40: 64 23 37 17 19 59 42 72 48 87
 50: 12 70 58 23 22 47 38 1 58 74
 60: 25 65 29 7 61 47 26 99 82 53
 70: 98 89 73 77 34 20 58 90 10 37
 80: 90 84 87 32 81 32 26 65 59 58
 90: 2 4 42 76 31 49 16 48 17 42

Sorted keys:
 0: 0 1 2 3 4 6 7 8 10 12
 10: 12 12 13 15 16 17 17 17 17 18
 20: 19 19 20 22 23 23 24 25 25 26
 30: 26 29 30 31 31 31 32 32 33 34
 40: 36 37 37 38 42 42 42 45 46 47
 50: 47 48 48 49 49 52 53 53 56 58
 60: 58 58 58 59 59 61 63 64 65 65
 70: 66 66 66 67 69 70 70 72 73 73
 80: 73 74 76 77 81 82 82 84 85 87
 90: 87 88 88 89 90 90 98 98 99 99

Sorted values:
 0: 27 57 90 20 91 21 63 25 78 3
 10: 14 50 23 36 96 12 18 43 98 11
 20: 28 44 75 54 41 53 7 39 60 66
 30: 86 62 0 1 13 94 83 85 37 74
 40: 30 42 79 56 46 92 99 29 32 55
 50: 65 48 97 35 95 33 6 69 22 52
 60: 58 76 89 45 88 64 31 40 61 87
 70: 4 10 26 17 8 2 51 47 5 19
 80: 72 59 93 73 84 9 68 81 38 49
 90: 82 15 24 71 77 80 34 70 16 67

Host functions

include/mgpuhost.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/mgpuhost.cuh

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

//
//////////
// kernels/mergesort.cuh

// MergesortKeys sorts data_global using comparator Comp.
// If !comp(b, a), then a comes before b in the output. The data is
sorted
// in-place.
template<typename T, typename Comp>
MGPU_HOST void MergesortKeys(T* data_global, int count, Comp comp,
 CudaContext& context);

// MergesortKeys specialized with Comp = mgpu::less<T>.
template<typename T>
MGPU_HOST void MergesortKeys(T* data_global, int count, CudaContext&
context);

// MergesortPairs sorts data by key, copying data. This corresponds to
// sort_by_key in Thrust.
template<typename KeyType, typename ValType, typename Comp>
MGPU_HOST void MergesortPairs(KeyType* keys_global, ValType*
values_global,
 int count, Comp comp, CudaContext& context);

// MergesortPairs specialized with Comp = mgpu::less<KeyType>.
template<typename KeyType, typename ValType>
MGPU_HOST void MergesortPairs(KeyType* keys_global, ValType*
values_global,
 int count, CudaContext& context);

// MergesortIndices is like MergesortPairs where values_global is
treated as
// if initialized with integers (0 ... count - 1).
template<typename KeyType, typename Comp>
MGPU_HOST void MergesortIndices(KeyType* keys_global, int*
values_global,
 int count, Comp comp, CudaContext& context);

// MergesortIndices specialized with Comp = mgpu::less<KeyType>.
template<typename KeyType>
MGPU_HOST void MergesortIndices(KeyType* keys_global, int*
values_global,
 int count, CudaContext& context);

Algorithm

Mergesort recursively merges sorted lists until the sequence is fully sorted.

Input array is treated as sequence of sorted lists of length 1:
 13 90 83 12 96 91 22 63 30 9 54 27 18 54 99 95

http://en.wikipedia.org/wiki/Merge_sort

Merge adjacent pairs of length-1 lists into sequence of length-2 lists:
 13 90 12 83 91 96 22 63 9 30 27 54 18 54 95 99

Merge adjacent pairs of length-2 lists into sequence of length-4 lists:
 12 13 83 90 22 63 91 96 9 27 30 54 18 54 95 99

Merge adjacent pairs of length-4 lists into sequence of length-8 lists:
 12 13 22 63 83 90 91 96 9 18 27 30 54 54 95 99

Merge adjacent pairs of length-8 lists into final length-16 output:
 9 12 13 18 22 27 30 54 54 63 83 90 91 95 96 99

Although mergesort takes one unsorted array as in input, thematically it is the same as the functions that
make up the bulk of MGPU: take two sorted inputs and emit one sorted output. This is clear if treat
consecutive input elements as two sorted lists of length 1. Mergesort is type of multi-pass vectorized merge:
the first iteration executes N / 2 merges with inputs of length 1; the second iteration executes N / 4 merges
with inputs of length 2; etc.

The number of batched merge passes is log(N) and the work per pass is N. This O(N log N) work-efficiency
hurts mergesort's scalability compared to radix sort. This mergesort implementation runs at about half the
throughput on large arrays with 32-bit keys as the fastest GPU radix sorts. But it still clocks about 100x faster
than calling std::stable_sort on an i7 Sandy Bridge. If the sort is truly on a critical path, it may be worth
pulling a radix sort from B40C/FastSortSm20. Otherwise you can get by just fine with this very hackable
mergesort, or use one of MGPU's higher-performance derivative sorts (segmented sort or locality sort).

O(N log N) complexity aside, mergesort has some notable advantages over radix sort:

1. Mergesort is a comparison sort. While radix sort requires types to have the same lexicographical order
as integers, limiting practical use to numeric types like ints and floats, mergesort accepts a user-
defined comparator function. This allows mergesort to efficiently handle types like strings by calling
strcmp from the comparator.

2. Mergesort scales better as keys get larger. Radix sort's work-efficiency is O(k N), where k is the key
size in bits. Mergesort's complexity is only dependent on the number of input elements.

3. Mergesort provides extremely fast CTA-level blocksorts. On small inputs (like data mapped into an
individual tile) the O(log N) penalty is on order with radix sort's O(k) penalty. Mergesort's simpler,
faster inner loop allows blocksorts that are more flexible, easier to maintain, and often quicker than
radix blocksorts.

4. Mergesort makes data progressively more sorted, never less. Even when launched on fully-sorted
inputs, LSB radix sort randomly scatters data each pass, only putting the data into sorted order during
the final pass. On fully sorted inputs, mergesort simply copies the data log(N) times. This pass-to-pass
coherence allows detection of sorted intervals and early-exits to reduce unnecessary work. The O(N
log N) complexity is only for uniform random inputs—data with exploitable structure can be sorted
with far fewer comparisons. The next page builds special-case mergesorts that detect input structure
and early-exit out of unnecessary operations.

Mergesort on GPU runs best when written in two distinct stages:

1. A blocksort kernel sorts random inputs into tile-length sorted lists, communicating with low-latency,
high-bandwidth shared memory .The CTA blocksort forms a convenient re-usable component for
MGPU's customers.

http://nvlabs.github.io/moderngpu/segsort.html
http://nvlabs.github.io/moderngpu/segsort.html#localitysortbenchmark
http://nvlabs.github.io/moderngpu/segsort.html#segsortbenchmark
https://code.google.com/p/back40computing/source/browse/#svn%2Fbranches%2FFastSortSm20%2Fb40c%2Fradix_sort

2. Multiple launches of MGPU Merge iteratively merge sorted lists, starting with the output of 1,
communicating between passes with high-latency, high-capacity DRAM.

Mergesort merge pass with coop = 2

Mergesort merge pass with coop = 4

Both the blocksort and global merge passes follow the structure illustrated above. Pairs of threads (or CTAs
for the global merge passes) cooperatively merge two VT-length lists (or two NV-length lists) into one list.
This phase is noted coop = 2, for 2 threads cooperating on each pair of input lists. During the coop = 4
pass, 4 threads cooperatively merge two lists into one; during coop = 8, 8 threads cooperatively merge

http://nvlabs.github.io/moderngpu/merge.html

two lists; and so on. Although there are many sorted lists in the data, threads cooperatively merge from only
two of them at a time.

The figure at the top shows 16 sorted lists (each segment along the top and right of a square is a list). Two
threads cooperate to merge each pair of lists (a square) into a single list (a segment) for the coop = 4 pass.
Threads 0 and 1 merge the top and right segments of the first pair in coop = 2 into the top segment of the
first pair in coop = 4; threads 2 and 3 merge the top and right segments of the second pair in coop = 2
into the right segment of the first pair in coop = 4; etc. This process continues until only a single sorted
list remains.

For each global merge pass, a call to MergePathPartitions partitions the input arrays into tile-sized
chunks. ComputeMergeRange is invoked early in KernelMerge to identify the intervals of the input to
load. We then hand the intra-CTA merging to DeviceMerge, developed in the previous page.

Sorting networks

MGPU's blocksort loads VT values per thread over NT threads per CTA. Merging requires dynamic
indexing, which means shared memory. The first few rounds of merges can be replaced by an in-register
sorting network. Batcher's odd-even mergesort sorts inputs in O(n log2 n time) using only comparisons and
swaps. The odd-even transposition sort takes O(n2) comparisons but adds stability. These sorting networks
are relatively inefficient, but expose great amounts of immediate parallelism, making them effective tools for
sorting small inputs.

Although MGPU includes an implementation for Batcher's odd-even mergesort (in sortnetwork.cuh), the
slower odd-even transposition sort is preferred, because it is stable. It takes more comparisons to sort a thread
using this network, but the cost is small compared to the cost of the many recursive merge passes that follow.

 13 90 83 12 96 91 22 63 30 9 54 27 18 54 99 95

(13 90) (12 83) (91 96) (22 63) (9 30) (27 54) (18 54) (95 99)
 (12 90) (83 91) (22 96) (9 63) (27 30) (18 54) (54 95)
(12 13) (83 90) (22 91) (9 96) (27 63) (18 30) (54 54) (95 99)
 (13 83) (22 90) (9 91) (27 96) (18 63) (30 54) (54 95)
(12 13) (22 83) (9 90) (27 91) (18 96) (30 63) (54 54) (95 99)
 (13 22) (9 83) (27 90) (18 91) (30 96) (54 63) (54 95)
(12 13) (9 22) (27 83) (18 90) (30 91) (54 96) (54 63) (95 99)
 (9 13) (22 27) (18 83) (30 90) (54 91) (54 96) (63 95)
(9 12) (13 22) (18 27) (30 83) (54 90) (54 91) (63 96) (95 99)
 (12 13) (18 22) (27 30) (54 83) (54 90) (63 91) (95 96)
(9 12) (13 18) (22 27) (30 54) (54 83) (63 90) (91 95) (96 99)
 (12 13) (18 22) (27 30) (54 54) (63 83) (90 91) (95 96)
(9 12) (13 18) (22 27) (30 54) (54 63) (83 90) (91 95) (96 99)
 (12 13) (18 22) (27 30) (54 54) (63 83) (90 91) (95 96)
(9 12) (13 18) (22 27) (30 54) (54 63) (83 90) (91 95) (96 99)
 (12 13) (18 22) (27 30) (54 54) (63 83) (90 91) (95 96)

 9 12 13 18 22 27 30 54 54 63 83 90 91 95 96 99

Sorting an array of N inputs needs N transposition passes. Stability is gained by only comparing pairs of
neighboring elements, and only exchanging when the element on the right is smaller. 16 inputs are sorted in
this illustration. Pairs starting at offset 0 are compared and swapped on even passes; pairs starting at offset 1
are compared and swapped on odd passes. Items in the same pair are drawn in the same color - observe that
the second pair of values (83, 12) are swapped into (12, 83) during the first pass. The small 9 that starts in the
middle is moved peristaltically to the front of the array.

https://github.com/NVlabs/moderngpu/blob/master/include/device/sortnetwork.cuh
http://en.wikipedia.org/wiki/Odd%E2%80%93even_sort
http://en.wikipedia.org/wiki/Batcher_odd%E2%80%93even_mergesort
http://nvlabs.github.io/moderngpu/merge.html#algorithm

We get the problem started by loading and transposing VT elements per thread into register, so that each
thread has items VT * tid + i in register. Each thread calls OddEvenTransposeSort to sort its own set of
elements in register. This phase of the blocksort uses no shared memory and has high ILP (all of the
compare-and-swaps in each row can be performed in parallel).

include/device/sortnetwork.cuh

49
50
51
52
53
54
55
56
57
58
59
60
61
62

template<int VT, typename T, typename V, typename Comp>
MGPU_DEVICE void OddEvenTransposeSort(T* keys, V* values, Comp comp) {
 #pragma unroll
 for(int level = 0; level < VT; ++level) {

 #pragma unroll
 for(int i = 1 & level; i < VT - 1; i += 2) {
 if(comp(keys[i + 1], keys[i])) {
 mgpu::swap(keys[i], keys[i + 1]);
 mgpu::swap(values[i], values[i + 1]);
 }
 }
 }
}

Odd-even transposition sort has two nested loops: the outer iterates over the number of inputs (each row in
the figure); the inner iterates over the number of pairs, as shown above. Unfortunately CUDA's #pragma
unroll feature still has some kinks, and the compiler currently fails to unroll all the static indexing when
the function is written this way. Spills result.

include/device/sortnetwork.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/sortnetwork.cuh
https://github.com/NVlabs/moderngpu/blob/master/include/device/sortnetwork.cuh

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

template<int I, int VT>
struct OddEvenTransposeSortT {
 // Sort segments marked by head flags. If the head flag between i
and i + 1
 // is set (so that (2<< i) & flags is true), the values belong to
different
 // segments and are not swapped.
 template<typename K, typename V, typename Comp>
 static MGPU_DEVICE void Sort(K* keys, V* values, int flags,
 Comp comp) {
 #pragma unroll
 for(int i = 1 & I; i < VT - 1; i += 2)
 if((0 == ((2<< i) & flags)) && comp(keys[i + 1], keys[i]))
{
 mgpu::swap(keys[i], keys[i + 1]);
 mgpu::swap(values[i], values[i + 1]);
 }
 OddEvenTransposeSortT<I + 1, VT>::Sort(keys, values, flags,
comp);
 }
};
template<int I> struct OddEvenTransposeSortT<I, I> {
 template<typename K, typename V, typename Comp>
 static MGPU_DEVICE void Sort(K* keys, V* values, int flags,
 Comp comp) { }
};

template<int VT, typename K, typename V, typename Comp>
MGPU_DEVICE void OddEvenTransposeSort(K* keys, V* values, Comp comp) {
 OddEvenTransposeSortT<0, VT>::Sort(keys, values, 0, comp);
}
template<int VT, typename K, typename V, typename Comp>
MGPU_DEVICE void OddEvenTransposeSortFlags(K* keys, V* values, int
flags,
 Comp comp) {
 OddEvenTransposeSortT<0, VT>::Sort(keys, values, flags, comp);
}

We bend to pragmatism and write the code like this. Template loop unrolling replaces the #pragma
unroll nesting, allowing the sorting network to compile correctly. This implementation takes a bitfield of
segment head flags to support the segmented sort (we'll revisit this part on the next page). For standard
mergesort, the bitfield is always 0 and the associated logic is eliminated by the compiler.

Blocksort

include/device/ctamerge.cuh

184
185
186
187

template<int NT, int VT, bool HasValues, typename KeyType, typename
ValType,
 typename Comp>
MGPU_DEVICE void CTAMergesort(KeyType threadKeys[VT], ValType

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctamerge.cuh

188
189
190
191
192
193
194
195
196
197
198
199
200

threadValues[VT],
 KeyType* keys_shared, ValType* values_shared, int count, int tid,
 Comp comp) {

 // Stable sort the keys in the thread.
 if(VT * tid < count)
 OddEvenTransposeSort<VT>(threadKeys, threadValues, comp);

 // Store the locally sorted keys into shared memory.
 DeviceThreadToShared<VT>(threadKeys, tid, keys_shared);

 // Recursively merge lists until the entire CTA is sorted.
 DeviceBlocksortLoop<NT, VT, HasValues>(threadValues, keys_shared,
 values_shared, tid, count, comp);
}

CTAMergesort is a reusable block-level mergesort. MGPU uses this function for the locality sort function
in addition to standard mergesort. If the user wants to only sort keys, set HasValues to false and ValType
to int. Use this function by passing unsorted keys and values in thread order (i.e. VT * tid + i) through
register. On return, the same register arrays contain fully-sorted data. Shared memory is also filled with the
sorted keys, making coalesced stores back to global memory convenient.

When sorting a partial tile, pad out the last valid thread (the last thread in the CTA with with in-range values)
with copies of the largest key in that thread. The actual mergesort can handle partial blocks just fine: this
padding helps keep the sorting network simple. (We only specialize the sorting network for one size, VT.)

After running the intra-thread sorting network we need to recursively merge sorted lists. Start with pairs of
threads cooperating on one destination. Call this pass coop = 2, because two threads cooperate on each
output list. As the list size doubles, so does the number of cooperating threads per list. We loop until only a
single sorted list remains.

include/device/ctamerge.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctamerge.cuh
http://nvlabs.github.io/moderngpu/segsort.html

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

template<int NT, int VT, bool HasValues, typename KeyType, typename
ValType,
 typename Comp>
MGPU_DEVICE void CTABlocksortLoop(ValType threadValues[VT],
 KeyType* keys_shared, ValType* values_shared, int tid, int count,
 Comp comp) {

 #pragma unroll
 for(int coop = 2; coop <= NT; coop *= 2) {
 int indices[VT];
 KeyType keys[VT];
 CTABlocksortPass<NT, VT>(keys_shared, tid, count, coop, keys,
 indices, comp);

 if(HasValues) {
 // Exchange the values through shared memory.
 DeviceThreadToShared<VT>(threadValues, tid,
values_shared);
 DeviceGather<NT, VT>(NT * VT, values_shared, indices, tid,
 threadValues);
 }

 // Store results in shared memory in sorted order.
 DeviceThreadToShared<VT>(keys, tid, keys_shared);
 }
}

CTABlocksortLoop is called with keys sorted into VT-length lists in shared memory. Values are passed
in thread order in register (threadValues). Log(NT) loop iterations are made. CTABlocksortPass
returns merged keys and indices in register. With the merged keys in safely in register, the function writes
back the new lists with DDeviceThreadToShared. It gathers them back into register with
DeviceGather.

Note that we only have the input or output data staged in shared memory at any one time, not both. MGPU
Mergesort is fast because it intelligently manages occupancy this way.

include/device/ctamerge.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctamerge.cuh

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

template<int NT, int VT, typename T, typename Comp>
MGPU_DEVICE void CTABlocksortPass(T* keys_shared, int tid,
 int count, int coop, T* keys, int* indices, Comp comp) {

 int list = ~(coop - 1) & tid;
 int diag = min(count, VT * ((coop - 1) & tid));
 int start = VT * list;
 int a0 = min(count, start);
 int b0 = min(count, start + VT * (coop / 2));
 int b1 = min(count, start + VT * coop);

 int p = MergePath<MgpuBoundsLower>(keys_shared + a0, b0 - a0,
 keys_shared + b0, b1 - b0, diag, comp);

 SerialMerge<VT, true>(keys_shared, a0 + p, b0, b0 + diag - p, b1,
keys,
 indices, comp);
}

Locating each thread's pair of source lists, destination list, and position within the output is the first task of
the vectorized merge function CTABlocksortPass. ~(coop - 1) & tid masks out the bits that
position each thread's cross-diagonal within the destination list. This expression serves as a scaled destination
list index and is mulitplied by VT to target the start of the A list in shared memory. The expression VT *
((coop - 1) & tid) locates each thread's cross-diagonal in the local coordinate system of the output
list.

NT = 8, VT = 7, count = 49 (full tile)

tid coop = 2 coop = 4 coop = 8
 0: A=(0, 7),B=(7, 14),d= 0 A=(0, 14),B=(14, 28),d= 0 A=(0, 28),B=(28, 56),d=
0
 1: A=(0, 7),B=(7, 14),d= 7 A=(0, 14),B=(14, 28),d= 7 A=(0, 28),B=(28, 56),d=
7
 2: A=(14, 21),B=(21, 28),d= 0 A=(0, 14),B=(14, 28),d=14 A=(0, 28),B=(28,
56),d=14
 3: A=(14, 21),B=(21, 28),d= 7 A=(0, 14),B=(14, 28),d=21 A=(0, 28),B=(28,
56),d=21
 4: A=(28, 35),B=(35, 42),d= 0 A=(28, 42),B=(42, 56),d= 0 A=(0, 28),B=(28,
56),d=28
 5: A=(28, 35),B=(35, 42),d= 7 A=(28, 42),B=(42, 56),d= 7 A=(0, 28),B=(28,
56),d=35
 6: A=(42, 49),B=(49, 56),d= 0 A=(28, 42),B=(42, 56),d=14 A=(0, 28),B=(28,
56),d=42
 7: A=(42, 49),B=(49, 56),d= 7 A=(28, 42),B=(42, 56),d=21 A=(0, 28),B=(28,
56),d=49

These intervals illustrate all blocksort passes for a full tile with 8 threads and 7 values per thread. You can
work them out using the bit-twiddling described above. The length of the cross-diagonal in a Merge Path
search is constrained by the length of the shorter of the two input arrays. The cross-diagonal length doubles
each iteration: 7, 14, 28... Correspondingly the depth (and cost) of the binary search increments as we
progress in the mergesort: 3, 4, 5... This simple iterative approach to blocksort perfectly load balances
scheduling and merging work over the CTA.

Flexible merge partitioning

After the blocksort we have NV-length lists sorted in global memory. We recursively run a merge on pairs of
lists until the entire array is sorted. Just like the CTA mergesort uses code from our CTA-level merge, the
global mergesort uses code from the global merge.

include/device/ctamerge.cuh

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

// Returns (offset of a, offset of b, length of list).
MGPU_HOST_DEVICE int3 FindMergesortFrame(int coop, int block, int nv) {
 // coop is the number of CTAs or threads cooperating to merge two
lists into
 // one. We round block down to the first CTA's ID that is working
on this
 // merge.
 int start = ~(coop - 1) & block;
 int size = nv * (coop>> 1);
 return make_int3(nv * start, nv * start + size, size);
}

// Returns (a0, a1, b0, b1) into mergesort input lists between mp0 and
mp1.
MGPU_HOST_DEVICE int4 FindMergesortInterval(int3 frame, int coop, int
block,
 int nv, int count, int mp0, int mp1) {

 // Locate diag from the start of the A sublist.
 int diag = nv * block - frame.x;
 int a0 = frame.x + mp0;
 int a1 = min(count, frame.x + mp1);
 int b0 = min(count, frame.y + diag - mp0);
 int b1 = min(count, frame.y + diag + nv - mp1);

 // The end partition of the last block for each merge operation is
computed
 // and stored as the begin partition for the subsequent merge.
i.e. it is
 // the same partition but in the wrong coordinate system, so its 0
when it
 // should be listSize. Correct that by checking if this is the
last block
 // in this merge operation.
 if(coop - 1 == ((coop - 1) & block)) {
 a1 = min(count, frame.x + frame.z);
 b1 = min(count, frame.y + frame.z);
 }
 return make_int4(a0, a1, b0, b1);
}

For clarity and maintainability, we factor out mergesort's list-making logic into FindMergesortFrame
and FindMergesortInterval. The former finds the start of the A list by masking out the bits below
coop and multiplying by the grain size (either NV, or VT, depending on context). The latter function uses

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctamerge.cuh

the intersections of the cross-diagonals with the Merge Path to calculate a CTA's or thread's input range
within the provided A and B lists.

include/device/ctamerge.cuh

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

MGPU_HOST_DEVICE int4 ComputeMergeRange(int aCount, int bCount, int
block,
 int coop, int NV, const int* mp_global) {

 // Load the merge paths computed by the partitioning kernel.
 int mp0 = mp_global[block];
 int mp1 = mp_global[block + 1];
 int gid = NV * block;

 // Compute the ranges of the sources in global memory.
 int4 range;
 if(coop) {
 int3 frame = FindMergesortFrame(coop, block, NV);
 range = FindMergesortInterval(frame, coop, block, NV, aCount,
mp0,
 mp1);
 } else {
 range.x = mp0; // a0
 range.y = mp1; // a1
 range.z = gid - range.x; // b0
 range.w = min(aCount + bCount, gid + NV) - range.y; // b1
 }
 return range;
}

ComputeMergeRange is the range-calculating entry point for merge, mergesort, segmented and locality
sorts. This is called at the top of those respective kernels, and the A and B input-list intervals are loaded into
shared memory. This unified function reduces the number of kernels needed to support this diversity of
functionality.

include/kernels/merge.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/merge.cuh
https://github.com/NVlabs/moderngpu/blob/master/include/device/ctamerge.cuh

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

template<typename Tuning, bool HasValues, bool MergeSort, typename
KeysIt1,
 typename KeysIt2, typename KeysIt3, typename ValsIt1, typename
ValsIt2,
 typename ValsIt3, typename Comp>
MGPU_LAUNCH_BOUNDS void KernelMerge(KeysIt1 aKeys_global, ValsIt1
aVals_global,
 int aCount, KeysIt2 bKeys_global, ValsIt2 bVals_global, int bCount,
 const int* mp_global, int coop, KeysIt3 keys_global, ValsIt3
vals_global,
 Comp comp) {

 typedef MGPU_LAUNCH_PARAMS Params;
 typedef typename std::iterator_traits<KeysIt1>::value_type KeyType;
 typedef typename std::iterator_traits<ValsIt1>::value_type ValType;

 const int NT = Params::NT;
 const int VT = Params::VT;
 const int NV = NT * VT;
 union Shared {
 KeyType keys[NT * (VT + 1)];
 int indices[NV];
 };
 __shared__ Shared shared;

 int tid = threadIdx.x;
 int block = blockIdx.x;

 int4 range = ComputeMergeRange(aCount, bCount, block, coop, NT *
VT,
 mp_global);

 DeviceMerge<NT, VT, HasValues>(aKeys_global, aVals_global,
bKeys_global,
 bVals_global, tid, block, range, shared.keys, shared.indices,
 keys_global, vals_global, comp);
}

KernelMerge is called by both the Merge and Mergesort host functions. Mergesort is considerably more
involved, but this complexity has been factored out into ComputeMergeRange, allowing the heavy lifting
for both functions to be defined by DeviceMerge. Note that the keys and indices are unioned in shared
memory, so as to not waste resources. This is an idiom used throughput Modern GPU, and an important one
to follow if your goal is high throughput.

MergePathPartitions

include/kernels/search.cuh

75
76
77

template<int NT, MgpuBounds Bounds, typename It1, typename It2,
typename Comp>
__global__ void KernelMergePartition(It1 a_global, int aCount, It2

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/search.cuh

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

b_global,
 int bCount, int nv, int coop, int* mp_global, int numSearches, Comp
comp) {

 int partition = NT * blockIdx.x + threadIdx.x;
 if(partition < numSearches) {
 int a0 = 0, b0 = 0;
 int gid = nv * partition;
 if(coop) {
 int3 frame = FindMergesortFrame(coop, partition, nv);
 a0 = frame.x;
 b0 = min(aCount, frame.y);
 bCount = min(aCount, frame.y + frame.z) - b0;
 aCount = min(aCount, frame.x + frame.z) - a0;

 // Put the cross-diagonal into the coordinate system of
the input
 // lists.
 gid -= a0;
 }
 int mp = MergePath<Bounds>(a_global + a0, aCount, b_global +
b0, bCount,
 min(gid, aCount + bCount), comp);
 mp_global[partition] = mp;
 }
}

template<MgpuBounds Bounds, typename It1, typename It2, typename Comp>
MGPU_MEM(int) MergePathPartitions(It1 a_global, int aCount, It2
b_global,
 int bCount, int nv, int coop, Comp comp, CudaContext& context) {

 const int NT = 64;
 int numPartitions = MGPU_DIV_UP(aCount + bCount, nv);
 int numPartitionBlocks = MGPU_DIV_UP(numPartitions + 1, NT);
 MGPU_MEM(int) partitionsDevice = context.Malloc<int>(numPartitions
+ 1);

 KernelMergePartition<T, Bounds>
 <<<numPartitionBlocks, NT, 0, context.Stream()>>>(a_global,
aCount,
 b_global, bCount, nv, coop, partitionsDevice->get(),
numPartitions + 1,
 comp);
 return partitionsDevice;
}

KernelMergePartition performs coarse-granularity partitioning for both MGPU Merge and
Mergesort. It fills out the mp_global Merge Path/cross-diagonal intersections that are consumed by
ComputeMergeRange. This is a simple and efficient division of labor—coarse-grained scheduling is
achieved by first calling MergePathPartitions to fill out mp_global, which is subsequently
provided to ComputeMergeRange in an algorithm's kernel.

The MergePathPartitions function is central to the MGPU library. The argument nv is the granularity
of the partition and typically is set to the number of values per CTA, NV, a product of LaunchBoxVT
parameters VT and NT, and a template argument for most of MGPU's kernels. coop is the number of CTAs
cooperating to merge pairs of sorted lists in the mergesort routine—this is non-zero for all other functions
(like merge, vectorized sorted search, etc.).

The list of callers of MergePathPartitions is extensive:

1. Bulk Insert . Bulk Remove uses a standard binary search for global partitioning.

2. Merge .

3. Mergesort .

4. Vectorized sorted search calls both the lower- and upper-bound specializations of
MergePathPartitions.

5. Load-balancing search calls the upper-bound function and only specializes on integer types.
Additionally, all load-balancing search clients use MergePathPartitions indirectly:

a. IntervalExpand

b. IntervalMove

c. Relational joins

Other methods don't call MergePathPartitions, but still opt into this two-phase scheduling and
sequential-work approach:

6. The high-performance segmented and locality sorts of the next section fuse coarse-grained
partitioning with work queueing, exploiting the sortedness of inputs to reduce processing.

7. MGPU Multisets introduce a new partitioning search called Balanced Path which incorporates
duplicate ranking into key ordering. Four serial set functions, modeled after SerialMerge, perform
C++-style set intersection, union, difference, and symmetric difference.

Launching from the host

Mergesort is a multi-pass, out-of-place algorithm. The blocksort reduces global memory traffic by sorting
blocks of NV elements locally, performing key exchange through low-latency shared memory. Subsequent
global merge passes recursively doubles the length of sorted lists, from NV to 2*NV to 4*NV, etc., until the
input is fully sorted.

include/kernels/mergesort.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/mergesort.cuh
http://nvlabs.github.io/moderngpu/sets.html
http://nvlabs.github.io/moderngpu/segsort.html#localitysortbenchmark
http://nvlabs.github.io/moderngpu/segsort.html#segsortbenchmark
http://nvlabs.github.io/moderngpu/join.html
http://nvlabs.github.io/moderngpu/intervalmove.html#intervalmove
http://nvlabs.github.io/moderngpu/intervalmove.html#intervalexpand
http://nvlabs.github.io/moderngpu/loadbalance.html
http://nvlabs.github.io/moderngpu/sortedsearch.html
http://nvlabs.github.io/moderngpu/mergesort.html
http://nvlabs.github.io/moderngpu/merge.html
http://nvlabs.github.io/moderngpu/bulkinsert.html

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

template<typename T, typename Comp>
MGPU_HOST void MergesortKeys(T* data_global, int count, Comp comp,
 CudaContext& context) {

 const int NT = 256;
 const int VT = 7;
 typedef LaunchBoxVT<NT, VT> Tuning;
 int2 launch = Tuning::GetLaunchParams(context);

 const int NV = launch.x * launch.y;
 int numBlocks = MGPU_DIV_UP(count, NV);
 int numPasses = FindLog2(numBlocks, true);

 MGPU_MEM(T) destDevice = context.Malloc<T>(count);
 T* source = data_global;
 T* dest = destDevice->get();

 KernelBlocksort<Tuning, false>
 <<<numBlocks, launch.x, 0, context.Stream()>>>(source, (const
int*)0,
 count, (1 & numPasses) ? dest : source, (int*)0, comp);
 if(1 & numPasses) std::swap(source, dest);

 for(int pass = 0; pass < numPasses; ++pass) {
 int coop = 2<< pass;
 MGPU_MEM(int) partitionsDevice =
MergePathPartitions<MgpuBoundsLower>(
 source, count, source, 0, NV, coop, comp, context);

 KernelMerge<Tuning, false, true>
 <<<numBlocks, launch.x, 0, context.Stream()>>>(source,
 (const int*)0, count, source, (const int*)0, 0,
 partitionsDevice->get(), coop, dest, (int*)0, comp);
 std::swap(dest, source);
 }
}

We allocate a temporary buffer to ping-pong mergesort passes. The number of global passes is the ceil of
log2 of the tile count. As the user expects results sorted in-place in data_global, we blocksort into
data_global if numPasses is even and blocksort into the temporary if numPasses is odd. This way,
sorted data always lands in data_global after the final merge pass without requiring an additional copy.
The mergesort host function has the same macro structure as CTABlocksortLoop: it loops from coop =
2 to coop = numBlocks (NT in blocksort). MergePathPartitions searches global memory to find
the intersection of cross-diagonals and Merge Paths, as identified by the utility function
FindMergesortFrame.

Idiomatic GPU codes often have this coarse-grained/fine-grained paired structure: coarse-grained partitioning
and scheduling operates on the full input in global memory; fine-grained partitioning and scheduling operates
on local tiles in shared memory. This simple two-level hierarchy has algorithmic benefits: the bulk of
partitioning operations are run over small, constant-sized blocks, helping amortize the cost of global
partitioning. We also see architecutral benefits: performing most data movement within CTAs rather than
between them reduces latency and improves the throughput of kernels.

8. Segmented Sort and Locality Sort
Segmented sort and locality sort are high-performance variants of mergesort that operate on non-uniform
random data. Segmented sort allows us to sort many variable-length arrays in parallel. A list of head indices
provided to define segment intervals. Segmented sort is fast: not only is segmentation supported for
negligible cost, the function takes advantage of early-exit opportunities to improve throughput over vanilla
mergesort. Locality sort detects regions of approximate sortedness without requiring annotations.

Benchmark and usage

Segmented sort keys benchmark from tests/benchmarksegsort.cu

Segmented sort keys demonstration from tests/demo.cu

242
243
244
245
246
247
248
249
250
251
252
253

void DemoSegSortKeys(CudaContext& context) {
 printf("\n\nSEG-SORT KEYS DEMONSTRATION:\n\n");

 // Use CudaContext::GenRandom to generate 100 random integers
between 0 and
 // 9.
 int N = 100;
 MGPU_MEM(int) keys = context.GenRandom<int>(N, 0, 99);

 // Define 10 segment heads (for 11 segments in all).
 const int NumSegs = 10;
 const int SegHeads[NumSegs] = { 4, 19, 22, 56, 61, 78, 81, 84, 94,

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarksegsort.cu

254
255
256
257
258
259
260
261
262
263
264
265
266

97 };
 MGPU_MEM(int) segments = context.Malloc(SegHeads, 10);

 printf("Input keys:\n");
 PrintArray(*keys, "%4d", 10);

 printf("\nSegment heads:\n");
 PrintArray(*segments, "%4d", 10);

 // Sort within segments.
 SegSortKeysFromIndices(keys->get(), N, segments->get(), NumSegs,
context);

 printf("\nSorted data (segment heads are marked by *):\n");
 PrintArrayOp(*keys, FormatOpMarkArray(" %c%2d", SegHeads,
NumSegs), 10);
}

SEG-SORT KEYS DEMONSTRATION:

Input keys:
 0: 42 39 9 77 59 97 47 74 69 63
 10: 69 7 63 63 3 52 6 29 31 32
 20: 53 63 65 99 40 51 81 72 71 24
 30: 96 33 53 74 32 68 10 68 61 7
 40: 77 45 42 69 9 6 26 6 15 52
 50: 28 26 44 48 52 13 45 9 87 12
 60: 51 96 94 75 63 26 95 72 24 41
 70: 67 47 28 5 67 61 69 49 6 90
 80: 25 93 22 91 66 30 84 79 34 22
 90: 78 44 67 51 0 23 60 71 38 98

Segment heads:
 0: 4 19 22 56 61 78 81 84 94 97

Sorted data (segment heads are marked by *):
 0: 9 39 42 77 * 3 6 7 29 31 47
 10: 52 59 63 63 63 69 69 74 97 *32
 20: 53 63 * 6 6 7 9 10 13 15 24
 30: 26 26 28 32 33 40 42 44 45 48
 40: 51 52 52 53 61 65 68 68 69 71
 50: 72 74 77 81 96 99 * 9 12 45 51
 60: 87 * 5 24 26 28 41 47 49 61 63
 70: 67 67 69 72 75 94 95 96 * 6 25
 80: 90 *22 91 93 *22 30 34 44 51 66
 90: 67 78 79 84 * 0 23 60 *38 71 98

Segmented sort pairs benchmark from tests/benchmarksegsort.cu

Segmented sort pairs demonstration from tests/demo.cu

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarksegsort.cu

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

void DemoSegSortPairs(CudaContext& context) {
 printf("\n\nSEG-SORT PAIRS DEMONSTRATION:\n\n");

 // Use CudaContext::GenRandom to generate 100 random integers
between 0 and
 // 9.
 int N = 100;
 MGPU_MEM(int) keys = context.GenRandom<int>(N, 0, 99);

 // Fill values with ascending integers.
 MGPU_MEM(int) values = context.FillAscending<int>(N, 0, 1);

 // Define 10 segment heads (for 11 segments in all).
 const int NumSegs = 10;
 const int SegHeads[NumSegs] = { 4, 19, 22, 56, 61, 78, 81, 84, 94,
97 };
 MGPU_MEM(int) segments = context.Malloc(SegHeads, 10);

 printf("Input keys:\n");
 PrintArray(*keys, "%4d", 10);

 printf("\nSegment heads:\n");
 PrintArray(*segments, "%4d", 10);

 // Sort within segments.
 SegSortPairsFromIndices(keys->get(), values->get(), N, segments-
>get(),
 NumSegs, context);

 printf("\nSorted data (segment heads are marked by *):\n");
 PrintArrayOp(*keys, FormatOpMarkArray(" %c%2d", SegHeads,
NumSegs), 10);

 printf("\nSorted indices (segment heads are marked by *):\n");
 PrintArrayOp(*values, FormatOpMarkArray(" %c%2d", SegHeads,
NumSegs), 10);
}

SEG-SORT PAIRS DEMONSTRATION:

Input keys:
 0: 91 65 0 27 46 46 42 0 46 44
 10: 77 97 32 30 78 21 47 24 3 80
 20: 17 48 72 40 47 21 15 54 34 72
 30: 60 28 19 54 73 75 24 33 91 80
 40: 26 85 76 1 18 88 28 59 9 8
 50: 57 92 68 91 54 98 42 90 64 94
 60: 64 93 67 0 63 77 94 2 20 58
 70: 70 64 23 32 11 11 60 12 45 97
 80: 45 53 66 66 77 70 35 6 66 20
 90: 41 43 84 1 83 6 25 34 61 31

Segment heads:

 0: 4 19 22 56 61 78 81 84 94 97

Sorted data (segment heads are marked by *):
 0: 0 27 65 91 * 0 3 21 24 30 32
 10: 42 44 46 46 46 47 77 78 97 *17
 20: 48 80 * 1 8 9 15 18 19 21 24
 30: 26 28 28 33 34 40 47 54 54 54
 40: 57 59 60 68 72 72 73 75 76 80
 50: 85 88 91 91 92 98 *42 64 64 90
 60: 94 * 0 2 11 11 12 20 23 32 58
 70: 60 63 64 67 70 77 93 94 *45 45
 80: 97 *53 66 66 * 1 6 20 35 41 43
 90: 66 70 77 84 * 6 25 83 *31 34 61

Sorted indices (segment heads are marked by *):
 0: 2 3 1 0 * 7 18 15 17 13 12
 10: 6 9 4 5 8 16 10 14 11 *20
 20: 21 19 *43 49 48 26 44 32 25 36
 30: 40 31 46 37 28 23 24 27 33 54
 40: 50 47 30 52 22 29 34 35 42 39
 50: 41 45 38 53 51 55 *56 58 60 57
 60: 59 *63 67 74 75 77 68 72 73 69
 70: 76 64 71 62 70 65 61 66 *78 80
 80: 79 *81 82 83 *93 87 89 86 90 91
 90: 88 85 84 92 *95 96 94 *99 97 98

Locality sort keys benchmark from tests/benchmarklocalitysort.cu

Locality sort keys demonstration from tests/demo.cu

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarklocalitysort.cu

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

void DemoLocalitySortKeys(CudaContext& context) {
 printf("\n\nLOCALITY SORT KEYS DEMONSTRATION:\n\n");

 // Generate keys that are roughly sorted but with added noise.
 int N = 100;
 std::vector<int> keysHost(N);
 for(int i = 0; i < N; ++i)
 keysHost[i] = i + Rand(0, 25);

 MGPU_MEM(int) keys = context.Malloc(keysHost);

 printf("Input keys:\n");
 PrintArray(*keys, "%4d", 10);

 // Sort by exploiting locality.
 LocalitySortKeys(keys->get(), N, context);

 printf("\nSorted data:\n");
 PrintArray(*keys, "%4d", 10);;
}

LOCALITY SORT KEYS DEMONSTRATION:

Input keys:
 0: 15 26 16 9 26 27 12 16 16 28
 10: 13 32 36 18 30 40 28 35 34 44
 20: 34 40 38 28 38 34 44 32 41 50
 30: 55 55 37 52 36 57 38 48 39 47
 40: 50 62 53 57 53 48 65 52 64 61
 50: 70 61 76 72 79 64 60 77 61 84
 60: 78 83 64 84 77 74 79 68 90 94
 70: 82 92 82 95 91 76 95 77 91 94
 80: 89 100 85 99 99 102 92 111 89 95
 90: 109 114 98 96 105 103 113 119 107 105

Sorted data:
 0: 9 12 13 15 16 16 16 18 26 26
 10: 27 28 28 28 30 32 32 34 34 34
 20: 35 36 36 37 38 38 38 39 40 40
 30: 41 44 44 47 48 48 50 50 52 52
 40: 53 53 55 55 57 57 60 61 61 61
 50: 62 64 64 64 65 68 70 72 74 76
 60: 76 77 77 77 78 79 79 82 82 83
 70: 84 84 85 89 89 90 91 91 92 92
 80: 94 94 95 95 95 96 98 99 99 100
 90: 102 103 105 105 107 109 111 113 114 119

Locality sort pairs benchmark from tests/benchmarklocalitysort.cu

Locality sort pairs demonstration from tests/demo.cu

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

void DemoLocalitySortPairs(CudaContext& context) {
 printf("\n\nLOCALITY SORT PAIRS DEMONSTRATION:\n\n");

 // Generate keys that are roughly sorted but with added noise.
 int N = 100;
 std::vector<int> keysHost(N);
 for(int i = 0; i < N; ++i)
 keysHost[i] = i + Rand(0, 25);

 MGPU_MEM(int) keys = context.Malloc(keysHost);
 MGPU_MEM(int) values = context.FillAscending<int>(N, 0, 1);

 printf("Input keys:\n");
 PrintArray(*keys, "%4d", 10);

 // Sort by exploiting locality.
 LocalitySortPairs(keys->get(), values->get(), N, context);

 printf("\nSorted data:\n");
 PrintArray(*keys, "%4d", 10);

 printf("\nSorted indices:\n");
 PrintArray(*values, "%4d", 10);
}

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarklocalitysort.cu

LOCALITY SORT PAIRS DEMONSTRATION:

Input keys:
 0: 19 22 12 17 21 29 24 20 19 26
 10: 10 14 20 38 25 31 23 21 23 20
 20: 41 33 33 43 47 37 36 49 47 45
 30: 40 54 53 33 53 53 45 52 43 41
 40: 60 66 66 48 52 53 63 64 59 73
 50: 71 56 71 77 58 77 78 68 83 71
 60: 73 75 84 84 79 68 70 83 73 94
 70: 80 87 91 84 95 75 96 79 86 92
 80: 93 101 84 102 86 89 89 93 105 100
 90: 102 102 96 110 106 99 99 101 99 101

Sorted data:
 0: 10 12 14 17 19 19 20 20 20 21
 10: 21 22 23 23 24 25 26 29 31 33
 20: 33 33 36 37 38 40 41 41 43 43
 30: 45 45 47 47 48 49 52 52 53 53
 40: 53 53 54 56 58 59 60 63 64 66
 50: 66 68 68 70 71 71 71 73 73 73
 60: 75 75 77 77 78 79 79 80 83 83
 70: 84 84 84 84 86 86 87 89 89 91
 80: 92 93 93 94 95 96 96 99 99 99
 90: 100 101 101 101 102 102 102 105 106 110

Sorted indices:
 0: 10 2 11 3 0 8 7 12 19 4
 10: 17 1 16 18 6 14 9 5 15 21
 20: 22 33 26 25 13 30 20 39 23 38
 30: 29 36 24 28 43 27 37 44 32 34
 40: 35 45 31 51 54 48 40 46 47 41
 50: 42 57 65 66 50 52 59 49 60 68
 60: 61 75 53 55 56 64 77 70 58 67
 70: 62 63 73 82 78 84 71 85 86 72
 80: 79 80 87 69 74 76 92 95 96 98
 90: 89 81 97 99 83 90 91 88 94 93

Host functions

include/mgpuhost.cuh

196
197
198
199
200
201
202
203
204
205
206
207
208

//
//////////
// kernels/segmentedsort.cuh

// Mergesort count items in-place in data_global. Keys are compared
with Comp
// (as they are in MergesortKeys), however keys remain inside the
segments
// defined by flags_global.

// flags_global is a bitfield cast to uint*. Each bit in flags_global
is a
// segment head flag. Only keys between segment head flags (inclusive

https://github.com/NVlabs/moderngpu/blob/master/include/mgpuhost.cuh

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

on the
// left and exclusive on the right) may be exchanged. The first
element is
// assumed to start a segment, regardless of the value of bit 0.

// Passing verbose=true causes the function to print mergepass
statistics to the
// console. This may be helpful for developers to understand the
performance
// characteristics of the function and how effectively it early-exits
merge
// operations.
template<typename T, typename Comp>
MGPU_HOST void SegSortKeysFromFlags(T* data_global, int count,
 const uint* flags_global, CudaContext& context, Comp comp,
 bool verbose = false);

// SegSortKeysFromFlags specialized with Comp = mgpu::less<T>.
template<typename T>
MGPU_HOST void SegSortKeysFromFlags(T* data_global, int count,
 const uint* flags_global, CudaContext& context, bool verbose =
false);

// Segmented sort using head flags and supporting value exchange.
template<bool Stable, typename KeyType, typename ValType, typename Comp>
MGPU_HOST void SegSortPairsFromFlags(KeyType* keys_global,
 ValType* values_global, const uint* flags_global, int count,
 CudaContext& context, Comp comp, bool verbose = false);

// SegSortPairsFromFlags specialized with Comp = mgpu::less<T>.
template<bool Stable, typename KeyType, typename ValType>
MGPU_HOST void SegSortPairsFromFlags(KeyType* keys_global,
 ValType* values_global, const uint* flags_global, int count,
 CudaContext& context, bool verbose = false)

// Segmented sort using segment indices rather than head flags.
indices_global
// is a sorted and unique list of indicesCount segment start
locations. These
// indices correspond to the set bits in the flags_global field. A
segment
// head index for position 0 may be omitted.
template<typename T, typename Comp>
MGPU_HOST void SegSortKeysFromIndices(T* data_global, int count,
 const int* indices_global, int indicesCount, CudaContext& context,
 Comp comp, bool verbose = false);

// SegSortKeysFromIndices specialized with Comp = mgpu::less<T>.
template<typename T>
MGPU_HOST void SegSortKeysFromIndices(T* data_global, int count,
 const int* indices_global, int indicesCount, CudaContext& context,
 bool verbose = false);

Algorithm

Segmented sort is the function that I expect to have the most immediate impact on people's applications. It
addresses one facet of a serious problem facing GPU computing: we can often solve a single big problem but
find it difficult to process many smaller problems in parallel.

What does the ad-hoc approach for sorting multiple variable-length arrays in parallel look like? We know
how to sort keys in a thread using sorting networks. We know how to mergesort within a warp or block.
MGPU Merge can take a coop parameter to merge small lists in parallel, as long as those lists are power-of-
two multiples of the block size.

As a hypothetical, perhaps we could just sort within the segment intervals. Intervals shorter than VT would
be processed by an intra-thread sorting network kernel. Intervals shorter than 32 * VT would be sorted by a
warp-sorting kernel. Intervals shorter than NV would be sorted by our blocksort. We could use mergesort or
radix sort on longer intervals, shifting segment IDs into the most-significant bits of the key, to maintain
segment stability. After all these launches we'd re-order the data back into their original segment order.

But this would be a nightmare to write and maintain.

If all we want is simplicity, we could call mergesort on individual segments using CUDA Dynamic
Parallelism on sm_35 devices. However this would cause severe load-balance issues. It would perform worse
than a brute-force radix sort with segment identifiers fused to the keys. Performance would degrade with the
segment size—small segments would be provisioned entire CTAs, wasting huge amounts of compute.

Not knowing how to finesse problems like this is why CUDA has a reputation of being hard to program. It is
infuriating that the smaller a problem gets, the more desperate the solution becomes.

MGPU Segmented Sort makes a single observation, modifies our mergesort, and delivers an implementation
that is elegant and fast.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 41 67 34 0 39 24 78 58 62 64 5 81 45 27 61 91
 ^ ^ ^ ^

Consider these 16 random numbers grouped into four irregular segments. Segment heads are marked with
carets. We're going to launch four tiny 'blocksorts' that sort four inputs each, maintaining segment order:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 41 67 34 0 39 24 78 58 62 64 5 81 45 27 61 91
 ^ ^ ^ ^

Sort into blocks of length 4:
 0 1 2 3 | 4 5 6 7 | 8 9 10 11 | 12 13 14 15
 0 34 41 67 | 39 24 58 78 | 62 64 5 81 | 45 27 61 91
 ^ ^ ^ ^

We use induction to explain the segmented blocksort above in terms of the merge operation illustrated below.
Imagine a blocksort of segmented random data as a sequence of iterative merge operations, beginning with
lists of length 4.

 0 1 2 3 | 4 5 6 7 | 8 9 10 11 | 12 13 14 15
 0 34 41 67 | 39 24 58 78 | 62 64 5 81 | 45 27 61 91
 ^ ^ ^ ^

http://docs.nvidia.com/cuda/pdf/CUDA_Dynamic_Parallelism_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Dynamic_Parallelism_Programming_Guide.pdf

Merge list 0 (block 0) with list 1 (block 1)
Merge list 2 (block 2) with list 3 (block 3):
 (0 1 2 3 | 4 5 6 7)|(8 9 10 11 | 12 13 14 15)
 (0 34 39 41 | 67 24 58 78)|(62 64 5 45 | 81 27 61 91)
 ^ ^ ^ ^

Merge list 0 (blocks 0 and 1) with list 1 (blocks 2 and 3):

 (0 1 2 3 | 4 5 6 7 | 8 9 10 11 | 12 13 14 15)
 (0 34 39 41 | 67 24 58 62 | 64 78 5 45 | 81 27 61 91)
 ^ ^ ^ ^

In the coop = 2 stage, where two blocks cooperatively merge pairs of lists, the green segment that spans
the block 0/block 1 boundary and the green segment that spans the block 2/block 3 boundary is modified. In
the coop = 4 stage, where four blocks cooperatively merge pairs of lists, the black segment that spans the
block 1/block 2 boundary is modified. This fully sorts the inputs.

The observation that enables efficient segmented sorting is that only segments that span the active interface
between the two input lists are modified. The active interface is where the list on the left ends and the list on
the right begins. During the coop = 2 stage, the portion of the first black segment being merged into list 0
cannot be mixed with data to its left because those terms belong to the green segment; it cannot be mixed
with the portion of the same segment to the right, because that data is belongs to a different output list (the
boundary between block 1 and block 2 isn't an active interface until the next merge stage).

During the coop = 2 stage, only the black segment in the middle - the one that spans the interface - is
modified. The other three segments are simply copied directly from source to destination.

Important: When merging lists of segmented data, only elements in the segments that span the active
interface between inputs lists is modified. All other segments are locked in place and their terms are copied
directly from input to output.

Segmented blocksort

include/device/ctasegsort.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctasegsort.cuh

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

template<int NT, int VT, bool Stable, bool HasValues, typename KeyType,
 typename ValType, typename Comp>
MGPU_DEVICE int2 CTASegsort(KeyType threadKeys[VT], ValType
threadValues[VT],
 int tid, int headFlags, KeyType* keys_shared, ValType*
values_shared,
 int* ranges_shared, Comp comp) {

 if(Stable)
 // Odd-even transpose sort.
 OddEvenTransposeSortFlags<VT>(threadKeys, threadValues,
headFlags,
 comp);
 else
 // Batcher's odd-even mergesort.
 OddEvenMergesortFlags<VT>(threadKeys, threadValues, headFlags,
comp);

 // Record the first and last occurrence of head flags in this
segment.
 int blockEnd = 31 - clz(headFlags);
 if(-1 != blockEnd) blockEnd += VT * tid;

 int blockStart = ffs(headFlags);
 blockStart = blockStart ? (VT * tid - 1 + blockStart) : (NT * VT);

 ranges_shared[tid] = (int)bfi(blockEnd, blockStart, 16, 16);

 // Store back to shared mem. The values are in VT-length sorted
lists.
 // These are merged recursively.
 DeviceThreadToShared<VT>(threadKeys, tid, keys_shared);

 int2 activeRange = CTASegsortLoop<NT, VT, HasValues>(threadKeys,
 threadValues, keys_shared, values_shared, ranges_shared, tid,
 make_int2(blockStart, blockEnd), comp);
 return activeRange;
}

CTASegsort is a reusable segmented blocksort and a generalization of CTAMergesort. The caller
provides segment head flags packed into the bitfield headFlags. As shown in the section on sorting
networks, the odd-even transposition network includes logic to support segmentation. It only swaps elements
i and i+1 if the i+1 flag in the bitfield is cleared, meaning both elements are in the same segment. After the
sorting network, the keys are in sorted lists with length VT.

For both segmented blocksort and the global merge passes, we build a binary tree of segment active ranges
(the left- and right-most segment heads in a list). Only elements falling outside the active range can ever be
modified by the sort. After the sorting network is run we calculate the active ranges (blockStart and
blockEnd). We can now discard the head flags: the only necessary segment information for this sort is in
the binary tree of ranges.

Threads use the CUDA instructions ffs (find first set) and clz (count leading zeros) to find the left-most

http://nvlabs.github.io/moderngpu/mergesort.html#sortnetworks
http://nvlabs.github.io/moderngpu/mergesort.html#sortnetworks
http://nvlabs.github.io/moderngpu/mergesort.html#blocksort

and right-most segment heads in the list. These are referenced in the coordinate system of the CTA: if thread
tid has a left-most segment head at 3, blockStart is assigned VT * tid + 3. If the thread doesn't contain
a segment head, the interval (NV, -1) is used. The ranges are packed into a 32-bit integer with bfi (bitfield
insert) and stored in the auxiliary array ranges_shared.

include/device/ctasegsort.cuh

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

template<int NT, int VT, bool HasValues, typename KeyType, typename
ValType,
 typename Comp>
MGPU_DEVICE int2 CTASegsortLoop(KeyType threadKeys[VT],
 ValType threadValues[VT], KeyType* keys_shared, ValType*
values_shared,
 int* ranges_shared, int tid, int2 activeRange, Comp comp) {

 const int NumPasses = sLogPow2<NT>::value;
 #pragma unroll
 for(int pass = 0; pass < NumPasses; ++pass) {
 int indices[VT];
 CTASegsortPass<NT, VT>(keys_shared, ranges_shared, tid, pass,
 threadKeys, indices, activeRange, comp);

 if(HasValues) {
 // Exchange values through shared memory.
 DeviceThreadToShared<VT>(threadValues, tid,
values_shared);
 DeviceGather<NT, VT>(NT * VT, values_shared, indices, tid,
 threadValues);
 }

 // Store results in shared memory in sorted order.
 DeviceThreadToShared<VT>(threadKeys, tid, keys_shared);
 }
 return activeRange;
}

CTASegsortLoop is a copy of CTABlocksortLoop which forwards to CTASegsortPass instead of
CTABlocksortPass. The segmented sort very closely follows the vanilla mergesort, both for ease-of-
maintenance reasons and to help illustrate how enacting one small improvement can bring huge functionality
and performance benefits to an old and simple algorithm.

include/device/ctasegsort.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctasegsort.cuh
https://github.com/NVlabs/moderngpu/blob/master/include/device/ctasegsort.cuh

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

template<int NT, int VT, typename T, typename Comp>
MGPU_DEVICE void CTASegsortPass(T* keys_shared, int* ranges_shared,
int tid,
 int pass, T results[VT], int indices[VT], int2& activeRange, Comp
comp) {

 // Locate the intervals of the input lists.
 int3 frame = FindMergesortFrame(2<< pass, tid, VT);
 int a0 = frame.x;
 int b0 = frame.y;
 int listLen = frame.z;
 int list = tid>> pass;
 int listParity = 1 & list;
 int diag = VT * tid - frame.x;

 // Fetch the active range for the list this thread's list is
merging with.
 int siblingRange = ranges_shared[1 ^ list];
 int siblingStart = 0x0000ffff & siblingRange;
 int siblingEnd = siblingRange>> 16;

 // Create a new active range for the merge.
 int leftEnd = listParity ? siblingEnd : activeRange.y;
 int rightStart = listParity ? activeRange.x : siblingStart;
 activeRange.x = min(activeRange.x, siblingStart);
 activeRange.y = max(activeRange.y, siblingEnd);

 int p = SegmentedMergePath(keys_shared, a0, listLen, b0, listLen,
leftEnd,
 rightStart, diag, comp);

 int a0tid = a0 + p;
 int b0tid = b0 + diag - p;
 SegmentedSerialMerge<VT>(keys_shared, a0tid, b0, b0tid, b0 +
listLen,
 results, indices, leftEnd, rightStart, comp);

 // Store the ranges to shared memory.
 if(0 == diag)
 ranges_shared[list>> 1] =
 (int)bfi(activeRange.y, activeRange.x, 16, 16);
}

As in CTABlocksortPass, each thread in CTASegsortPass calculates the range of source values (the
input lists) and its cross-diagonal within that list. As in the vanilla mergesort, the input list has coordinates
(a0, a1), (b0, b1), and the output list has coordinates (a0, b1).

In addition, the segmented sort computes its list index, parity, and sibling. The index is the list that the thread
is mapped into for that particular pass. For pass 0 (coop = 2), the index of thread tid is simply tid. The
left- and right-most segment head positions are passed into activeRange.

 tid (a0, a1) (b0, b1): diag list parity sibling

pass 0 (coop = 2):
 0: (0, 7) (7, 14): 0 0 (0) 1
 1: (0, 7) (7, 14): 7 1 (1) 0
 2: (14, 21) (21, 28): 0 2 (0) 3
 3: (14, 21) (21, 28): 7 3 (1) 2
 4: (28, 35) (35, 42): 0 4 (0) 5
 5: (28, 35) (35, 42): 7 5 (1) 4
 6: (42, 49) (49, 56): 0 6 (0) 7
 7: (42, 49) (49, 56): 7 7 (1) 6

pass 1 (coop = 4):
 0: (0, 14) (14, 28): 0 0 (0) 1
 1: (0, 14) (14, 28): 7 0 (0) 1
 2: (0, 14) (14, 28): 14 1 (1) 0
 3: (0, 14) (14, 28): 21 1 (1) 0
 4: (28, 42) (42, 56): 0 2 (0) 3
 5: (28, 42) (42, 56): 7 2 (0) 3
 6: (28, 42) (42, 56): 14 3 (1) 2
 7: (28, 42) (42, 56): 21 3 (1) 2

pass 2 (coop = 8):
 0: (0, 28) (28, 56): 0 0 (0) 1
 1: (0, 28) (28, 56): 7 0 (0) 1
 2: (0, 28) (28, 56): 14 0 (0) 1
 3: (0, 28) (28, 56): 21 0 (0) 1
 4: (0, 28) (28, 56): 28 1 (1) 0
 5: (0, 28) (28, 56): 35 1 (1) 0
 6: (0, 28) (28, 56): 42 1 (1) 0
 7: (0, 28) (28, 56): 49 1 (1) 0

The list parity indicates what side of the merge a thread maps to: 0 for left and 1 for right. The other list in
the merge is called sibling, and it has the opposite parity. Each thread loads the packed range of its sibling
list from shared memory: this is the list it is merging with. The left and right ranges are merged together to
find the left- and right-most segment heads of the resulting merged list. After the segmented merge, this is
stored in shared memory and recursively percolated up, building the binary tree of active ranges.

In CTASegsortPass, leftEnd is the location of the right-most segment in the left input list (drawn
across the top of the diagram) and rightStart the location of the left-most segment in the right list
(drawn along the right side). These define the ends of the active segment. For the area outside of (leftEnd,

rightStart), the Merge Path follows the x- or y-axis, as it simply copies elements from one of the inputs. The
cross-diagonals are constrained to the active segment region—queries outside this region return immediately.

include/device/ctasearch.cuh

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

template<typename InputIt, typename Comp>
MGPU_HOST_DEVICE int SegmentedMergePath(InputIt keys, int aOffset, int
aCount,
 int bOffset, int bCount, int leftEnd, int rightStart, int diag, Comp
comp) {

 // leftEnd and rightStart are defined from the origin, and diag is
defined
 // from aOffset.
 // We only need to run a Merge Path search if the diagonal
intersects the
 // segment that strides the left and right halves (i.e. is between
leftEnd
 // and rightStart).
 if(aOffset + diag <= leftEnd) return diag;
 if(aOffset + diag >= rightStart) return aCount;

 bCount = min(bCount, rightStart - bOffset);
 int begin = max(max(leftEnd - aOffset, 0), diag - bCount);
 int end = min(diag, aCount);

 while(begin < end) {
 int mid = (begin + end)>> 1;
 int ai = aOffset + mid;
 int bi = bOffset + diag - 1 - mid;

 bool pred = !comp(keys[bi], keys[ai]);
 if(pred) begin = mid + 1;
 else end = mid;
 }
 return begin;
}

SegmentedMergePath is a straight-forward modification of the MergePath binary search that clamps
the cross-diagonals to the area defined by the active range.

include/device/ctasegsort.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctasegsort.cuh
https://github.com/NVlabs/moderngpu/blob/master/include/device/ctasearch.cuh

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

template<int VT, typename T, typename Comp>
MGPU_DEVICE void SegmentedSerialMerge(const T* keys_shared, int aBegin,
 int aEnd, int bBegin, int bEnd, T results[VT], int indices[VT],
 int leftEnd, int rightStart, Comp comp, bool sync = true) {

 bEnd = min(rightStart, bEnd);
 T aKey = keys_shared[aBegin];
 T bKey = keys_shared[bBegin];

 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 bool p;

 // If A has run out of inputs, emit B.
 if(aBegin >= aEnd)
 p = false;
 else if(bBegin >= bEnd || aBegin < leftEnd)
 // B has hit the end of the middle segment.
 // Emit A if A has inputs remaining in the middle segment.
 p = true;
 else
 // Emit the smaller element in the middle segment.
 p = !comp(bKey, aKey);

 results[i] = p ? aKey : bKey;
 indices[i] = p ? aBegin : bBegin;
 if(p) aKey = keys_shared[++aBegin];
 else bKey = keys_shared[++bBegin];
 }
 if(sync) { __syncthreads(); }
}

Four conditionals are evaluated when computing the merge predicate:

1. If aBegin >= aEnd the A pointer is out-of-range so we emit the next element in B.

2. If bBegin >= bEnd the B pointer is out-of-range or has hit the end of the active segment in the B
list, if one exists. If the former is true, we simply emit A. If the latter is true, A must have at least
entered the active segment (since A and B enter the active segment together), and A needs to
complete emitting elements of the active segment before B can proceed to copy members of its
inactive segments. Because the end of A's part of the active segment is also the end of A's input (see
the illustration), once A finishes emitting its portion of the active segment, the first predicate,
aBegin >= aEnd, succeeds, so all remaining trips through the loop evaluate p to false, so B's
inactive segments are streamed out.

3. If aBegin < leftEnd the A pointer hasn't hit the start of its active segment. To preserve segment
stability, all of A's segments are emitted before merging elements of B.

4. Otherwise, both pointers are inside the active segment. The keys are compared and the appropriate
pointer is advanced, as in an ordinary merge.

Early-exit

We recursively merge lists, doubling their size and halving their number with each iteration. Since the
number of active segments per merge remains fixed at one (that is, the segment on the active interface), the
proportion of segments that are active vanishes as the sort progresses.

Tiles that map over only non-active segments (that is, segments to the left of the right-most segment head for
tiles in the left half of the merge; and segments to right of the left-most segment head for tiles in the right half
of the merge) do not require any merging. These stationary tiles check a copy flag: if the flag is set, the
destination is up-to-date, and there is a no-op; if the flag is not set, the kernel copies from the source to the
destination and sets the up-to-date flag. Tiles that map over an active segment clear the up-to-date flag and
enqueue a merge operation.

Mean segment length = 300
 Merge tiles Copy tiles
pass 0: 7098 (99.93%) 5 (0.07%)
pass 1: 4443 (62.55%) 2658 (37.42%)
pass 2: 2347 (33.04%) 3409 (47.99%)
pass 3: 1168 (16.44%) 2275 (32.03%)
pass 4: 572 (8.05%) 1168 (16.44%)
pass 5: 302 (4.25%) 572 (8.05%)
pass 6: 163 (2.29%) 302 (4.25%)
pass 7: 78 (1.10%) 163 (2.29%)
pass 8: 37 (0.52%) 78 (1.10%)
pass 9: 18 (0.25%) 37 (0.52%)
pass 10: 7 (0.10%) 18 (0.25%)
pass 11: 6 (0.08%) 7 (0.10%)
pass 12: 2 (0.03%) 6 (0.08%)
average: 1249 (17.59%) 822 (11.59%)
total : 16241 (228.65%) 10698 (150.61%)

Mean segment length = 10000
 Merge tiles Copy tiles
pass 0: 7102 (99.99%) 1 (0.01%)
pass 1: 6927 (97.52%) 176 (2.48%)
pass 2: 6639 (93.47%) 372 (5.24%)
pass 3: 6022 (84.78%) 831 (11.70%)
pass 4: 5019 (70.66%) 1508 (21.23%)
pass 5: 3758 (52.91%) 2084 (29.34%)
pass 6: 2217 (31.21%) 2625 (36.96%)
pass 7: 1329 (18.71%) 1892 (26.64%)
pass 8: 619 (8.71%) 1329 (18.71%)
pass 9: 232 (3.27%) 619 (8.71%)
pass 10: 110 (1.55%) 232 (3.27%)
pass 11: 148 (2.08%) 110 (1.55%)
pass 12: 88 (1.24%) 148 (2.08%)
average: 3093 (43.55%) 917 (12.92%)
total : 40210 (566.10%) 11927 (167.91%)

SegmentedSort launch with verbose = true work reporting

The coarse-grained partitioning kernel used by MGPU Merge and Mergesort is augmented to also enqueue
merge and copy work-items. The number of merge and copy tasks for a segmented sort grows with the mean
segment length. In the above figure, the number of enqueued merge and copy operations is printed for each
pass, for 10,000,000 inputs with average segment lengths of 300 and 10000 elements.

Once the merged list length exceeds the mean segment length, the number of merge operations required each
pass begins to decrease by powers of two. The case with segment length of 300 exhibits this geometric

decrease after the first global merge pass; the entire sort only requires the equivalent of only 2.28 global
passes over the data. For the case with segment length of 10,000, this geometric decrease in workload takes
longer to manifest, and 5.66 passes are required to sort the data.

Although this same early-exit tactic could be used within the segmented blocksort, we wouldn't expect an
equivalent increase in performance there. Threads that discover that they're mapped over only non-active
segments could choose to no-op, but due to SIMD execution rules, a diverged warp runs only as fast as its
slowest lane. It may be feasible to dynamically reconfigure the segmented blocksort to benefit from early-
exit, but that is beyond the scope of this effort.

During the global merge passes, tiles that map over fully-sorted segments (or any other 'stable' data) can
early-exit rather than merging. Only CTAs that map over "active segments" (segments straddling the merge
interface of two sorted input lists) need to be merged. Since the number of active segments decrees
geometrically (the number of lists is cut in half each iteration as the length of the lists double), a
geometrically increasing percentage of CTAs may early-exit. We implement a special work-queueing system
to process active tiles on a fixed-size launch of persistent CTAs—this eliminates the start-up cost for CTAs
that simply exit out.

Mergesort is an out-of-place operation. After blocksorting we load from one buffer and store to another,
swap, and repeat until the data is fully sorted. A temporary buffer is allocated with enough capacity to hold a
flag per tile. If the domain of the tile has the same elements in both of the double buffers, the flag is set.
Early-exit with tile granularity is enabled by this status flag: if the flag is set and the tile source interval maps
to the destination interval, the tile operation can be elided.

The work-queueing system supports two different operations on tiles:

1. Merge - If the tile's source interval (as returned by ComputeMergeRange) does not map directly
into the destination interval, we merge the two source lists and clear the tile's status flag.

2. Copy - If the tile's source interval maps directly into the destination interval and the status flag is
cleared (indicating the source and destination tile ranges do not contain the same elements), the
source interval is copied to the destination and the status flag is set.

Each global merge pass launches two kernels: the first performs global partitioning and schedules merge and
copy tasks by pushing to two work queues; the second cooperatively executes all queued merge and copy
tasks.

Filling the work queue

include/kernels/segmentedsort.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/segmentedsort.cuh

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

template<int NT, bool Segments, typename KeyType, typename Comp>
__global__ void KernelSegSortPartitionBase(const KeyType* keys_global,
 SegSortSupport support, int count, int nv, int numPartitions, Comp
comp) {

 union Shared {
 int partitions[NT];
 typename CTAScan<NT, ScanOpAdd>::Storage scan;
 };
 __shared__ Shared shared;

 int tid = threadIdx.x;
 int partition = tid + (NT - 1) * blockIdx.x;

 // Compute one extra partition per CTA. If the CTA size is 128
threads, we
 // compute 128 partitions and 127 blocks. The next CTA then
starts at
 // partition 127 rather than 128. This relieves us from having to
launch
 // a second kernel to build the work queues.
 int p0;
 int3 frame;
 if(partition < numPartitions) {
 frame = FindMergesortFrame(2, partition, nv);
 int listLen = frame.z;
 int a0 = frame.x;
 int b0 = min(frame.y, count);
 int diag = nv * partition - a0;
 int aCount = min(listLen, count - a0);
 int bCount = min(listLen, count - b0);

 if(Segments) {
 // Segmented merge path calculation. Use the ranges as
constraints.
 int leftRange = support.ranges_global[~1 & partition];
 int rightRange = support.ranges_global[
 min(numPartitions - 2, 1 | partition)];

 // Unpack the left and right ranges. Transform them into
the global
 // coordinate system by adding a0 or b0.
 int leftStart = 0x0000ffff & leftRange;
 int leftEnd = leftRange>> 16;
 if(nv == leftStart) leftStart = count;
 else leftStart += a0;
 if(-1 != leftEnd) leftEnd += a0;

 int rightStart = 0x0000ffff & rightRange;
 int rightEnd = rightRange>> 16;
 if(nv == rightStart) rightStart = count;
 else rightStart += b0;
 if(-1 != rightEnd) rightEnd += b0;

After launching the segmented blocksort, the host launches KernelSegSortPartitionBase for the
first global merge pass or KernelSegSortPartitionDerived for all subsequent passes. Each thread
computes one partition, but since a tile needs both a starting and ending partition, a CTA of NT threads can
enqueue only NT - 1 tiles.

For the base-pass kernel above, the 16-bit active ranges for each blocksort tile are unpacked and transformed
by addition from tile-local coordinates to global coordinates. Neighboring active ranges (covering the two
sorted lists that serve as sources for the sort's first merge pass) are then stored as int2 types in
support.ranges2_global, into which a binary tree of active ranges is constructed; this corresponds
exactly to the active-range tree constructed by CTASegsortPass in the segmented blocksort.

SegmentedMergePath searches global data for the intersection of the Merge Path and the thread's cross-
diagonal. If the cross-diagonal does not pass through the active segment (like any of the cross-diagonals that
intersect the A- and B-axes as dotted lines in the segmented Merge Path figure above), the search returns
immediately. As we progress in the mergesort, the percentage of cross-diagonals intersecting the active list
vanishes, and we effectively benefit from early-exit of partitioning in addition to merging.

include/kernels/segmentedsort.cuh

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

template<int NT>
MGPU_DEVICE void DeviceSegSortCreateJob(SegSortSupport support,
 int count, bool active, int3 frame, int tid, int pass, int nv, int
block,
 int p0, int p1, int* shared) {

 typedef CTAScan<NT, ScanOpAdd> S;
 typename S::Storage* scan = (typename S::Storage*)shared;

 // Compute the gid'th work time.
 bool mergeOp = false;
 bool copyOp = false;
 int gid = nv * block;
 int4 mergeRange;
 if(active) {
 int4 range = FindMergesortInterval(frame, 2<< pass, block, nv,
count,
 p0, p1);
 int a0 = range.x;
 int a1 = range.y;
 int b0 = range.z;
 int b1 = range.w;
 if(a0 == a1) {
 a0 = b0;
 a1 = b1;
 b0 = b1;
 }

 mergeRange = make_int4(a0, a1, b0, block);
 mergeOp = (b1 != b0) || (a0 != gid);
 copyOp = !mergeOp && (!pass || !
support.copyStatus_global[block]);
 }

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/segmentedsort.cuh

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

 int mergeTotal, copyTotal;
 int mergeScan = S::Scan(tid, mergeOp, *scan, &mergeTotal);
 int copyScan = S::Scan(tid, copyOp, *scan, ©Total);
 if(!tid) {
 shared[0] = atomicAdd(&support.queueCounters_global->x,
mergeTotal);
 shared[1] = atomicAdd(&support.queueCounters_global->y,
copyTotal);
 }
 __syncthreads();

 if(mergeOp) {
 support.copyStatus_global[block] = 0;
 support.mergeList_global[shared[0] + mergeScan] = mergeRange;
 }
 if(copyOp) {
 support.copyStatus_global[block] = 1;
 support.copyList_global[shared[1] + copyScan] = block;
 }
}

DeviceSegSortCreateJob is called at the end of both partition kernels. This is where we put the early-
exit logic. The function is passed the begin and end Merge Path indices. FindMergesortInterval
takes the Merge Path indices and computes the intervals that serve as the A and B input lists. If either A or B
interval is empty, then we're loading from just one input. Since both inputs are sorted (remember we are
merging pairs of sorted lists), then the tile is already sorted. In this case we elide the merge operation.

If we're on the first pass or copyStatus_global[block] is false, then the destination buffer doesn't
have the same data as the source buffer over the tile's output interval. We enqueue a copy operation by
stepping on atomicAdd and storing the tile index to copy to copyList_global. If neither source
interval is empty we must enqueue a merge by pushing the work interval to mergeList_global and clear
the status bit.

Important: The early-exit heuristic examines only the mapping of the source lists into each tile. Early-exit
does not require segmentation. Segmentation is a statement of sortedness in the input, but if keys were
passed in the same relative order without providing segment indices, the early-exit behavior would be
identical.

Locality sort is a specialization of segmented sort that does not support (or bear the costs of) segmentation.
It uses the same partitioning and queueing kernels as segmented sort, but takes a branch that uses the
standard Merge Path search. Locality sort also uses the standard mergesort blocksort. Use locality sort when
inputs start near to their output locations. This is a qualititative characterization of a dataset. Programmers are
encouraged to try both vanilla mergesort and locality sort and use the variant with the higher throughput.

Servicing the work queue

include/kernels/segmentedsort.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/segmentedsort.cuh
http://nvlabs.github.io/moderngpu/mergesort.html#blocksort

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

template<typename Tuning, bool Segments, bool HasValues, typename
KeyType,
 typename ValueType, typename Comp>
MGPU_LAUNCH_BOUNDS void KernelSegSortMerge(const KeyType* keys_global,
 const ValueType* values_global, SegSortSupport support, int count,
 int pass, KeyType* keysDest_global, ValueType* valsDest_global,
Comp comp) {

 typedef MGPU_LAUNCH_PARAMS Params;
 const int NT = Params::NT;
 const int VT = Params::VT;
 const int NV = NT * VT;
 union Shared {
 KeyType keys[NT * (VT + 1)];
 int indices[NV];
 int4 range;
 };
 __shared__ Shared shared;

 int tid = threadIdx.x;

 // Check for merge work.
 while(true) {
 if(!tid) {
 int4 range = make_int4(-1, 0, 0, 0);
 int next = atomicAdd(&support.queueCounters_global->x, -1)
- 1;
 if(next >= 0) range = support.mergeList_global[next];
 shared.range = range;
 }
 __syncthreads();

 int4 range = shared.range;
 __syncthreads();

 if(range.x < 0) break;

 int block = range.w;
 int gid = NV * block;
 int count2 = min(NV, count - gid);
 range.w = count2 - (range.y - range.x) + range.z;

 if(Segments)
 // Segmented merge
 DeviceSegSortMerge<NT, VT, HasValues>(keys_global,
values_global,
 support, tid, block, range, pass, shared.keys,
shared.indices,
 keysDest_global, valsDest_global, comp);
 else
 // Unsegmented merge (from device/ctamerge.cuh)
 DeviceMerge<NT, VT, HasValues>(keys_global, values_global,
 keys_global, values_global, tid, block, range,

Typically we size a grid launch to the data size. Because early-exit dynamically sizes the tasks, we'd have to
copy task counts from device to host memory each iteration to change the launch size. This would
synchronize the device and hurt performance. Instead we launch a fixed number of "persistent CTAs" (a
small multiple of the number of SMs, queried with CudaContext::NumSMs()) and atomically peel tasks
off the queues until both queues are empty.

All threads loop until the merge queue is empty, then loop until the copy queue is empty. Thread 0
decrements the queue counter and stores a code in shared memory. After synchronization, all threads read
this code out and act accordingly.

Locality sort is supported by settings Segments = false: this directs the kernel to use DeviceMerge
rather than DeviceSegSortMerge.

http://nvlabs.github.io/moderngpu/merge.html#algorithm

9. Vectorized Sorted Search
Run many concurrent searches where both the needles and haystack arrays are sorted. This input condition
lets us recast the function as a sequential process resembling merge, rather than as a traditional binary search.
Complexity improves from A log B to A + B, and because we touch every input, a search can retrieve not
just the lower-bound of A into B but simultaneously the upper-bound of B into A, plus flags for all elements
indicating if matches in the other array exist.

Benchmark and usage

Vectorized sorted search (lower_bound A into B) benchmark from tests/benchmarksortedsearch.cu

Vectorized sorted search demostration from tests/demo.cu

359
360
361
362
363
364
365
366
367
368
369
370

void DemoSortedSearch(CudaContext& context) {
 printf("\n\nSORTED SEARCH DEMONSTRATION:\n\n");

 // Use CudaContext::SortRandom to generate a haystack of 200
random integers
 // between 0 and 999 and an array of 100 needles in the same
range.
 int HaystackSize = 200;
 int NeedlesSize = 100;
 MGPU_MEM(int) haystack = context.SortRandom<int>(HaystackSize, 0,
299);
 MGPU_MEM(int) needles = context.SortRandom<int>(NeedlesSize, 0,

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarksortedsearch.cu

371
372
373
374
375
376
377
378
379
380

299);

 printf("Haystack array:\n");
 PrintArray(*haystack, "%4d", 10);
 printf("\nNeedles array:\n");
 PrintArray(*needles, "%4d", 10);

 // Run a vectorized sorted search to find lower bounds.
 SortedSearch<MgpuBoundsLower>(needles->get(), NeedlesSize,
haystack->get(),
 HaystackSize, needles->get(), context);

 printf("\nLower bound array:\n");
 PrintArray(*needles, "%4d", 10);
}

SORTED SEARCH DEMONSTRATION:

Haystack array:
 0: 0 5 5 7 7 7 7 8 9 9
 10: 10 11 12 14 15 15 16 17 19 19
 20: 20 24 25 28 28 29 31 33 36 36
 30: 37 38 40 42 42 43 45 46 49 50
 40: 51 51 51 52 53 55 56 57 60 60
 50: 61 61 62 62 64 66 68 69 73 74
 60: 79 81 82 84 85 88 90 90 95 97
 70: 99 101 105 108 108 111 115 118 118 119
 80: 119 119 119 122 122 123 125 126 126 130
 90: 133 133 135 135 139 140 143 145 145 146
 100: 147 149 149 149 154 158 160 161 165 166
 110: 168 169 170 172 172 174 174 174 175 175
 120: 175 177 179 182 183 184 186 187 188 190
 130: 192 193 194 196 198 199 199 205 205 208
 140: 209 215 217 218 218 218 220 220 221 221
 150: 223 224 225 230 234 234 235 240 240 243
 160: 244 249 250 251 252 253 253 254 255 255
 170: 255 257 258 258 259 262 263 265 267 270
 180: 270 274 278 278 278 279 280 281 284 284
 190: 284 285 285 292 294 295 296 296 296 298

Needles array:
 0: 3 3 12 16 16 17 17 19 20 21
 10: 24 27 27 28 30 31 35 39 40 42
 20: 52 52 53 53 54 55 57 58 62 63
 30: 72 75 83 86 86 89 92 95 98 98
 40: 99 99 99 100 104 105 107 109 110 111
 50: 112 117 118 121 124 126 129 132 133 139
 60: 140 148 156 160 161 167 168 173 179 186
 70: 191 198 202 202 212 212 214 220 223 229
 80: 233 239 245 254 256 256 260 268 269 269
 90: 271 271 272 273 277 285 296 296 299 299

Lower bound array:
 0: 1 1 12 16 16 17 17 18 20 21
 10: 21 23 23 23 26 26 28 32 32 33
 20: 43 43 44 44 45 45 47 48 52 54
 30: 58 60 63 65 65 66 68 68 70 70
 40: 70 70 70 71 72 72 73 75 75 75

 50: 76 77 77 83 86 87 89 90 90 94
 60: 95 101 105 106 107 110 110 115 122 126
 70: 130 134 137 137 141 141 141 146 150 153
 80: 154 157 161 167 171 171 175 179 179 179
 90: 181 181 181 181 182 191 196 196 200 200

Vectorized sorted search (complete search) benchmark from tests/benchmarksortedsearch.cu

Vectorized sorted search demostration (2) from tests/demo.cu

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarksortedsearch.cu

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

void DemoSortedSearch2(CudaContext& context) {
 printf("\n\nSORTED SEARCH DEMONSTRATION (2):\n\n");

 int ACount = 100;
 int BCount = 100;
 MGPU_MEM(int) aData = context.SortRandom<int>(ACount, 0, 299);
 MGPU_MEM(int) bData = context.SortRandom<int>(BCount, 0, 299);
 MGPU_MEM(int) aIndices = context.Malloc<int>(ACount);
 MGPU_MEM(int) bIndices = context.Malloc<int>(BCount);

 printf("A array:\n");
 PrintArray(*aData, "%4d", 10);
 printf("\nB array:\n");
 PrintArray(*bData, "%4d", 10);

 // Run a vectorized sorted search to find lower bounds.
 SortedSearch<MgpuBoundsLower, MgpuSearchTypeIndexMatch,
 MgpuSearchTypeIndexMatch>(aData->get(), ACount, bData->get(),
BCount,
 aIndices->get(), bIndices->get(), context);

 printf("\nLower bound of A into B (* for match):\n");
 PrintArrayOp(*aIndices, FormatOpMaskBit("%c%3d"), 10);
 printf("\nUpper bound of B into A (* for match):\n");
 PrintArrayOp(*bIndices, FormatOpMaskBit("%c%3d"), 10);
}

SORTED SEARCH DEMONSTRATION (2):

A array:
 0: 0 3 5 13 14 15 16 18 18 21
 10: 24 26 26 30 31 32 38 38 38 40
 20: 60 72 72 74 81 83 86 88 88 89
 30: 89 99 99 101 101 102 114 115 118 118
 40: 119 128 136 139 145 148 149 150 151 151
 50: 157 160 164 165 167 177 181 181 182 182
 60: 189 190 191 192 196 197 199 200 207 212
 70: 213 213 216 218 220 222 223 228 231 233
 80: 233 234 234 234 239 239 240 247 249 264
 90: 265 267 271 271 275 277 282 284 293 298

B array:
 0: 1 2 15 23 24 25 25 25 25 27
 10: 27 29 30 31 33 33 35 39 45 49
 20: 58 59 61 61 62 63 64 67 67 68
 30: 70 71 82 85 87 87 88 91 98 98
 40: 109 110 110 116 116 118 121 121 126 129
 50: 129 134 145 155 159 165 174 174 179 181
 60: 183 186 192 192 196 196 201 202 204 205
 70: 205 208 209 212 216 218 220 222 224 227
 80: 231 233 233 234 235 236 250 251 251 253
 90: 260 263 272 275 276 285 289 291 291 293

Lower bound of A into B (* for match):
 0: 0 2 2 2 2 * 2 3 3 3 3

 10: * 4 9 9 * 12 * 13 14 17 17 17 18
 20: 22 32 32 32 32 33 34 * 36 * 36 37
 30: 37 40 40 40 40 40 43 43 * 45 * 45
 40: 46 49 52 52 * 52 53 53 53 53 53
 50: 54 55 55 * 55 56 58 * 59 * 59 60 60
 60: 62 62 62 * 62 * 64 66 66 66 71 * 73
 70: 74 74 * 74 * 75 * 76 * 77 78 80 * 80 * 81
 80: * 81 * 83 * 83 * 83 86 86 86 86 86 92
 90: 92 92 92 92 * 93 95 95 95 * 99 100

Upper bound of B into A (* for match):
 0: 1 1 * 6 10 * 11 11 11 11 11 13
 10: 13 13 * 14 * 15 16 16 16 19 20 20
 20: 20 20 21 21 21 21 21 21 21 21
 30: 21 21 25 26 27 27 * 29 31 31 31
 40: 36 36 36 38 38 * 40 41 41 41 42
 50: 42 42 * 45 50 51 * 54 55 55 56 * 58
 60: 60 60 * 64 * 64 * 65 * 65 68 68 68 68
 70: 68 69 69 * 70 * 73 * 74 * 75 * 76 77 77
 80: * 79 * 81 * 81 * 84 84 84 89 89 89 89
 90: 89 89 94 * 95 95 98 98 98 98 * 99

Host functions

include/mgpuhost.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/mgpuhost.cuh

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

///
///////////
// kernels/sortedsearch.cuh

// Vectorized sorted search. This is the most general form of the
function.
// Executes two simultaneous linear searches on two sorted inputs.

// Bounds:
// MgpuBoundsLower -
// lower-bound search of A into B.
// upper-bound search of B into A.
// MgpuBoundsUpper -
// upper-bound search of A into B.
// lower-bound search of B into A.
// Type[A|B]:
// MgpuSearchTypeNone - no output for this input.
// MgpuSearchTypeIndex - return search indices as integers.
// MgpuSearchTypeMatch - return 0 (no match) or 1 (match).
// For TypeA, returns 1 if there is at least 1 matching
element in B
// for element in A.
// For TypeB, returns 1 if there is at least 1 matching
element in A
// for element in B.
// MgpuSearchTypeIndexMatch - return search indices as integers.
Most
// significant bit is match bit.
// aMatchCount, bMatchCount - If Type is Match or IndexMatch, return
the total
// number of elements in A or B with matches in B or A, if the
pointer is
// not null. This generates a synchronous cudaMemcpyDeviceToHost
call that
// callers using streams should be aware of.
template<MgpuBounds Bounds, MgpuSearchType TypeA, MgpuSearchType
TypeB,
 typename InputIt1, typename InputIt2, typename OutputIt1,
 typename OutputIt2, typename Comp>
MGPU_HOST void SortedSearch(InputIt1 a_global, int aCount, InputIt2
b_global,
 int bCount, OutputIt1 aIndices_global, OutputIt2 bIndices_global,
 Comp comp, CudaContext& context, int* aMatchCount = 0,
 int* bMatchCount = 0);

// SortedSearch specialized with Comp = mgpu::less<T>.
template<MgpuBounds Bounds, MgpuSearchType TypeA, MgpuSearchType
TypeB,
 typename InputIt1, typename InputIt2, typename OutputIt1,
 typename OutputIt2>
MGPU_HOST void SortedSearch(InputIt1 a_global, int aCount, InputIt2
b_global,
 int bCount, OutputIt1 aIndices_global, OutputIt2 bIndices_global,

Algorithm

Searching data is a critical part of all computing systems. On the GPU, because of the extreme width of the
processor, we need to be a bit creative to fully utilize the device while executing a search. The Thrust library
includes vectorized binary searches in which all threads in the grid run their own independent binary search
on sorted inputs. The user passes multiple "needles" (the keys you search for) and a sorted "haystack" (what
you are looking in). Thousands of needles are required to fill the width of the machine.

Even when batching a large array of queries, performance will drag if the needles are unsorted—random
access to the haystack results in many cache misses. GPU cache lines are 128 bytes, and if querying 4-byte
data types, sustained throughput will only hit 3% of peak bandwidth.

This project focuses on functions that take one or more sorted inputs and emit a sorted output. Consider
taking this requirement to vectorized binary searching: rather than accept the divergent memory accesses
caused by queries on random needles, we could sort needles to keep the L2 cache hot. Instead of using 3% of
each fetched cache line, we'd expect high re-use of cache lines between neighboring threads. The same
embarrassingly-parallel vectorized search function achieves much higher throughput with better data
organization. Searching for sorted needles in a haystack is a well-motivated problem. Consider joining two
database tables—these are likely both sorted coming off disk, will need to be in sorted order to perform a
sort-merge join, and want sorted results to return as a rowset.

The work presented in previous MGPU pages inspired a specific algorithmic optimization to this problem of
vectorized searching. If the needles are sorted, the lower- or upper-bound results must also be sorted. That is,
if a binary search for key1 returns index1, a search for key2 >= key1 must return index2 >= index1. In the

sequential implementation, if we're searching for key2 having already computed the result for key1, we can

improve performance slightly by searching the interval (index1, end) rather than (begin, end), since index2

cannot appear in (begin, index1).

There is a still stronger optimization: turn the binary search (O(A log B) complexity, where A is the needle
array and B is the haystack) into a linear search (O(A + B) complexity). Starting with pointers A and B at the
heads of the needle and haystack arrays, respectively:

• If B (haystack) is less than A (needle), advance B. Because the elements in A are sorted, we aren't
advancing B past any possible results for yet-to-be-encountered elements in A.

• Otherwise, the B pointer is the result for the A query. Set results[A] = B and advance to the next
query in A.

Sorted search for CPU from tests/benchmarksortedsearch.cu

https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarksortedsearch.cu
http://thrust.github.io/doc/group__vectorized__binary__search.html

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

// Return lower-bound of A into B.
template<MgpuBounds Bounds, typename T, typename Comp>
void CPUSortedSearch(const T* a, int aCount, const T* b, int bCount,
 int* indices, Comp comp) {

 int aIndex = 0, bIndex = 0;
 while(aIndex < aCount) {
 bool p;
 if(bIndex >= bCount)
 p = true;
 else
 p = (MgpuBoundsUpper == Bounds)?
 comp(a[aIndex], b[bIndex]) :
 !comp(b[bIndex], a[aIndex]);

 if(p) indices[aIndex++] = bIndex;
 else ++bIndex;
 }
}

This code is obviously more efficient than processing each needle as a binary search. But what we've gained
in work-efficiency we may have lost in parallelism: binary searches are embarassingly parallel while this
linear search code processes queries sequentially.

It's instructive to compare CPUSortedSearch with SerialMerge, the GPU function that powers
MGPU's merge and mergesort:

include/device/ctamerge.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctamerge.cuh

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

template<int VT, bool RangeCheck, typename T, typename Comp>
MGPU_DEVICE void SerialMerge(const T* keys_shared, int aBegin, int aEnd,
 int bBegin, int bEnd, T* results, int* indices, Comp comp) {

 T aKey = keys_shared[aBegin];
 T bKey = keys_shared[bBegin];

 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 bool p;
 if(RangeCheck)
 p = (bBegin >= bEnd) || ((aBegin < aEnd) && !comp(bKey,
aKey));
 else
 p = !comp(bKey, aKey);

 results[i] = p ? aKey : bKey;
 indices[i] = p ? aBegin : bBegin;

 if(p) aKey = keys_shared[++aBegin];
 else bKey = keys_shared[++bBegin];
 }
 __syncthreads();
}

Although they have some differences, both routines check out-of-range pointers and set the predicate
appropriately. If both pointers are in-range, keys are compared with the comparator object. For sorted search,
if A (the needle) is smaller, the output is set and A is incremented; if B (the haystack) is smaller, B is
incremented. For serial merge, if A is smaller, output is stored and A is incremented; if B is smaller, output is
stored and B is incremented. The only material difference between these routines is how results are returned:
the traversals over the input arrays are identical.

We parallelize the vectorized sorted search just like we do the merge. Coarse- and fine-grained scheduling
and partitioning code is reused from MGPU Merge. However because we stream over A and B data but only
emit A elements, we need an additional in-CTA pass to compact results.

There is a surprising and welcomed benefit from using a linear search, beyond just the improved work-
efficiency: If we search for the lower-bound of A into B, we can also recover the upper-bound of B into A in
the same pass. This is possible with linear search because we encounter every element from B; it does not
hold with binary search.

Sorted search (2) for CPU from tests/benchmarksortedsearch.cu

https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarksortedsearch.cu

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

// Return lower-bound of A into B and upper-bound of B into A.
template<typename T, typename Comp>
void CPUSortedSearch2(const T* a, int aCount, const T* b, int bCount,
 int* aIndices, int* bIndices, Comp comp) {

 int aIndex = 0, bIndex = 0;
 while(aIndex < aCount || bIndex < bCount) {
 bool p;
 if(bIndex >= bCount) p = true;
 else if(aIndex >= aCount) p = false;
 else p = !comp(b[bIndex], a[aIndex]);

 if(p) aIndices[aIndex++] = bIndex;
 else bIndices[bIndex++] = aIndex;
 }
}

The inputs are traversed in the same order as in CPUSortedSearch (and in merge), but there is now an
output on every iteration. This function looks very much like merge. We even lose the sense of 'needles' and
'haystack,' as the arrays are treated symmetrically. Scheduling and partioning the parallel version will be
handled the same as merge. This is further evidence for the argument presented in the introduction and
reiterated through these pages: we gain flexibility, clarity, and performance by separating
partitioning/scheduling and work logic.

Sorted search (3) for CPU from tests/benchmarksortedsearch.cu

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

// Return lower-bound of A into B and set the high bit if A has a match
in B.
// Return upper-bound of B into A and set the high bit if B has a match
in A.
template<typename T, typename Comp>
void CPUSortedSearch3(const T* a, int aCount, const T* b, int bCount,
 int* aIndices, int* bIndices, Comp comp) {

 int aIndex = 0, bIndex = 0;
 while(aIndex < aCount || bIndex < bCount) {
 bool p;
 if(bIndex >= bCount) p = true;
 else if(aIndex >= aCount) p = false;
 else p = !comp(b[bIndex], a[aIndex]);

 if(p) {
 // Compare the current key in A with the current key in B.
 bool match = bIndex < bCount && !comp(a[aIndex],
b[bIndex]);
 aIndices[aIndex++] = bIndex + ((int)match<< 31);
 } else {
 // Compare the current key in B with the previous key in
A.
 bool match = aIndex && !comp(a[aIndex - 1], b[bIndex]);
 bIndices[bIndex++] = aIndex + ((int)match<< 31);
 }

https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarksortedsearch.cu

 }
}

The second version of the sorted search is augmented with additional compares. It sets the most significant
bit of the output index if the corresponding key in A or B has a match in the complementary array. We're
supporting comparators (C++-style), so to test equality we must verify that both !(A < B) and !(B < A).
Fortunately the state of the two pointers implies one half of the expression for both match tests.

• Advancing A (lower-bound search): We know that B cannot be less than A (or else we would be
advancing B!). We can test for equality simply by testing that A is not less than B: !
comp(a[aIndex], b[bIndex]).

• Advancing B (upper-bound search): The match in A (if there is one) must be the previous element
in A, a[aIndex - 1]. However because we got to this point, we know that B is not less than the
previous element in A: if it were, then when examining the previous A we would have advanced B
rather than A, and we wouldn't be at this state. The expression !comp(a[aIndex - 1],
b[bIndex]) is all that is needed to test equality.

Vectorized sorted search is a detailed and information-heavy function. That it runs nearly as fast as merge
encourages its use in many situations. It has a pleasing symmetry with merge, and in fact we can re-
implement merge using vectorized sorted search to produce indices and Bulk Insert to insert data at these
indices.

Load-balancing search, an amazingly useful intra-CTA utility, is a straight-forward specialization of
vectorized sorted search. We demonstate pairing vectorized sorted search with load-balancing search to
implement relational joins in a later page.

Parallel sorted search

include/kernels/sortedsearch.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/sortedsearch.cuh
http://nvlabs.github.io/moderngpu/join.html
http://nvlabs.github.io/moderngpu/loadbalance.html
http://nvlabs.github.io/moderngpu/bulkinsert.html

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

template<int NT, int VT, MgpuBounds Bounds, bool IndexA, bool MatchA,
 bool IndexB, bool MatchB, typename InputIt1, typename InputIt2,
typename T,
 typename Comp>
MGPU_DEVICE int2 DeviceLoadSortedSearch(int4 range, InputIt1 a_global,
 int aCount, InputIt2 b_global, int bCount, int tid, int block,
 T* keys_shared, int* indices_shared, Comp comp) {

 int a0 = range.x;
 int a1 = range.y;
 int b0 = range.z;
 int b1 = range.w;
 int aCount2 = a1 - a0;
 int bCount2 = b1 - b0;

 // For matching:
 // If UpperBound
 // MatchA requires preceding B
 // MatchB requires trailing A
 // If LowerBound
 // MatchA requires trailing B
 // MatchB requires preceding A
 int leftA = MatchB && (MgpuBoundsLower == Bounds) && (a0 > 0);
 int leftB = MatchA && (MgpuBoundsUpper == Bounds) && (b0 > 0);
 int rightA = a1 < aCount;
 int rightB = b1 < bCount;

 int aStart = leftA;
 int aEnd = aStart + aCount2 + rightA;
 int bStart = aEnd + leftB;
 int bEnd = bStart + bCount2 + rightB;

 // Cooperatively load all the data including halos.
 DeviceLoad2ToShared<NT, VT, VT + 1>(a_global + a0 - leftA, aEnd,
 b_global + b0 - leftB, bEnd - aEnd, tid, keys_shared);

 // Run the serial searches and compact the indices into shared
memory.
 bool extended = rightA && rightB && (!MatchA || leftB) &&
 (!MatchB || leftA);
 int2 matchCount = CTASortedSearch<NT, VT, Bounds, IndexA, MatchA,
IndexB,
 MatchB>(keys_shared, aStart, aCount2, aEnd, a0, bStart,
bCount2, bEnd,
 b0, extended, tid, indices_shared, comp);

 return matchCount;
}

One vectorized sorted search kernel supports many modes of operation. The host function that launches
KernelSortedSearch separates the MgpuSearchType enums into individual flags for IndexA,
MatchA, IndexB, and MatchB. The kernel calls DeviceLoadSortedSearch which loads the

intervals from the A and B arrays, runs a MergePath search on each thread, and performs a serial search
over VT inputs per thread.

Different modes have different requirements:

 Lower-bound Upper-bound

MatchA trailing B preceding B

MatchB preceding A trailing A

Merge Path partitioning divides A and B inputs into distinct, non-overlapping intervals. Loading just these
intervals into a tile's shared memory is insufficient to support match operations. For a lower-bound search,
equal elements are consumed from A before B. If an element A[i] has a match in B at B[j], B[j] will appear
after A[i] in the Merge Path. The thread checking the match of A[i] needs access to B[j], even if B[j] is
mapped to a subsequent tile.

The search types are decomposed and the interval pointers incremented or decremented to accommodate the
extra terms requried to verify matches. DeviceLoad2ToShared cooperatively loads intervals from two
source arrays and stores to shared memory. It incorporates an optimization to handle extended cases like this:
for a nominal tile (i.e. all tiles except the partial tile at the end) each thread loads VT items—these VT loads
are included in an unpredicated form, written to encourage maximum outstanding loads and reduce latency.
At most the kernel loads only four additional items beyond this (one each for the preceding and trailing items
from A and B), and only this final load is predicated. In other words: DeviceLoad2ToShared<NT,
VT, VT + 1> generates an optimized path for full tiles, in which the first VT loads are unpredicated and
the last load is predicated.

If a "halo" element has been loaded after the last A and B inputs, the extended flag is set and we omit
range checks in the serial search code. CTASortedSearch computes search indices and matches into
shared memory and returns match counts (of both A into B and B into A) to the caller. The calling function,
KernelSortedSearch, copies the indices and match flags out of shared memory and into their
respective output arrays.

CTASortedSearch

include/device/ctasortedsearch.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctasortedsearch.cuh

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

template<int NT, int VT, MgpuBounds Bounds, bool IndexA, bool MatchA,
 bool IndexB, bool MatchB, typename T, typename Comp>
MGPU_DEVICE int2 CTASortedSearch(T* keys_shared, int aStart, int
aCount,
 int aEnd, int a0, int bStart, int bCount, int bEnd, int b0, bool
extended,
 int tid, int* indices_shared, Comp comp) {

 // Run a merge path to find the start of the serial search for
each thread.
 int diag = VT * tid;
 int mp = MergePath<Bounds>(keys_shared + aStart, aCount,
 keys_shared + bStart, bCount, diag, comp);
 int a0tid = mp;
 int b0tid = diag - mp;

 // Serial search into register.
 int3 results;
 int indices[VT];
 if(extended)
 results = DeviceSerialSearch<VT, Bounds, false, IndexA,
MatchA, IndexB,
 MatchB>(keys_shared, a0tid + aStart, aEnd, b0tid + bStart,
bEnd,
 a0 - aStart, b0 - bStart, indices, comp);
 else
 results = DeviceSerialSearch<VT, Bounds, true, IndexA, MatchA,
IndexB,
 MatchB>(keys_shared, a0tid + aStart, aEnd, b0tid + bStart,
bEnd,
 a0 - aStart, b0 - bStart, indices, comp);
 __syncthreads();

 // Compact the indices into shared memory. Use the decision bits
(set is A,
 // cleared is B) to select the destination.
 int decisions = results.x;
 b0tid += aCount;
 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 if((1<< i) & decisions) {
 if(IndexA || MatchA) indices_shared[a0tid++] = indices[i];
 } else {
 if(IndexB || MatchB) indices_shared[b0tid++] = indices[i];
 }
 }
 __syncthreads();

 // Return the match counts for A and B keys.
 return make_int2(results.y, results.z);
}

CTASortedSearch follows the same recipe that makes MGPU Merge (and Mergesort and Segmented
Sort) so efficient, but adds a few twists:

1. The host function calls MergePathPartitions to globally partition the input arrays into tile-
sized chunks, as in merge.

2. In the sorted search kernel, data is cooperatively loaded from A and B arrays into shared memory.

3. Each thread runs a MergePath search for every VT * tid cross-diagonal.

4. DeviceSerialSearch is invoked with the offsets from 3. Each thread traverses VT elements in
an unrolled loop and computes search results. Search indices/matches are returned in the order in
which they are encountered. The set of decision bits are returned in order in results.x.

5. After synchronization, each thread steps through its VT indices and distributes them to either the A or
B output arrays.

6. The number of A matches in B and B matches in A are returned to the caller, which may then use
CTAReduce to find a total within the tile, and atomically increment the global match counters.

include/device/ctasortedsearch.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctasortedsearch.cuh
http://nvlabs.github.io/moderngpu/segsort.html
http://nvlabs.github.io/moderngpu/segsort.html
http://nvlabs.github.io/moderngpu/mergesort.html
http://nvlabs.github.io/moderngpu/merge.html

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

template<int VT, MgpuBounds Bounds, bool RangeCheck, bool IndexA, bool
MatchA,
 bool IndexB, bool MatchB, typename T, typename Comp>
MGPU_DEVICE int3 DeviceSerialSearch(const T* keys_shared, int aBegin,
 int aEnd, int bBegin, int bEnd, int aOffset, int bOffset, int*
indices,
 Comp comp) {

 const int FlagA = IndexA ? 0x80000000 : 1;
 const int FlagB = IndexB ? 0x80000000 : 1;

 T aKey = keys_shared[aBegin];
 T bKey = keys_shared[bBegin];
 T aPrev, bPrev;
 if(aBegin > 0) aPrev = keys_shared[aBegin - 1];
 if(bBegin > 0) bPrev = keys_shared[bBegin - 1];
 int decisions = 0;
 int matchCountA = 0;
 int matchCountB = 0;

 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 bool p;
 if(RangeCheck && aBegin >= aEnd) p = false;
 else if(RangeCheck && bBegin >= bEnd) p = true;
 else p = (MgpuBoundsUpper == Bounds) ?
 comp(aKey, bKey) :
 !comp(bKey, aKey);

 if(p) {
 // aKey is smaller than bKey, so it is inserted before
bKey.
 // Save bKey's index (bBegin + first) as the result of the
search
 // and advance to the next needle in A.
 bool match = false;
 if(MatchA) {
 // Test if there is an element in B that matches aKey.
 if(MgpuBoundsUpper == Bounds) {
 bool inRange = !RangeCheck || (bBegin > aEnd);
 match = inRange && !comp(bPrev, aKey);
 } else {
 bool inRange = !RangeCheck || (bBegin < bEnd);
 match = inRange && !comp(aKey, bKey);
 }
 }

 int index = 0;
 if(IndexA) index = bOffset + bBegin;
 if(match) index |= FlagA;
 if(IndexA || MatchA) indices[i] = index;
 matchCountA += match;

DeviceSerialSearch is a massive function that services the many permutations that vectorized sorted
search supports. Search results are stored directly into the indices register array and are redistributed into
shared memory by CTASortedSearch. Rather than having to provision space for both the source and
destination in shared memory, halving occupancy, we provision only enough for the source data—outputs are
produced into register; the CTA is synchronized; and the results are stored back to the same shared memory
array.

When run on full tiles, DeviceSerialSearch is specialized with RangeCheck = false
(corresponding to extended = true in CTASortedSearch), allowing it to elide range-checking logic
that adds significant latency to execution. This is an optimization that can be made for merge, mergesort, and
segmented mergesort as well. However, it has been prioritized here because A) there's potentially much more
logic here to contend with; and B) DeviceLoadSortedSearch already is loading in halo elements to
support match operations, so adding a specialization to elide range checks took minimal effort.

While reviewing the logic for the four match tests, keep in mind that equality is established with two less-
than checks: !(aKey < bKey) && !(bKey < aKey); or when written with comparators: !
comp(aKey, bKey) && !comp(bKey, aKey).

When computing the lower-bound of A into B (and the upper-bound of B into A);

• To match A (p = true): We're inserting aKey before bKey. If there is a match for aKey it must be
bKey. Check that bKey is in range and equal to aKey. Half of the equality test has already been
computed when we made the predicate test !comp(bKey, aKey). Check the other half of the
equality condition with a second comparison: !comp(aKey, bKey).

• To match B (p = false): The predicate test has confirmed that bKey is smaller than aKey
(comp(bKey, aKey) is true). If there is a match for bKey it must be aPrev. The previous A-
advancing iteration proved that !comp(bKey, aPrev). Check the other half of the equality
condition with a second comparison: !comp(aPrev, bKey).

When computing the upper-bound of A into B (and the lower-bound of B into A) we flip the arguments
around:

• To match A (p = true): We're inserting aKey after bKey. If there is a match for aKey it must be
bPrev. Check that bPrev is in range and equal to aKey. The previous A-advancing iteration
proved that !comp(aKey, bPrev); it failed the comp(aKey, bKey) test and advanced B to
get us to this point. Check the other half of the equality condition with a second comparison: !
comp(bPrev, aKey).

• To match B (p = false): The predicate test has confirmed that aKey is not smaller than bKey. If
there is a match for bKey it must be aKey. Check the other half of the equality condition with a
second comparison: !comp(bKey, aKey).

Vectorized sorted search is a powerful merge-like function. It's put to good use when implementing relational
joins. More importantly, it motivates the useful and elegant load-balancing search, the subject of the next
page.

SortedEqualityCount

include/kernels/sortedsearch.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/sortedsearch.cuh
http://nvlabs.github.io/moderngpu/loadbalance.html
http://nvlabs.github.io/moderngpu/join.html
http://nvlabs.github.io/moderngpu/join.html

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

struct SortedEqualityOp {
 MGPU_HOST_DEVICE int operator()(int lb, int ub) const {
 return ub - lb;
 }
};

template<typename Tuning, typename InputIt1, typename InputIt2,
 typename InputIt3, typename OutputIt, typename Comp, typename Op>
MGPU_LAUNCH_BOUNDS void KernelSortedEqualityCount(InputIt1 a_global,
int aCount,
 InputIt2 b_global, int bCount, const int* mp_global, InputIt3
lb_global,
 OutputIt counts_global, Comp comp, Op op) {

 typedef MGPU_LAUNCH_PARAMS Params;
 const int NT = Params::NT;
 const int VT = Params::VT;
 const int NV = NT * VT;

 union Shared {
 int keys[NT * (VT + 1)];
 int indices[NV];
 };
 __shared__ Shared shared;

 int tid = threadIdx.x;
 int block = blockIdx.x;
 int4 range = ComputeMergeRange(aCount, bCount, block, 0, NV,
mp_global);

 // Compute the upper bound.
 int2 matchCount = DeviceLoadSortedSearch<NT, VT, MgpuBoundsUpper,
true,
 false, false, false>(range, a_global, aCount, b_global,
bCount, tid,
 block, shared.keys, shared.indices, comp);
 int aCount2 = range.y - range.x;

 // Load the lower bounds computed by the previous launch.
 int lb[VT];
 DeviceGlobalToReg<NT, VT>(aCount2, lb_global + range.x, tid, lb);

 // Subtract the lower bound from the upper bound and store the
count.
 counts_global += range.x;
 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 int index = NT * i + tid;
 if(index < aCount2) {
 int count = op(lb[i], shared.indices[index]);
 counts_global[index] = count;
 }

 }
}

C++ standard library functions std::equal_range binary searches for a single key in an array and returns the
pair of (lower-bound, upper-bound) iterators. std::count runs a similar search but returns the count of
occurrences, which is equal to the difference of the upper- and lower-bounds.

Vectorized sorted search doesn't extend naturally to support equal-range queries in a single pass because
partitioning and scheduling decisions are made specifically for either lower- or upper-bound duplicate
semantics. We can, at least, provide a modest optimization for achieving a vectorized count function. Rather
than running lower- and upper-bound searches independently and launching a third kernel to take differences,
we've provided a SortedSearch specialization that finds upper-bound indices of A into B, then loads
lower-bound indices that correspond to each output and computes and stores counts directly.

SortedEqualityCount is specialized over a user-provided difference operator. This adds flexibility to
the function, allowing it to extract index bits of a match-decorated sorted search result, or to max the
difference with a constant. (It's this usage that enables our relational left-join function.)

http://nvlabs.github.io/moderngpu/join.html
http://www.cplusplus.com/reference/algorithm/count/
http://www.cplusplus.com/reference/algorithm/equal_range/

10. Load-Balancing Search
Load-balancing search is a specialization of vectorized sorted search. It coordinates output items with the
input objects that generated them. The CTA load-balancing search is a fundamental tool for partitioning
irregular problems.

Benchmark and usage

Load-balancing search benchmark from tests/benchmarkloadbalance.cu

Load-balancing search demonstration from tests/demo.cu

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

void DemoLBS(CudaContext& context) {
 printf("\n\nLOAD-BALANCING SEARCH DEMONSTRATION:\n\n");

 // Use CudaContext::GenRandom to generate work counts between 0
and 5.
 int N = 50;
 MGPU_MEM(int) counts = context.GenRandom<int>(N, 0, 5);

 printf("Object counts\n");
 PrintArray(*counts, "%4d", 10);

 // Scan the counts.
 int total = Scan(counts->get(), N, context);
 printf("\nScan of object counts:\n");
 PrintArray(*counts, "%4d", 10);
 printf("Total: %4d\n", total);

 // Allocate space for the object references and run load-
balancing search.
 MGPU_MEM(int) refsData = context.Malloc<int>(total);
 LoadBalanceSearch(total, counts->get(), N, refsData->get(),
context);

 printf("\nObject references:\n");
 PrintArray(*refsData, "%4d", 10);

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarkloadbalance.cu

}

LOAD-BALANCING SEARCH DEMONSTRATION:

Object counts
 0: 0 3 5 2 1 3 1 5 4 5
 10: 2 5 4 0 2 3 1 4 0 5
 20: 4 3 2 4 2 4 3 3 0 3
 30: 1 4 4 4 4 2 0 3 0 5
 40: 0 0 0 0 2 2 3 0 4 4

Scan of object counts:
 0: 0 0 3 8 10 11 14 15 20 24
 10: 29 31 36 40 40 42 45 46 50 50
 20: 55 59 62 64 68 70 74 77 80 80
 30: 83 84 88 92 96 100 102 102 105 105
 40: 110 110 110 110 110 112 114 117 117 121
Total: 125

Object references:
 0: 1 1 1 2 2 2 2 2 3 3
 10: 4 5 5 5 6 7 7 7 7 7
 20: 8 8 8 8 9 9 9 9 9 10
 30: 10 11 11 11 11 11 12 12 12 12
 40: 14 14 15 15 15 16 17 17 17 17
 50: 19 19 19 19 19 20 20 20 20 21
 60: 21 21 22 22 23 23 23 23 24 24
 70: 25 25 25 25 26 26 26 27 27 27
 80: 29 29 29 30 31 31 31 31 32 32
 90: 32 32 33 33 33 33 34 34 34 34
 100: 35 35 37 37 37 39 39 39 39 39
 110: 44 44 45 45 46 46 46 48 48 48
 120: 48 49 49 49 49

Host function

include/mgpuhost.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/mgpuhost.cuh

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

//
//////////
// kernels/loadbalance.cuh

// LoadBalanceSearch is a special vectorized sorted search. Consider
bCount
// objects that generate a variable number of work items, with aCount
work
// items in total. The caller computes an exclusive scan of the work-
item counts
// into b_global.

// indices_global has aCount outputs. indices_global[i] is the index
of the
// object that generated the i'th work item.
// Eg:
// work-item counts: 2, 5, 3, 0, 1.
// scan counts: 0, 2, 7, 10, 10. aCount = 11.
//
// LoadBalanceSearch computes the upper-bound of
counting_iterator<int>(0) with
// the scan of the work-item counts and subtracts 1:
// LBS: 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 4.

// This is equivalent to expanding the index of each object by the
object's
// work-item count.

MGPU_HOST void LoadBalanceSearch(int aCount, const int* b_global, int
bCount,
 int* indices_global, CudaContext& context);

Algorithm

Consider an array of objects O[i] (i < N) that each generate a non-negative variable number of work-items
counts[i]. The sum of counts is M:

Work-item counts:
 0: 1 2 4 0 4 4 3 3 2 4
 10: 0 0 1 2 1 1 0 2 2 1
 20: 1 4 2 3 2 2 1 1 3 0
 30: 2 1 1 3 4 2 2 4 0 4

Exc-scan of counts:
 0: 0 1 3 7 7 11 15 18 21 23
 10: 27 27 27 28 30 31 32 32 34 36
 20: 37 38 42 44 47 49 51 52 53 56
 30: 56 58 59 60 63 67 69 71 75 75

Inc-scan of counts:
 0: 1 3 7 7 11 15 18 21 23 27
 10: 27 27 28 30 31 32 32 34 36 37
 20: 38 42 44 47 49 51 52 53 56 56
 30: 58 59 60 63 67 69 71 75 75 79

Total work-items: 79

It is simple to calculate the range of work-items that each object creates. We exclusive scan the work-item
counts: these are the 'begin' indices for each object's run of outputs. The 'end' indices, if desired, are the
inclusive scan of the objects' counts, or the exclusive scan plus the counts.

Consider this mapping of object counts into work-items a forward transformation. The corresponding inverse
transformation, which maps work-items into the objects that generated them, is not as straight-forward.

Lower-bound search of work-items into exc-scan of counts:
 0: 0 1 2 2 3 3 3 3 5 5
 10: 5 5 6 6 6 6 7 7 7 8
 20: 8 8 9 9 10 10 10 10 13 14
 30: 14 15 16 18 18 19 19 20 21 22
 40: 22 22 22 23 23 24 24 24 25 25
 50: 26 26 27 28 29 29 29 31 31 32
 60: 33 34 34 34 35 35 35 35 36 36
 70: 37 37 38 38 38 38 40 40 40

Lower-bound search of work-items into inc-scan of counts:
 0: 0 0 1 1 2 2 2 2 4 4
 10: 4 4 5 5 5 5 6 6 6 7
 20: 7 7 8 8 9 9 9 9 12 13
 30: 13 14 15 17 17 18 18 19 20 21
 40: 21 21 21 22 22 23 23 23 24 24
 50: 25 25 26 27 28 28 28 30 30 31
 60: 32 33 33 33 34 34 34 34 35 35
 70: 36 36 37 37 37 37 39 39 39

The 40 objects generated 79 work-items. Running a lower-bound search from each work-item index (i.e.
keys from 0 to 78) on either the exclusive or inclusive scan of object counts doesn't quite work—the indices
in red indicate mismatches. What does work is taking the upper-bound of work-item indices with the
exclusive scan of the counts and subtracting one:

Work-item counts:
 0: 1 2 4 0 4 4 3 3 2 4
 10: 0 0 1 2 1 1 0 2 2 1
 20: 1 4 2 3 2 2 1 1 3 0
 30: 2 1 1 3 4 2 2 4 0 4

Exc-scan of counts:
 0: 0 1 3 7 7 11 15 18 21 23
 10: 27 27 27 28 30 31 32 32 34 36
 20: 37 38 42 44 47 49 51 52 53 56
 30: 56 58 59 60 63 67 69 71 75 75

Load-balancing search:
 0: 0 1 1 2 2 2 2 4 4 4
 10: 4 5 5 5 5 6 6 6 7 7
 20: 7 8 8 9 9 9 9 12 13 13
 30: 14 15 17 17 18 18 19 20 21 21
 40: 21 21 22 22 23 23 23 24 24 25
 50: 25 26 27 28 28 28 30 30 31 32
 60: 33 33 33 34 34 34 34 35 35 36
 70: 36 37 37 37 37 39 39 39 39

Work-item rank (i - excscan[LBS[i]]):
 0: 0 0 1 0 1 2 3 0 1 2
 10: 3 0 1 2 3 0 1 2 0 1

 20: 2 0 1 0 1 2 3 0 0 1
 30: 0 0 0 1 0 1 0 0 0 1
 40: 2 3 0 1 0 1 2 0 1 0
 50: 1 0 0 0 1 2 0 1 0 0
 60: 0 1 2 0 1 2 3 0 1 0
 70: 1 0 1 2 3 0 1 2 3

The load-balancing search providhes each work-item with the index of the object that generated it. The object
index can then be used to find the work-item's rank within the generating object. For example, work-item 10
in the figure above was generated by object 4 (see element 10 in the load-balancing search). The scan of
counts at position 4 is 7. The difference between the work-item's index (10) and the object's scan (7) is the
work-item's rank within the object: 10 - 7 = 3.

CPULoadBalanceSearch from tests/benchmarkloadbalance.cu

40
41
42
43
44
45
46
47
48
49
50
51

void CPULoadBalanceSearch(int aCount, const int* b, int bCount, int*
indices) {
 int ai = 0, bi = 0;
 while(ai < aCount || bi < bCount) {
 bool p;
 if(bi >= bCount) p = true;
 else if(ai >= aCount) p = false;
 else p = ai < b[bi]; // aKey < bKey is upper-bound condition.

 if(p) indices[ai++] = bi - 1; // subtract 1 from the upper-
bound.
 else ++bi;
 }
}

The serial implementation for the load-balancing search is very simple. We only support integer types and
the A array is just the sequence of natural numbers. When written this way it's clear that the load-balancing
search is immediately parallelizable, and as both input arrays are monotonically non-decreasing, it is in fact a
special case of the vectorized sorted search from the previous page.

Important: Load-balancing search is kind of scan inverse. It operates on scanned work-item counts and
returns the index of the object that generated each work-item. It's more accurate to consider the load-
balancing search as an idiom or pattern rather than an algorithm. It's not a step-by-step procedure and it's not
intended to directly solve problems. Rather, the load-balancing search is a concept that helps the
programmer better understand scheduling in problems with irregular parallelism.

CTALoadBalance

CTALoadBalance is a very light-weight operator. It can be included at the top of kernels as boilerplate,
transforming thread IDs (or global output IDs) into the coordinate space of generating objects. The next two
algorithms covered, Interval Move and relational join, use this embedded form of load-balancing search.

You'll usually need to call MergePathPartitions in the host code immediately prior to launching a
kernel that uses intra-CTA load-balancing search. This global search runs an upper-bound binary search to
find the intersection of each CTA's cross-diagonal with the Merge Path curve defined by the set of all work-
item indices (a counting_iterator<int>) and the exclusive scan of work-item counts.

http://nvlabs.github.io/moderngpu/mergesort.html#mergepathpartitions
http://nvlabs.github.io/moderngpu/join.html
http://nvlabs.github.io/moderngpu/intervalmove.html
http://nvlabs.github.io/moderngpu/sortedsearch.html
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarkloadbalance.cu

include/device/ctaloadbalance.cuh

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

template<int VT, bool RangeCheck>
MGPU_DEVICE void DeviceSerialLoadBalanceSearch(const int* b_shared, int
aBegin,
 int aEnd, int bFirst, int bBegin, int bEnd, int* a_shared) {

 int bKey = b_shared[bBegin];

 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 bool p;
 if(RangeCheck)
 p = (aBegin < aEnd) && ((bBegin >= bEnd) || (aBegin <
bKey));
 else
 p = aBegin < bKey;

 if(p)
 // Advance A (the needle).
 a_shared[aBegin++] = bFirst + bBegin;
 else
 // Advance B (the haystack).
 bKey = b_shared[++bBegin];
 }
}

We'll start with the serial loop DeviceSerialLoadBalanceSearch, a GPU treatment of
CPULoadBalanceSearch. The interval of scan elements available to the thread, b_shared, are passed
to the function in shared memory. Elements of the A array are output (work-item) indices and are generated
directly from the interval range.

Because the A inputs take no space in shared memory, and because we emit one output per A input, we store
search results directly to shared memory rather than to register array. This is a break from the other routines
in this library, where we gather sources from shared memory and keep temporary outputs in register,
synchronize, then store back to shared memory to conserve space. The sequential nature of the A inputs lets
us store the upper-bound - 1 directly into shared memory, simplifying the routine.

Like vectorized sorted search, full tiles that load a halo element at the end of the CTA's B interval can elide
range checking. The nominal form of DeviceSerialLoadBalanceSearch makes only a single
comparison (aBegin < bKey) per iteration, giving us a very lightweight and low-latency function.

include/device/ctaloadbalance.cuh

79
80
81
82
83
84
85
86

template<int NT, int VT>
MGPU_DEVICE int4 CTALoadBalance(int destCount, const int* b_global,
 int sourceCount, int block, int tid, const int* mp_global,
 int* indices_shared, bool loadPrecedingB) {

 int4 range = ComputeMergeRange(destCount, sourceCount, block, 0,
NT * VT,
 mp_global);

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctaloadbalance.cuh
https://github.com/NVlabs/moderngpu/blob/master/include/device/ctaloadbalance.cuh

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

 int a0 = range.x;
 int a1 = range.y;
 int b0 = range.z;
 int b1 = range.w;

 if(loadPrecedingB) {
 if(!b0) loadPrecedingB = false;
 else --b0;
 }

 bool extended = a1 < destCount && b1 < sourceCount;
 int aCount = a1 - a0;
 int bCount = b1 - b0;

 int* a_shared = indices_shared;
 int* b_shared = indices_shared + aCount;

 // Load the b values (scan of work item counts).
 DeviceMemToMemLoop<NT>(bCount + (int)extended, b_global + b0, tid,
 b_shared);

 // Run a merge path to find the start of the serial merge for each
thread.
 int diag = min(VT * tid, aCount + bCount - (int)loadPrecedingB);
 int mp =
MergePath<MgpuBoundsUpper>(mgpu::counting_iterator<int>(a0),
 aCount, b_shared + (int)loadPrecedingB, bCount -
(int)loadPrecedingB,
 diag, mgpu::less<int>());

 int a0tid = a0 + mp;
 int b0tid = diag - mp + (int)loadPrecedingB;

 // Subtract 1 from b0 because we want to return upper_bound - 1.
 if(extended)
 DeviceSerialLoadBalanceSearch<VT, false>(b_shared, a0tid, a1,
b0 - 1,
 b0tid, bCount, a_shared - a0);
 else
 DeviceSerialLoadBalanceSearch<VT, true>(b_shared, a0tid, a1,
b0 - 1,
 b0tid, bCount, a_shared - a0);
 __syncthreads();

 return make_int4(a0, a1, b0, b1);
}

CTALoadBalance is the standard CTA-entry point for load-balancing search and a function we've
demonstrated back in the introduction.

An upper-bound MergePath search divides input arrays A (the natural numbers) and B (the scan of counts)

http://nvlabs.github.io/moderngpu/intro.html#expand

into distinct, non-overlapping ranges. ComputeMergeRange returns the tuple (a0, a1, b0, b1) of input
intervals. Scan offsets are loaded into shared memory with DeviceMemToMemLoop, a device function that
cooperatively loads intervals that are expected to be much smaller than NV elements.

MergePath<MgpuBoundsUpper> is called on counting_iterator<int>(0) to divide the input
domains into equal-size partitions. DeviceSerialLoadBalance sequentially traverses the inputs and
stores search indices to the start of shared memory, where the caller expects to see them returned.

A array:
 0: 0 1 2 3 4 5 6 7 8 9
 10: 10 11 12 13 14 15 16 17 18 19
 20: 20 21 22 23 24 25 26 27 28 29
 30: 30 31 32 33 34 35 36 37 38 39
 40: 40 41 42 43 44 45 46 47 48 49
 50: 50 51 52 53 54 55 56 57 58 59
 60: 60 61 62 63 64 65 66 67 68 69
 70: 70 71 72 73 74 75 76 77 78

B array (Exc-scan of counts):
 0: 0 1 3 7 7 11 15 18 21 23
 10: 27 27 27 28 30 31 32 32 34 36
 20: 37 38 42 44 47 49 51 52 53 56
 30: 56 58 59 60 63 67 69 71 75 75

Divide into 4 equal partitions:
Tile 0: A = (0, 21) B = (0, 9)
Tile 1: A = (21, 38) B = (9, 22)
Tile 2: A = (38, 58) B = (22, 31)
Tile 3: A = (58, 79) B = (31, 40)

Load-balancing search:
 0: 0 1 1 2 2 2 2 4 4 4
 10: 4 5 5 5 5 6 6 6 7 7
 20: 7 8 8 9 9 9 9 12 13 13
 30: 14 15 17 17 18 18 19 20 21 21
 40: 21 21 22 22 23 23 23 24 24 25
 50: 25 26 27 28 28 28 30 30 31 32
 60: 33 33 33 34 34 34 34 35 35 36
 70: 36 37 37 37 37 39 39 39 39

There is a minor complication regarding the ranges of data to load. Consider dividing the sample objects into
four evenly-sized parts. Tile 0 loads, notionally, (0, 21) from A and (0, 9) from B. Tile 1 loads (21, 38) from
A and (9, 22) from B; etc. If a CTA only wishes to compute the load-balancing search, adhering to this non-
overlapping coverage is adequete, as we know from dealing with vectorized sorted search.

If, on the other hand, the caller wishes to compute the rank of each work-item within its generating object in
addition to that object's index, a modification is required. Take, for example, the tile that loads the elements
in red. Its first work-item (item 21) is generated by object 8 (see index 21 in the load-balancing search). We
try to compute the rank of item 21 by looking up element 8 of the scan of counts, but that element is mapped
into a different tile! This is due to the upper-bound Merge Path consuming elements of B (the scan) before
consuming equal elements of A (the work-item indices).

We rectify this problem by simply loading the preceding element of B, if available. This element consumes
an extra shared memory slot but doesn't complicate the serial search: each thread still traverses exactly VT
elements. We simply load the preceding element of B to make it available when computing work-item ranks.

Load-balancing search, when used from inside a kernel, maps a variable number of work-items to each tile.

CTALoadBalance returns an int4 type with the ranges (a0, a1, b0, b1), where (a0, a1) is the non-
overlapping interval of outputs and (b0, b1) is the range of inputs (potentially overlapping by 1 if
precedingB is true). This decomposition of work is unusual in GPU programming but is actually very
helpful when it comes to negotiating storage inside the CTA. IntervalExpand and IntervalMove on the next
page exploit this irregular division of output to enable some powerful new primitives.

http://nvlabs.github.io/moderngpu/intervalmove.html#intervalmove
http://nvlabs.github.io/moderngpu/intervalmove.html#intervalexpand

11. IntervalExpand and IntervalMove
Schedule multiple variable-length fill, gather, scatter, or move operations. Partitioning is handled by load-
balancing search. Small changes in problem logic enable different behaviors. These functions are coarse-
grained counterparts to Bulk Remove and Bulk Insert.

Benchmark and usage

IntervalExpand benchmark from tests/benchmarkintervalmove.cu

Interval expand demonstration from tests/demo.cu

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

void DemoIntervalExpand(CudaContext& context) {
 printf("\n\nINTERVAL-EXPAND DEMONSTRATION:\n\n");

 const int NumInputs = 20;
 const int Counts[NumInputs] = {
 2, 5, 7, 16, 0, 1, 0, 0, 14, 10,
 3, 14, 2, 1, 11, 2, 1, 0, 5, 6
 };
 const int Inputs[NumInputs] = {
 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765
 };
 printf("Expand counts:\n");
 PrintArray(Counts, NumInputs, "%4d", 10);

 printf("\nExpand values:\n");
 PrintArray(Inputs, NumInputs, "%4d", 10);

 MGPU_MEM(int) countsDevice = context.Malloc(Counts, NumInputs);
 int total = Scan(countsDevice->get(), NumInputs, context);

 MGPU_MEM(int) fillDevice = context.Malloc(Inputs, NumInputs);

 MGPU_MEM(int) dataDevice = context.Malloc<int>(total);
 IntervalExpand(total, countsDevice->get(), fillDevice->get(),

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarkintervalmove.cu

463
464
465
466
467

NumInputs,
 dataDevice->get(), context);

 printf("\nExpanded data:\n");
 PrintArray(*dataDevice, "%4d", 10);
}

INTERVAL-EXPAND DEMONSTRATION:

Expand counts:
 0: 2 5 7 16 0 1 0 0 14 10
 10: 3 14 2 1 11 2 1 0 5 6

Expand values:
 0: 1 1 2 3 5 8 13 21 34 55
 10: 89 144 233 377 610 987 1597 2584 4181 6765

Expanded data:
 0: 1 1 1 1 1 1 1 2 2 2
 10: 2 2 2 2 3 3 3 3 3 3
 20: 3 3 3 3 3 3 3 3 3 3
 30: 8 34 34 34 34 34 34 34 34 34
 40: 34 34 34 34 34 55 55 55 55 55
 50: 55 55 55 55 55 89 89 89 144 144
 60: 144 144 144 144 144 144 144 144 144 144
 70: 144 144 233 233 377 610 610 610 610 610
 80: 610 610 610 610 610 610 987 987 1597 4181
 90: 4181 4181 4181 4181 6765 6765 6765 6765 6765 6765

IntervalMove benchmark from tests/benchmarkintervalmove.cu

Interval move demonstration from tests/demo.cu

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

void DemoIntervalMove(CudaContext& context) {
 printf("\n\nINTERVAL-MOVE DEMONSTRATION:\n\n");

 const int NumInputs = 20;
 const int Counts[NumInputs] = {
 3, 9, 1, 9, 8, 5, 10, 2, 5, 2,
 8, 6, 5, 2, 4, 0, 8, 2, 5, 6
 };
 const int Gather[NumInputs] = {
 75, 86, 17, 2, 67, 24, 37, 11, 95, 35,
 52, 18, 47, 0, 13, 75, 78, 60, 62, 29
 };
 const int Scatter[NumInputs] = {
 10, 80, 99, 27, 41, 71, 15, 0, 36, 13,
 89, 49, 66, 97, 76, 76, 2, 25, 61, 55
 };

 printf("Interval counts:\n");
 PrintArray(Counts, NumInputs, "%4d", 10);

 printf("\nInterval gather:\n");
 PrintArray(Gather, NumInputs, "%4d", 10);

 printf("\nInterval scatter:\n");
 PrintArray(Scatter, NumInputs, "%4d", 10);

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarkintervalmove.cu

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

 MGPU_MEM(int) countsDevice = context.Malloc(Counts, NumInputs);
 MGPU_MEM(int) gatherDevice = context.Malloc(Gather, NumInputs);
 MGPU_MEM(int) scatterDevice = context.Malloc(Scatter, NumInputs);
 int total = Scan(countsDevice->get(), NumInputs, context);

 MGPU_MEM(int) dataDevice = context.Malloc<int>(total);

 IntervalMove(total, gatherDevice->get(), scatterDevice->get(),
 countsDevice->get(), NumInputs,
mgpu::counting_iterator<int>(0),
 dataDevice->get(), context);

 printf("\nMoved data:\n");
 PrintArray(*dataDevice, "%4d", 10);
}

INTERVAL-MOVE DEMONSTRATION:

Interval counts:
 0: 3 9 1 9 8 5 10 2 5 2
 10: 8 6 5 2 4 0 8 2 5 6

Interval gather:
 0: 75 86 17 2 67 24 37 11 95 35
 10: 52 18 47 0 13 75 78 60 62 29

Interval scatter:
 0: 10 80 99 27 41 71 15 0 36 13
 10: 89 49 66 97 76 76 2 25 61 55

Moved data:
 0: 11 12 78 79 80 81 82 83 84 85
 10: 75 76 77 35 36 37 38 39 40 41
 20: 42 43 44 45 46 60 61 2 3 4
 30: 5 6 7 8 9 10 95 96 97 98
 40: 99 67 68 69 70 71 72 73 74 18
 50: 19 20 21 22 23 29 30 31 32 33
 60: 34 62 63 64 65 66 47 48 49 50
 70: 51 24 25 26 27 28 13 14 15 16
 80: 86 87 88 89 90 91 92 93 94 52
 90: 53 54 55 56 57 58 59 0 1 17

Host functions

include/mgpuhost.cuh

403
404
405
406
407
408

///
///////////
// kernels/intervalmove.cuh

// IntervalExpand duplicates intervalCount items in values_global.
// indices_global is an intervalCount-sized array filled with the

https://github.com/NVlabs/moderngpu/blob/master/include/mgpuhost.cuh

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

scan of item
// expand counts. moveCount is the total number of outputs (sum of
expand
// counts).

// Eg:
// values = 0, 1, 2, 3, 4, 5, 6, 7, 8
// counts = 1, 2, 1, 0, 4, 2, 3, 0, 2
// indices = 0, 1, 3, 4, 4, 8, 10, 13, 13 (moveCount =
15).
// Expand values[i] by counts[i]:
// output = 0, 1, 1, 2, 4, 4, 4, 4, 5, 5, 6, 6, 6, 8, 8
template<typename IndicesIt, typename ValuesIt, typename OutputIt>
MGPU_HOST void IntervalExpand(int moveCount, IndicesIt indices_global,
 ValuesIt values_global, int intervalCount, OutputIt output_global,
 CudaContext& context);

// IntervalMove is a load-balanced and vectorized device memcpy.
// It copies intervalCount variable-length intervals from user-
defined sources
// to user-defined destinations. If destination intervals overlap,
results are
// undefined.

// Eg:
// Interval counts:
// 0: 3 9 1 9 8 5 10 2 5 2
// 10: 8 6 5 2 4 0 8 2 5 6
// Scan of interval counts (indices_global):
// 0: 0 3 12 13 22 30 35 45 47 52
// 10: 54 62 68 73 75 79 79 87 89 94
(moveCount = 100).
// Interval gather (gather_global):
// 0: 75 86 17 2 67 24 37 11 95 35
// 10: 52 18 47 0 13 75 78 60 62 29
// Interval scatter (scatter_global):
// 0: 10 80 99 27 41 71 15 0 36 13
// 10: 89 49 66 97 76 76 2 25 61 55

// This vectorizes into 20 independent memcpy operations which are
load-balanced
// across CTAs:
// move 0: (75, 78)->(10, 13) move 10: (52, 60)->(10, 18)
// move 1: (86, 95)->(80, 89) move 11: (18, 24)->(49, 55)
// move 2: (17, 18)->(99,100) move 12: (47, 52)->(66, 71)
// move 3: (2, 11)->(27, 36) move 13: (0, 2)->(97, 99)
// move 4: (67, 75)->(41, 49) move 14: (13, 17)->(76, 80)
// move 5: (24, 29)->(71, 76) move 15: (75, 75)->(76, 76)
// move 6: (37, 47)->(15, 25) move 16: (78, 86)->(2, 10)
// move 7: (11, 13)->(0, 3) move 17: (60, 62)->(25, 27)
// move 8: (95,100)->(36, 41) move 18: (62, 67)->(61, 66)
// move 9: (35, 37)->(13, 15) move 19: (29, 35)->(55, 61)
template<typename GatherIt, typename ScatterIt, typename IndicesIt,

IntervalExpand

IntervalExpand was discussed in the introduction and we revisit it here, now with a solid understanding of
the load-balancing search pattern at the implementation's heart.

include/kernels/intervalmove.cuh

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

template<typename Tuning, typename IndicesIt, typename ValuesIt,
 typename OutputIt>
MGPU_LAUNCH_BOUNDS void KernelIntervalExpand(int destCount,
 IndicesIt indices_global, ValuesIt values_global, int sourceCount,
 const int* mp_global, OutputIt output_global) {

 typedef MGPU_LAUNCH_PARAMS Tuning;
 const int NT = Tuning::NT;
 const int VT = Tuning::VT;
 typedef typename std::iterator_traits<ValuesIt>::value_type T;

 union Shared {
 int indices[NT * (VT + 1)];
 T values[NT * VT];
 };
 __shared__ Shared shared;
 int tid = threadIdx.x;
 int block = blockIdx.x;

 // Compute the input and output intervals this CTA processes.
 int4 range = CTALoadBalance<NT, VT>(destCount, indices_global,
sourceCount,
 block, tid, mp_global, shared.indices, true);

 // The interval indices are in the left part of shared memory
(moveCount).
 // The scan of interval counts are in the right part
(intervalCount).
 destCount = range.y - range.x;
 sourceCount = range.w - range.z;

 // Copy the source indices into register.
 int sources[VT];
 DeviceSharedToReg<NT, VT>(NT * VT, shared.indices, tid, sources);

 // Load the source fill values into shared memory. Each value is
fetched
 // only once to reduce latency and L2 traffic.
 DeviceMemToMemLoop<NT>(sourceCount, values_global + range.z, tid,
 shared.values);

 // Gather the values from shared memory into register. This uses a
shared
 // memory broadcast - one instance of a value serves all the
threads that

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/intervalmove.cuh
http://nvlabs.github.io/moderngpu/intro.html#expandloadbalance

93
94

 // comprise its fill operation.
 T values[VT];
 DeviceGather<NT, VT>(destCount, shared.values - range.z, sources,
tid,
 values, false);

 // Store the values to global memory.
 DeviceRegToGlobal<NT, VT>(destCount, values, tid, output_global +
range.x);
}

The load-balancing search maps output elements (range.x, range.y) and input elements (range.z,
range.w) into each tile. All earlier routines process items in thread order—thread tid loads elements VT *
tid + i (0 ≤ i < VT) from shared memory into register and processes them in register in an unrolled loop. This
pattern is used to implement the load-balancing search called at the top of KernelIntervalExpand as
boilerplate, but it's not used to implement the specific behavior of IntervalExpand.

The load-balancing search returns enough context in shared memory to allow the kernel to cooperatively
process elements in strided order rather than the customary thread order—thread tid processes elements
index = NT * i + tid, where index < destCount. The change from strided to thread order means we can use the
device functions in device/loadstore.cuh to solve this problem.

After CTALoadBalance is run we cooperatively load source indices from shared memory into register.
These indices identify the "generating objects" for each output; that is, the search locates the index of the fill
value for each of the outputs.

Expand counts:
 0: 2 5 7 16 0 1 0 0 14 10
 10: 3 14 2 1 11 2 1 0 5 6

Scan of expand counts:
 0: 0 2 7 14 30 30 31 31 31 45
 10: 55 58 72 74 75 86 88 89 89 94

Load-balancing search:
 0: 0 0 1 1 1 1 1 2 2 2
 10: 2 2 2 2 3 3 3 3 3 3
 20: 3 3 3 3 3 3 3 3 3 3
 30: 5 8 8 8 8 8 8 8 8 8
 40: 8 8 8 8 8 9 9 9 9 9
 50: 9 9 9 9 9 10 10 10 11 11
 60: 11 11 11 11 11 11 11 11 11 11
 70: 11 11 12 12 13 14 14 14 14 14
 80: 14 14 14 14 14 14 15 15 16 18
 90: 18 18 18 18 19 19 19 19 19 19

Consider the example of IntervalExpand in demo.cu. We have 20 random expand counts that add up to 100.
The client performs an exclusive scan over the counts and calls IntervalExpand. Our kernel runs
CTALoadBalance to pair each of the 100 outputs with one of the 20 fill values.
DeviceMemToMemLoop loads the interval of fill values (each associated with a "generating object")
referenced by the tile into shared memory. Because the load-balancing search maps in a constant number of
output plus input items to each tile, there's no risk of not having enough shared memory capacity in the CTA
to accommodate this load: a run of thousands of 0 counts would result in a CTA that is mapped to a full-tile
of source objects (NV + 1, keeping in mind the precedingB index) and no output objects. Although this may
seem like an inefficiency, this division of source and destination items lets the kernel handle any distribution

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/include/device/loadstore.cuh

of expand counts without any special-case code.

Expand values:
 0: 1 1 2 3 5 8 13 21 34 55
 10: 89 144 233 377 610 987 1597 2584 4181 6765

Expanded data:
 0: 1 1 1 1 1 1 1 2 2 2
 10: 2 2 2 2 3 3 3 3 3 3
 20: 3 3 3 3 3 3 3 3 3 3
 30: 8 34 34 34 34 34 34 34 34 34
 40: 34 34 34 34 34 55 55 55 55 55
 50: 55 55 55 55 55 89 89 89 144 144
 60: 144 144 144 144 144 144 144 144 144 144
 70: 144 144 233 233 377 610 610 610 610 610
 80: 610 610 610 610 610 610 987 987 1597 4181
 90: 4181 4181 4181 4181 6765 6765 6765 6765 6765 6765

The fill values, the first 20 numbers of the Fibonacci sequence, are cooperatively loaded into shared memory.
DeviceGather cooperatively gathers the fill values for all destCount outputs using the source indices
computed by CTALoadBalance and pulled from shared memory earlier. Because we process data in
strided order rather than thread order, we can store directly to global memory without first having to
transpose through shared memory: DeviceRegToGlobal cooperatively stores outputs to
dest_global.

Important: The techniques illustrated on this page are about exposing parallelism in irregular problems.
The naive approach for IntervalExpand would be to assign one thread to each source value: each thread reads
its source value and copies it a variable-number of times to the output. This is a miserably unsatsifying
solution, though. Huge penalties are taken due to control and memory divergence, the L2 cache is thrashed,
and depending on the distribution of counts in the problem, there may not even be enough parallelism to even
keep the device busy.

To address load imbalance, the developer could try to build heuristics that examine the expand counts and
assign different widths of execution to each source value. Entire warps could be assigned to sources that fill
more than 128 outputs, and whole CTAs to sources that fill more than 2048 elements, for example. But now
we are innovating scheduling strategy rather than simply solving the interval expand problem.
CTALoadBalance incurs only a modest cost to expose parallelism and nimbly load-balance any data
distribution for this very common class of problems. Instead of thinking about scheduling you can focus on
solving your problem.

IntervalMove

IntervalMove is a vectorized cudaMemcpy. The caller enqueues transfers with (source offset, dest offset,
item count) tuples. As with IntervalExpand, the counts are scanned prior to launch. The ability to load
balance many cudaMemcpys over a single launch is crucial to performance—CUDA synchronizes at every
cudaMemcpy, so calling that API directly will not deliver high throughput for many small requests. Host
code may enqueue any number of transfers of any size and expect reasonable performance from
IntervalMove.

IntervalMove and its special-case siblings—IntervalGather and IntervalScatter—are important primitives for
GPU data structures. You can imagine "shaggy" binned data structures that resemble priority queues:

• IntervalGather pulls items from the front bins.

• IntervalScatter distributes sorted elements into the ends of all the bins.

• IntervalMove, segmented sort, merge, and vectorized sorted search cooperate in joining and splitting
bins to rebalance the data structure.

Operations could be scheduled on the CPU and executed en masse with MGPU's vectorized functions. It is
hoped that the availability of these functions encourages users to experiment with parallel data structures, an
area of computing that has gone almost totally unexamined.

include/kernels/intervalmove.cuh

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

template<typename Tuning, bool Gather, bool Scatter, typename GatherIt,
 typename ScatterIt, typename IndicesIt, typename InputIt, typename
OutputIt>
MGPU_LAUNCH_BOUNDS void KernelIntervalMove(int moveCount,
 GatherIt gather_global, ScatterIt scatter_global, IndicesIt
indices_global,
 int intervalCount, InputIt input_global, const int* mp_global,
 OutputIt output_global) {

 typedef MGPU_LAUNCH_PARAMS Params;
 const int NT = Params::NT;
 const int VT = Params::VT;

 __shared__ int indices_shared[NT * (VT + 1)];
 int tid = threadIdx.x;
 int block = blockIdx.x;

 // Load balance the move IDs (counting_iterator) over the scan of
the
 // interval sizes.
 int4 range = CTALoadBalance<NT, VT>(moveCount, indices_global,
 intervalCount, block, tid, mp_global, indices_shared, true);

 // The interval indices are in the left part of shared memory
(moveCount).
 // The scan of interval counts are in the right part
(intervalCount).
 moveCount = range.y - range.x;
 intervalCount = range.w - range.z;
 int* move_shared = indices_shared;
 int* intervals_shared = indices_shared + moveCount;
 int* intervals_shared2 = intervals_shared - range.z;

 // Read out the interval indices and scan offsets.
 int interval[VT], rank[VT];
 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 int index = NT * i + tid;
 int gid = range.x + index;
 interval[i] = range.z;
 if(index < moveCount) {

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/intervalmove.cuh
http://nvlabs.github.io/moderngpu/sortedsearch.html
http://nvlabs.github.io/moderngpu/merge.html
http://nvlabs.github.io/moderngpu/segsort.html

 interval[i] = move_shared[index];
 rank[i] = gid - intervals_shared2[interval[i]];
 }
 }
 __syncthreads();

The IntervalMove host function runs an upper-bound MergePathPartitions in preparation for the
load-balancing search. KernelIntervalMove calls CTALoadBalance which computes source indices
into shared memory. The interval index (i.e. the index of the request that generated the output) and rank (of
the element within the interval) are cooperatively pulled from shared memory in strided order. Recall that the
rank is the difference between the output index and the exclusive scan of the generating object—both of these
terms are returned by CTALoadBalance.

KernelIntervalMove (continued) from include/kernels/intervalmove.cuh

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

 // Load and distribute the gather and scatter indices.
 int gather[VT], scatter[VT];
 if(Gather) {
 // Load the gather pointers into intervals_shared.
 DeviceMemToMemLoop<NT>(intervalCount, gather_global + range.z,
tid,
 intervals_shared);

 // Make a second pass through shared memory. Grab the start
indices of
 // the interval for each item and add the scan into it for the
gather
 // index.
 #pragma unroll
 for(int i = 0; i < VT; ++i)
 gather[i] = intervals_shared2[interval[i]] + rank[i];
 __syncthreads();
 }
 if(Scatter) {
 // Load the scatter pointers into intervals_shared.
 DeviceMemToMemLoop<NT>(intervalCount, scatter_global +
range.z, tid,
 intervals_shared);

 // Make a second pass through shared memory. Grab the start
indices of
 // the interval for each item and add the scan into it for the
scatter
 // index.
 #pragma unroll
 for(int i = 0; i < VT; ++i)
 scatter[i] = intervals_shared2[interval[i]] + rank[i];
 __syncthreads();
 }

 // Gather the data into register.
 typedef typename std::iterator_traits<InputIt>::value_type T;

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/intervalmove.cuh

206
207
208
209
210
211
212

 T data[VT];
 if(Gather)
 DeviceGather<NT, VT>(moveCount, input_global, gather, tid,
data, false);
 else
 DeviceGlobalToReg<NT, VT>(moveCount, input_global + range.x,
tid, data);

 // Scatter the data into global.
 if(Scatter)
 DeviceScatter<NT, VT>(moveCount, data, tid, scatter,
output_global,
 false);
 else
 DeviceRegToGlobal<NT, VT>(moveCount, data, tid,
 output_global + range.x);
}

If gather indices are needed (for IntervalGather and IntervalMove), they are cooperatively loaded into shared
memory. This is just one load per interval. After synchronization the gather indices (the source index for
each copy request) are loaded from shared memory into register. We add the rank of the element into the
gather index to produce a load index. For the i'th output, gather is the position to load the i'th input.

Scatter indices are treated symmetrically. If scatter indices are needed (for IntervalScatter and IntervalMove),
they are cooperatively loaded into shared memory. This is just one load per interval. Scatter indices are
loaded from shared memory into register. The rank is added to produce a store index. scatter is the
position to store the i'th output.

As with IntervalExpand, the intra-CTA load-balancing search provides enough context so that each element
can be processed independently. Rather than processing elements in thread order, where each thread
processes elements VT * tid + i (0 ≤ i < VT), we cooperatively copy elements in strided order. The
loadstore.cuh support functions complete the vectorized cudaMemcpys.

https://github.com/NVlabs/moderngpu/blob/master/include/device/loadstore.cuh

12. Relational Joins
Sort-merge joins supporting inner, left, right, and outer variants. Uses vectorized sorted search to match keys
between input arrays and load-balancing search to manage Cartesian products.

Benchmark and usage

Relational joins benchmark from tests/benchmarkjoin.cu

Relational joins demonstration from tests/demo.cu

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

void DemoJoin(CudaContext& context) {
 printf("RELATIONAL JOINS DEMONSTRATION\n\n");

 int ACount = 30;
 int BCount = 30;

 MGPU_MEM(int) aKeysDevice = context.SortRandom<int>(ACount, 100,
130);
 MGPU_MEM(int) bKeysDevice = context.SortRandom<int>(BCount, 100,
130);
 std::vector<int> aKeysHost, bKeysHost;
 aKeysDevice->ToHost(aKeysHost);
 bKeysDevice->ToHost(bKeysHost);

 printf("A keys:\n");
 PrintArray(*aKeysDevice, "%4d", 10);

 printf("\nB keys:\n");
 PrintArray(*bKeysDevice, "%4d", 10);

 MGPU_MEM(int) aIndices, bIndices;
 int innerCount = RelationalJoin<MgpuJoinKindInner>(aKeysDevice-
>get(),
 ACount, bKeysDevice->get(), BCount, &aIndices, &bIndices,
context);

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarkjoin.cu

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

 std::vector<int> aHost, bHost;
 aIndices->ToHost(aHost);
 bIndices->ToHost(bHost);

 printf("\nInner-join (%d items):\n", innerCount);
 printf("output (aIndex, bIndex) : (aKey, bKey)\n");
 printf("--\n");
 for(int i = 0; i < innerCount; ++i)
 printf("%3d (%6d, %6d) : (%4d, %4d)\n", i, aHost[i],
bHost[i],
 aKeysHost[aHost[i]], bKeysHost[bHost[i]]);

 int outerCount = RelationalJoin<MgpuJoinKindOuter>(aKeysDevice-
>get(),
 ACount, bKeysDevice->get(), BCount, &aIndices, &bIndices,
context);

 aIndices->ToHost(aHost);
 bIndices->ToHost(bHost);
 printf("\nOuter-join (%d items):\n", outerCount);
 printf("output (aIndex, bIndex) : (aKey, bKey)\n");
 printf("--\n");
 for(int i = 0; i < outerCount; ++i) {
 char aKey[5], bKey[5];
 if(-1 != aHost[i]) itoa(aKeysHost[aHost[i]], aKey, 10);
 if(-1 != bHost[i]) itoa(bKeysHost[bHost[i]], bKey, 10);
 printf("%3d (%6d, %6d) : (%4s, %4s)\n", i, aHost[i],
bHost[i],
 (-1 != aHost[i]) ? aKey : "---", (-1 != bHost[i]) ?
bKey : "---");
 }
}

RELATIONAL JOINS DEMONSTRATION

A keys:
 0: 100 102 103 103 103 103 103 104 104 105
 10: 106 106 106 107 108 109 109 110 111 113
 20: 114 114 114 116 116 116 118 119 121 127

B keys:
 0: 100 101 102 102 105 105 105 105 106 107
 10: 109 112 116 117 117 118 119 121 125 125
 20: 126 126 126 126 128 128 128 129 130 130

Inner-join (19 items):
output (aIndex, bIndex) : (aKey, bKey)
--
 0 (0, 0) : (100, 100)
 1 (1, 2) : (102, 102)
 2 (1, 3) : (102, 102)
 3 (9, 4) : (105, 105)
 4 (9, 5) : (105, 105)

 5 (9, 6) : (105, 105)
 6 (9, 7) : (105, 105)
 7 (10, 8) : (106, 106)
 8 (11, 8) : (106, 106)
 9 (12, 8) : (106, 106)
 10 (13, 9) : (107, 107)
 11 (15, 10) : (109, 109)
 12 (16, 10) : (109, 109)
 13 (23, 12) : (116, 116)
 14 (24, 12) : (116, 116)
 15 (25, 12) : (116, 116)
 16 (26, 15) : (118, 118)
 17 (27, 16) : (119, 119)
 18 (28, 17) : (121, 121)

Outer-join (50 items):
output (aIndex, bIndex) : (aKey, bKey)
--
 0 (0, 0) : (100, 100)
 1 (1, 2) : (102, 102)
 2 (1, 3) : (102, 102)
 3 (2, -1) : (103, ---)
 4 (3, -1) : (103, ---)
 5 (4, -1) : (103, ---)
 6 (5, -1) : (103, ---)
 7 (6, -1) : (103, ---)
 8 (7, -1) : (104, ---)
 9 (8, -1) : (104, ---)
 10 (9, 4) : (105, 105)
 11 (9, 5) : (105, 105)
 12 (9, 6) : (105, 105)
 13 (9, 7) : (105, 105)
 14 (10, 8) : (106, 106)
 15 (11, 8) : (106, 106)
 16 (12, 8) : (106, 106)
 17 (13, 9) : (107, 107)
 18 (14, -1) : (108, ---)
 19 (15, 10) : (109, 109)
 20 (16, 10) : (109, 109)
 21 (17, -1) : (110, ---)
 22 (18, -1) : (111, ---)
 23 (19, -1) : (113, ---)
 24 (20, -1) : (114, ---)
 25 (21, -1) : (114, ---)
 26 (22, -1) : (114, ---)
 27 (23, 12) : (116, 116)
 28 (24, 12) : (116, 116)
 29 (25, 12) : (116, 116)
 30 (26, 15) : (118, 118)
 31 (27, 16) : (119, 119)
 32 (28, 17) : (121, 121)
 33 (29, -1) : (127, ---)
 34 (-1, 1) : (---, 101)
 35 (-1, 11) : (---, 112)
 36 (-1, 13) : (---, 117)
 37 (-1, 14) : (---, 117)
 38 (-1, 18) : (---, 125)
 39 (-1, 19) : (---, 125)
 40 (-1, 20) : (---, 126)
 41 (-1, 21) : (---, 126)
 42 (-1, 22) : (---, 126)
 43 (-1, 23) : (---, 126)
 44 (-1, 24) : (---, 128)

 45 (-1, 25) : (---, 128)
 46 (-1, 26) : (---, 128)
 47 (-1, 27) : (---, 129)
 48 (-1, 28) : (---, 130)
 49 (-1, 29) : (---, 130)

Host functions

include/mgpuhost.cuh

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

//
//////////
// kernels/join.cuh

// RelationalJoin is a sort-merge join that returns indices into one
of the four
// relational joins:
// MgpuJoinKindInner
// MgpuJoinKindLeft
// MgpuJoinKindRight
// MgpuJoinKindOuter.

// A = 100, 101, 103, 103
// B = 100, 100, 102, 103
// Outer join:
// ai, bi a[ai], b[bi]
// 0: (0, 0) - (100, 100) // cross-product expansion for key 100
// 1: (0, 1) - (100, 100)
// 2: (1, -) - (101, ---) // left-join for key 101
// 3: (-, 2) - (---, 102) // right-join for key 102
// 4: (3, 3) - (103, 103) // cross-product expansion for key 103

// MgpuJoinKindLeft drops the right-join on line 3.
// MgpuJoinKindRight drops the left-join on line 2.
// MgpuJoinKindInner drops both the left- and right-joins.

// The caller passes MGPU_MEM(int) pointers to hold indices. Memory is
allocated
// by the join function using the allocator associated with the
context. It
// returns the number of outputs.

// RelationalJoin performs one cudaMemcpyDeviceToHost to retrieve the
size of
// the output array. This is a synchronous operation and may prevent
queueing
// for callers using streams.
template<MgpuJoinKind Kind, typename InputIt1, typename InputIt2,
 typename Comp>
MGPU_HOST int RelationalJoin(InputIt1 a_global, int aCount, InputIt2
b_global,
 int bCount, MGPU_MEM(int)* ppAJoinIndices, MGPU_MEM(int)*

https://github.com/NVlabs/moderngpu/blob/master/include/mgpuhost.cuh

519

ppBJoinIndices,
 Comp comp, CudaContext& context);

// Specialization of RelationJoil with Comp = mgpu::less<T>.
template<MgpuJoinKind Kind, typename InputIt1, typename InputIt2>
MGPU_HOST int RelationalJoin(InputIt1 a_global, int aCount, InputIt2
b_global,
 int bCount, MGPU_MEM(int)* ppAJoinIndices, MGPU_MEM(int)*
ppBJoinIndices,
 CudaContext& context);

Algorithm

Join is a foundational operation in relational algebra and relational databases. Joins take two tables and return
a new table. A column from each table serves as a key and the join operator produces the Cartesian product
of all rows with matching keys. MGPU Join is a merge-join that supports duplicate keys and left-, right-, and
outer-join semantics.

Row: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table A: A0 A1 B0 E0 E1 E2 E3 F0 F1 G0 H0 H1 J0 J1 M0 M1

Table B: A0 A1 B0 B1 B2 C0 C1 F0 G0 G1 H0 I0 L0 L1

Table A has 16 rows and B has 14. The key fields for the join are displayed above. The keys are sorted
within each table (a requirement for merge-join) and the ranks of the keys are inferred. We join over
matching letters and generate a Cartesian product for all ranks.

Row A index A key B key B index Join type

0 0 A0 A0 0 inner

1 0 A0 A1 1 inner

2 1 A1 A0 0 inner

3 1 A1 A1 1 inner

4 2 B0 B0 2 inner

5 2 B0 B1 3 inner

6 2 B0 B2 4 inner

7 3 E0 --- -1 left

http://en.wikipedia.org/wiki/Sort-merge_join
http://en.wikipedia.org/wiki/Cartesian_product
https://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Relational_algebra#Joins_and_join-like_operators
http://en.wikipedia.org/wiki/Join_(SQL)

8 4 E1 --- -1 left

9 5 E2 --- -1 left

10 6 E3 --- -1 left

11 7 F0 F0 7 inner

12 8 F1 F0 7 inner

13 9 G0 G0 8 inner

14 9 G0 G1 9 inner

15 10 H0 H0 10 inner

16 11 H1 H0 10 inner

17 12 J0 --- -1 left

18 13 J1 --- -1 left

19 14 M0 --- -1 left

20 15 M1 --- -1 left

21 -1 --- C0 5 right

22 -1 --- C1 6 right

23 -1 --- I0 11 right

24 -1 --- L0 12 right

25 -1 --- L1 13 right

Merge-join takes sorted inputs and returns an output table that is sorted first by A, and within matching A
keys, by B keys.

• Inner-join produces the Cartesian product of matching keys over their ranks. In this case both keys
are non-null and indices are defined.

• Left-join adds to inner-join the set of rows in A with keys that are unmatched in B. With left-join, all
rows in the A input are included in the output. The B component of left-join tuples is a null key.
MGPU Join uses the index -1 for null keys; this key is lexicographically larger than all other keys.

• Right-join adds to inner-join the set of rows in B with keys that are unmatched in A. With right-join,
all rows in the B input are included in the output. The A component of right-join tuples is a null key.
Because outputs are sorted first by A key and then by B key, rows generated by right-join are
appended to the end of the output table and are sorted by B index.

• Full outer-join is the union of inner-, left-, and outer-join rows. All input rows are returned by an
outer-join operation.

MGPU Join supports all four join types. It returns a dynamically-allocated set of A index/B index pairs. The
caller can retrieve the joined keys with a simple gather.

The function is implemented by leaning heavily on vectorized sorted search and load-balancing search. It is
decomposed into a few simple steps:

1. Use vectorized sorted search to find the lower-bound of A into B. For right/outer-join, also return the
set of matches and the match count of B into A.

2. Use SortedEqualityCount to find the number of matches in B for each element in A. For
left/outer-join, use the LeftJoinEqualityOp operator to always return a count of at least 1.

3. Scan the Cartesian-product counts in 2 and save the reduction of the counts as leftJoinTotal,
which is the number of outputs contributed by the left/inner-join parts.

4. Add the leftJoinTotal in 3 with the right-join total in 1 (the right-join contribution is the
number of elements in B that have no matches in A) and save as joinTotal. Allocate device
memory to hold this many join outputs.

5. Run an upper-bound MergePath search as part of the load-balancing search that enables the
left/inner-join implementation.

6. Launch KernelLeftJoin:

a. Run the CTALoadBalance boilerplate: rows in the A table are considered "generating
objects" and outputs are work-items.

b. Threads locate the rank of each output within its generating object—that is, the superscript on
the B key of the output. In the table above, output row 2 (A1, A0) is rank 0, because it is the
first element of the Cartesian product with key A1 on the left. Output row 3 (A1, A1) is rank 1,
because it is the second element of the Cartesian product with key A1 on the left. Left-join
outputs always are rank 0.

c. Cooperatively load the lower-bound of A into B (computed in 1) into shared memory for each
row of table A that is referenced inside the CTA.

d. Store the left/inner-join indices to global memory. The A index is the generating object's index
as computed by the load-balancing search. For an inner-join, the B index is the lower-bound of
A into B plus the rank of the output. For a left-join, the B index is -1, representing the null
key.

7. For a right/outer-join, compact the indices of the rows in B that were not matched in 1 to the end of
the output array. cudaMemset -1s to the corresponding A indices.

http://nvlabs.github.io/moderngpu/loadbalance.html
http://nvlabs.github.io/moderngpu/sortedsearch.html

include/kernels/join.cuh

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

template<MgpuJoinKind Kind, typename InputIt1, typename InputIt2,
 typename Comp>
MGPU_HOST int RelationalJoin(InputIt1 a_global, int aCount, InputIt2
b_global,
 int bCount, MGPU_MEM(int)* ppAJoinIndices, MGPU_MEM(int)*
ppBJoinIndices,
 Comp comp, CudaContext& context) {

 typedef typename std::iterator_traits<InputIt1>::value_type T;
 const bool SupportLeft = MgpuJoinKindLeft == Kind ||
 MgpuJoinKindOuter == Kind;
 const bool SupportRight = MgpuJoinKindRight == Kind ||
 MgpuJoinKindOuter == Kind;

 const MgpuSearchType LeftType = SupportLeft ?
 MgpuSearchTypeIndexMatch : MgpuSearchTypeIndex;

 MGPU_MEM(int) aLowerBound = context.Malloc<int>(aCount);
 MGPU_MEM(byte) bMatches;

 // Find the lower bound of A into B. If we are right joining also
return the
 // set of matches of B into A.
 int rightJoinTotal = 0;
 if(SupportRight) {
 // Support a right or outer join. Count the number of B
elements that
 // have matches in A. These matched values are included in the
inner
 // join part. The other values (bCount - bMatchCount) are
copied to the
 // end for the right join part.
 bMatches = context.Malloc<byte>(bCount);
 int bMatchCount;
 SortedSearch<MgpuBoundsLower, LeftType,
MgpuSearchTypeMatch>(a_global,
 aCount, b_global, bCount, aLowerBound->get(), bMatches-
>get(), comp,
 context, 0, &bMatchCount);
 rightJoinTotal = bCount - bMatchCount;
 } else
 SortedSearch<MgpuBoundsLower, LeftType,
MgpuSearchTypeNone>(a_global,
 aCount, b_global, bCount, aLowerBound->get(), (int*)0,
comp,
 context, 0, 0);

The host function RelationalJoin starts by calling SortedSearch to find the lower-bound of A into
B. The function is specialized over one of four possible parameterizations, depending on join type.

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/join.cuh

When supporting left-join, matches of A into B are computed in addition to the lower-bound indices—
matches are indicated by setting the high bit of the indices.

When supporting right-join, matches of B into A are returned in bytes. All we really need are bits, but those
aren't directly addressable. The total number of matches is returned in the last SortedSearch argument; it
is subtracted from the size of the B array: this is the number of right-join rows to append to the end of the
output.

RelationalJoin (continued) from include/kernels/join.cuh

229
230
231
232
233
234
235
236
237
238
239
240
241

 // Use the lower bounds to compute the counts for each element.
 MGPU_MEM(int) aCounts = context.Malloc<int>(aCount);
 if(SupportLeft)
 SortedEqualityCount(a_global, aCount, b_global, bCount,
 aLowerBound->get(), aCounts->get(), comp,
LeftJoinEqualityOp(),
 context);
 else
 SortedEqualityCount(a_global, aCount, b_global, bCount,
 aLowerBound->get(), aCounts->get(), comp,
SortedEqualityOp(),
 context);

 // Scan the product counts. This is part of the load-balancing
search.
 int leftJoinTotal = Scan(aCounts->get(), aCount, context);

The second section calls SortedEqualityCount: an upper-bound of A into B is run and its different
from the lower-bound in returned as a count. This is the count of B values created for each A value—the
Cartesian product is implemented by generating a variable number of outputs for each individual element of
A. To support left-join, we specialize with the LeftJoinEqualityOp; this returns a 1 count when there
are no elements in B matching a key in A. Because the join kernel uses load-balancing search we scan the
counts in-place. This creates a sorted array that can be pushed through the upper-bound
MergePathPartitions.

RelationalJoin (continued) from include/kernels/join.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/join.cuh
http://nvlabs.github.io/moderngpu/sortedsearch.html#equalitycount
https://github.com/NVlabs/moderngpu/blob/master/include/kernels/join.cuh

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

 // Allocate space for the join indices from the sum of left and
right join
 // sizes.
 int joinTotal = leftJoinTotal + rightJoinTotal;
 MGPU_MEM(int) aIndicesDevice = context.Malloc<int>(joinTotal);
 MGPU_MEM(int) bIndicesDevice = context.Malloc<int>(joinTotal);

 // Launch the inner/left join kernel. Run an upper-bounds
partitioning
 // to load-balance the data.
 const int NT = 128;
 const int VT = 7;
 typedef LaunchBoxVT<NT, VT> Tuning;
 int2 launch = Tuning::GetLaunchParams(context);
 int NV = launch.x * launch.y;

 MGPU_MEM(int) partitionsDevice =
MergePathPartitions<MgpuBoundsUpper>(
 mgpu::counting_iterator<int>(0), leftJoinTotal, aCounts-
>get(),
 aCount, NV, 0, mgpu::less<int>(), context);

 int numBlocks = MGPU_DIV_UP(leftJoinTotal + aCount, NV);
 KernelLeftJoin<Tuning, SupportLeft>
 <<<numBlocks, launch.x, 0, context.Stream()>>>(leftJoinTotal,
 aLowerBound->get(), aCounts->get(), aCount, partitionsDevice-
>get(),
 aIndicesDevice->get(), bIndicesDevice->get());

A LaunchBox is created to support device-specific parameterizations. Although we launch a number of
routines from RelationalJoin, we only control the tuning parameters for KernelLeftJoin—the
other kernels are pre-packaged in host functions that define their own launch parameters.

Index pairs are allocated, MergePathPartitions is called to prepare the load-balancing search, and
KernelLeftJoin is launched. This kernel performs both the left- and inner-join parts. Right-join is a
comparatively trivial operation involving a simple index compaction to the end of the index arrays. It is
saved for the end.

include/kernels/join.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/join.cuh
http://nvlabs.github.io/moderngpu/performance.html#launchbox

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

template<typename Tuning, bool LeftJoin>
MGPU_LAUNCH_BOUNDS void KernelLeftJoin(int total, const int*
aLowerBound_global,
 const int* aCountsScan_global, int aCount, const int* mp_global,
 int* aIndices_global, int* bIndices_global) {

 typedef MGPU_LAUNCH_PARAMS Params;
 const int NT = Params::NT;
 const int VT = Params::VT;

 __shared__ int indices_shared[NT * (VT + 1)];
 int tid = threadIdx.x;
 int block = blockIdx.x;

 int4 range = CTALoadBalance<NT, VT>(total, aCountsScan_global,
aCount,
 block, tid, mp_global, indices_shared, true);
 int outputCount = range.y - range.x;
 int inputCount = range.w - range.z;
 int* output_shared = indices_shared;
 int* input_shared = indices_shared + outputCount;

 int aIndex[VT], rank[VT];
 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 int index = NT * i + tid;
 if(index < outputCount) {
 int gid = range.x + index;
 aIndex[i] = output_shared[index];
 rank[i] = gid - input_shared[aIndex[i] - range.z];
 aIndices_global[gid] = aIndex[i];
 }
 }
 __syncthreads();

 // Load the lower bound of A into B for each element of A.
 DeviceMemToMemLoop<NT>(inputCount, aLowerBound_global + range.z,
tid,
 input_shared);

 // Store the lower bound of A into B back for every output.
 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 int index = NT * i + tid;
 if(index < outputCount) {
 int gid = range.x + index;
 int lb = input_shared[aIndex[i] - range.z];
 int bIndex;
 if(LeftJoin)
 bIndex = (0x80000000 & lb) ?
 ((0x7fffffff & lb) + rank[i]) :
 -1;
 else

The left-join kernel closely resembles Interval Move. We load-balance outputs and inputs (each input is one
row of A) in shared memory. Ranks for each output are computed.

Recall the figure from the top: the A-rank of an output row is equal to the superscript of the B key. Row 6,
for example, match keys "B". It is the third occurrence of B0 in A, or rank 2 (we count ranks in zero-based
indexing). Therefore it must be paired with B2 in B.

Load-balancing search provides the rank of each key occurrence in A. The rank is used to infer the index of
the corresponding row in B. The lower-bound of A into B, computed earlier in RelationalJoin,
provides the index of the first key-match in B. We add the rank of the output into this lower-bound for B's
index in the output:

bIndex = lb + rank[i]; Infer the B index from the lower-bound of A into B and the A-rank of the
output row.

If the user has requested a left/outer-join we check the match bit of the lower-bound (the most significant
bit), and emit the null index -1 to form a left-join output:

bIndex = (0x80000000 & lb) ? ((0x7fffffff & lb) + rank[i]) : -1; Return the B
index only if this is an inner-type output, as indicated by a set match bit on the lower-bound term.

RelationalJoin (continued) from include/kernels/join.cuh

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

 // Launch the right join kernel. Compact the non-matches from B
into A.
 if(SupportRight) {
 const int NT = 128;
 int numBlocks = MGPU_DIV_UP(bCount, 8 * NT);

 MGPU_MEM(int) totals = context.Malloc<int>(numBlocks);
 KernelRightJoinUpsweep<NT><<<numBlocks, NT>>>(
 (const uint64*)bMatches->get(), bCount, totals->get());

 Scan<MgpuScanTypeExc>(totals->get(), numBlocks, totals->get(),
 ScanOpAdd(), (int*)0, false, context);

 KernelRightJoinDownsweep<NT><<<numBlocks, NT>>>(
 (const uint64*)bMatches->get(), bCount, totals->get(),
 bIndicesDevice->get() + leftJoinTotal);

 cudaMemset(aIndicesDevice->get() + leftJoinTotal, -1,
 sizeof(int) * rightJoinTotal);
 }

 *ppAJoinIndices = aIndicesDevice;
 *ppBJoinIndices = bIndicesDevice;
 return joinTotal;
}

The right-join code performs a simple index compaction into the end of the output arrays.
KernelRightJoinUpsweep counts the number of elements in B that do not have matches in A. (Recall
that we already computed the match terms into a byte array with a vectorized sorted search specialization.)

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/join.cuh
http://nvlabs.github.io/moderngpu/join.html#algorithm
http://nvlabs.github.io/moderngpu/intervalmove.html#intervalmove

The partials are scanned to find the offset within the output array for each tile to stream its indices.
KernelRightJoinDownsweep revisits the match flags and streams the B indices. We finalize the
relational join by setting the A indices to -1, indicating a null key and a right-join output.

13. Multisets
Replace Merge Path partitioning with the sophisticated Balanced Path to search for key-rank matches. The
new partitioning strategy is combined with four different serial set operations to support CUDA analogs
of std::set_intersection, set_union, set_difference, and set_symmetric_difference.

Benchmark and usage

Multisets-keys benchmark from tests/benchmarksets.cu

Multisets-keys demonstration from tests/demo.cu

570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

void DemoSets(CudaContext& context) {
 printf("\nMULTISET-KEYS DEMONSTRATION:\n\n");

 // Use CudaContext::SortRandom to generate 100 random sorted
integers
 // between 0 and 99.
 int N = 100;
 MGPU_MEM(int) aData = context.SortRandom<int>(N, 0, 99);
 MGPU_MEM(int) bData = context.SortRandom<int>(N, 0, 99);

 printf("A:\n");
 PrintArray(*aData, "%4d", 10);
 printf("\nB:\n\n");
 PrintArray(*bData, "%4d", 10);

 MGPU_MEM(int) intersectionDevice;
 SetOpKeys<MgpuSetOpIntersection, true>(aData->get(), N, bData-
>get(), N,
 &intersectionDevice, context, false);

 printf("\nIntersection:\n");
 PrintArray(*intersectionDevice, "%4d", 10);

 MGPU_MEM(int) symDiffDevice;
 SetOpKeys<MgpuSetOpSymDiff, true>(aData->get(), N, bData->get(),

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarksets.cu

595
596
597

N,
 &symDiffDevice, context, false);

 printf("\nSymmetric difference:\n");
 PrintArray(*symDiffDevice, "%4d", 10);
}

MULTISET-KEYS DEMONSTRATION:

A:
 0: 1 1 3 5 7 7 8 9 10 10
 10: 10 11 12 13 14 15 16 16 16 16
 20: 17 18 19 20 21 21 25 25 28 29
 30: 29 29 31 31 31 31 32 33 33 35
 40: 36 38 39 40 40 42 44 45 46 47
 50: 47 51 51 53 53 53 55 55 56 57
 60: 58 59 59 59 60 61 62 62 63 63
 70: 64 68 68 70 70 72 73 73 75 78
 80: 79 82 82 83 84 85 85 85 86 87
 90: 89 91 91 91 92 95 97 98 98 98

B:

 0: 1 2 2 3 5 6 6 9 9 10
 10: 10 10 11 12 12 12 13 13 15 16
 20: 16 17 17 18 21 21 22 24 25 25
 30: 29 29 31 32 32 32 33 35 35 37
 40: 39 39 40 41 41 42 42 44 45 46
 50: 46 47 48 49 50 50 51 52 52 53
 60: 54 54 54 55 56 57 59 60 65 65
 70: 66 66 66 67 68 68 70 72 74 74
 80: 74 74 74 75 76 76 80 82 89 89
 90: 90 92 92 93 93 95 95 96 97 98

Intersection:
 0: 1 3 5 9 10 10 10 11 12 13
 10: 15 16 16 17 18 21 21 25 25 29
 20: 29 31 32 33 35 39 40 42 44 45
 30: 46 47 51 53 55 56 57 59 60 68
 40: 68 70 72 75 82 89 92 95 97 98

Symmetric Difference:
 0: 1 2 2 6 6 7 7 8 9 12
 10: 12 13 14 16 16 17 19 20 22 24
 20: 28 29 31 31 31 32 32 33 35 36
 30: 37 38 39 40 41 41 42 46 47 48
 40: 49 50 50 51 52 52 53 53 54 54
 50: 54 55 58 59 59 61 62 62 63 63
 60: 64 65 65 66 66 66 67 70 73 73
 70: 74 74 74 74 74 76 76 78 79 80
 80: 82 83 84 85 85 85 86 87 89 90
 90: 91 91 91 92 93 93 95 96 98 98

Multisets-pairs benchmark from tests/benchmarksets.cu

Multisets-pairs demonstration from tests/demo.cu

https://github.com/NVlabs/moderngpu/blob/master/tests/demo.cu
https://github.com/NVlabs/moderngpu/blob/master/tests/benchmarksets.cu

602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

void DemoSetsPairs(CudaContext& context) {
 printf("\nMULTISET-PAIRS DEMONSTRATION:\n\n");

 // Use CudaContext::SortRandom to generate 100 random sorted
integers
 // between 0 and 99.
 int N = 100;
 MGPU_MEM(int) aData = context.SortRandom<int>(N, 0, 99);
 MGPU_MEM(int) bData = context.SortRandom<int>(N, 0, 99);

 printf("A:\n");
 PrintArray(*aData, "%4d", 10);
 printf("\nB:\n\n");
 PrintArray(*bData, "%4d", 10);

 MGPU_MEM(int) intersectionDevice, intersectionValues;
 SetOpPairs<MgpuSetOpIntersection, true>(aData->get(),
 mgpu::counting_iterator<int>(0), N, bData->get(),
 mgpu::counting_iterator<int>(N), N, &intersectionDevice,
 &intersectionValues, context);

 printf("\nIntersection keys:\n");
 PrintArray(*intersectionDevice, "%4d", 10);

 printf("\nIntersection indices:\n");
 PrintArray(*intersectionValues, "%4d", 10);

 MGPU_MEM(int) symDiffDevice, symDiffValues;
 SetOpPairs<MgpuSetOpSymDiff, true>(aData->get(),
 mgpu::counting_iterator<int>(0), N, bData->get(),
 mgpu::counting_iterator<int>(N), N, &symDiffDevice,
&symDiffValues,
 context);

 printf("\nSymmetric difference keys:\n");
 PrintArray(*symDiffDevice, "%4d", 10);

 printf("\nSymmetric difference indices:\n");
 PrintArray(*symDiffValues, "%4d", 10);
}

MULTISET-PAIRS DEMONSTRATION:

A:
 0: 0 1 1 2 3 6 6 8 11 11
 10: 14 17 18 18 20 22 22 22 24 25
 20: 26 27 27 31 31 31 32 33 33 34
 30: 35 35 37 37 38 39 39 40 41 41
 40: 42 43 44 44 44 47 50 52 56 56
 50: 57 57 57 60 62 63 63 63 64 64
 60: 64 65 66 67 67 68 71 72 73 75
 70: 76 76 77 78 79 81 81 82 84 85
 80: 85 86 86 88 89 90 91 91 91 92

 90: 92 92 93 95 95 95 98 99 99 99

B:

 0: 0 1 2 2 4 4 4 4 5 6
 10: 6 8 8 10 10 12 13 14 18 21
 20: 21 22 22 22 24 26 26 27 28 28
 30: 30 32 33 34 35 38 38 38 39 40
 40: 40 41 41 42 43 44 45 45 48 51
 50: 53 53 53 53 54 55 57 61 61 61
 60: 62 62 64 64 66 66 67 68 70 70
 70: 72 74 76 78 78 79 80 80 80 80
 80: 81 81 87 88 88 89 91 91 92 93
 90: 93 93 94 96 97 98 98 98 98 99

Intersection keys:
 0: 0 1 2 6 6 8 14 18 22 22
 10: 22 24 26 27 32 33 34 35 38 39
 20: 40 41 41 42 43 44 57 62 64 64
 30: 66 67 68 72 76 78 79 81 81 88
 40: 89 91 91 92 93 98 99

Intersection indices:
 0: 0 1 3 5 6 7 10 12 15 16
 10: 17 18 20 21 26 27 29 30 34 35
 20: 37 38 39 40 41 42 50 54 58 59
 30: 62 63 65 67 70 73 74 75 76 83
 40: 84 86 87 89 92 96 97

Symmetric difference keys:
 0: 1 2 3 4 4 4 4 5 8 10
 10: 10 11 11 12 13 17 18 20 21 21
 20: 25 26 27 28 28 30 31 31 31 33
 30: 35 37 37 38 38 39 40 44 44 45
 40: 45 47 48 50 51 52 53 53 53 53
 50: 54 55 56 56 57 57 60 61 61 61
 60: 62 63 63 63 64 65 66 67 70 70
 70: 71 73 74 75 76 77 78 80 80 80
 80: 80 82 84 85 85 86 86 87 88 90
 90: 91 92 92 93 93 94 95 95 95 96
 100: 97 98 98 98 99 99

Symmetric difference indices:
 0: 2 103 4 104 105 106 107 108 112 113
 10: 114 8 9 115 116 11 13 14 119 120
 20: 19 126 22 128 129 130 23 24 25 28
 30: 31 32 33 136 137 36 140 43 44 146
 40: 147 45 148 46 149 47 150 151 152 153
 50: 154 155 48 49 51 52 53 157 158 159
 60: 161 55 56 57 60 61 165 64 168 169
 70: 66 68 171 69 71 72 174 176 177 178
 80: 179 77 78 79 80 81 82 182 184 85
 90: 88 90 91 190 191 192 93 94 95 193
 100: 194 196 197 198 98 99

Host functions

include/mgpuhost.cuh

522 ///

https://github.com/NVlabs/moderngpu/blob/master/include/mgpuhost.cuh

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

///////////
// kernels/sets.cuh

// SetOpKeys implements multiset operations with C++ set_* semantics.
// MgpuSetOp may be:
// MgpuSetOpIntersection - like std::set_intersection
// MgpuSetOpUnion - like std::set_union
// MgpuSetOpDiff - like std::set_difference
// MgpuSetOpSymDiff - like
std::set_symmetric_difference

// Setting Duplicates to false increases performance for inputs with
no
// duplicate keys in either array.

// The caller passes MGPU_MEM(T) pointers to hold outputs. Memory is
allocated
// by the multiset function using the allocator associated with the
context. It
// returns the number of outputs.

// SetOpKeys performs one cudaMemcpyDeviceToHost to retrieve the size
of
// the output array. This is a synchronous operation and may prevent
queueing
// for callers using streams.

// If compact = true, SetOpKeys pre-allocates an output buffer is
large as the
// sum of the input arrays. Partials results are computed into this
temporary
// array before being moved into the final array. It consumes more
space but
// results in higher performance.
template<MgpuSetOp Op, bool Duplicates, typename It1, typename It2,
 typename T, typename Comp>
MGPU_HOST int SetOpKeys(It1 a_global, int aCount, It2 b_global, int
bCount,
 MGPU_MEM(T)* ppKeys_global, Comp comp, CudaContext& context,
 bool compact = true);

// Specialization of SetOpKeys with Comp = mgpu::less<T>.
template<MgpuSetOp Op, bool Duplicates, typename It1, typename It2,
typename T>
MGPU_HOST int SetOpKeys(It1 a_global, int aCount, It2 b_global, int
bCount,
 MGPU_MEM(T)* ppKeys_global, CudaContext& context, bool compact =
true);

// SetOpPairs runs multiset operations by key and supports value
exchange.
template<MgpuSetOp Op, bool Duplicates, typename KeysIt1, typename

KeysIt2,
 typename ValsIt1, typename ValsIt2, typename KeyType, typename
ValType,
 typename Comp>
MGPU_HOST int SetOpPairs(KeysIt1 aKeys_global, ValsIt1 aVals_global,
int aCount,
 KeysIt2 bKeys_global, ValsIt2 bVals_global, int bCount,
 MGPU_MEM(KeyType)* ppKeys_global, MGPU_MEM(ValType)*
ppVals_global,
 Comp comp, CudaContext& context);

// Specialization of SetOpPairs with Comp = mgpu::less<T>.
template<MgpuSetOp Op, bool Duplicates, typename KeysIt1, typename
KeysIt2,
 typename ValsIt1, typename ValsIt2, typename KeyType, typename
ValType>
MGPU_HOST int SetOpPairs(KeysIt1 aKeys_global, ValsIt1 aVals_global,
int aCount,
 KeysIt2 bKeys_global, ValsIt2 bVals_global, int bCount,
 MGPU_MEM(KeyType)* ppKeys_global, MGPU_MEM(ValType)*
ppVals_global,
 CudaContext& context);

The four multiset operations

The C++ standard library includes four multiset operations: std::set_intersection,
std::set_union, std::set_difference, and std::set_symmetric_difference. These
functions find key-rank matches over two sorted input arrays.

Consider inputs A and B:

A: 1 1 2 3 3 3 5 6 6 6 6 7 7 8 8 9

B: 1 2 2 3 3 3 3 6 6 6 6 8

We rank the keys in each array by the order of appearance in their respective arrays:

A: 10 11 20 30 31 32 50 60 61 62 63 70 71 80 81 90

B: 10 20 21 30 31 32 33 60 61 62 63 80

Elements are placed in slots according to key-rank. Elements from both inputs that match are placed in the
same slot:

A: 10 11 20 30 31 32 50 60 61 62 63 70 71 80 81 90

B: 10 20 21 30 31 32 33 60 61 62 63 80

Once the inputs are partitioned and paired, the set operations can be described and implemented by
examining key-rank slots in isolation. For all operations, results are emitted from left-to-right, and each key-

rank slot may generate zero or one outputs.

C++ std::set_intersection reference implementation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

template <class InputIterator1, class InputIterator2, class
OutputIterator>
 OutputIterator set_intersection (InputIterator1 first1,
InputIterator1 last1,
 InputIterator2 first2,
InputIterator2 last2,
 OutputIterator result)
{
 while (first1!=last1 && first2!=last2)
 {
 if (*first1<*first2) ++first1;
 else if (*first2<*first1) ++first2;
 else {
 *result = *first1; first2;
 ++result; ++first1; ++first2;
 }
 }
 return result;
}

A: 10 11 20 30 31 32 50 60 61 62 63 70 71 80 81 90

B: 10 20 21 30 31 32 33 60 61 62 63 80

Set-intersection selects elements in A (in green) that have no key-rank match in B. Only elements in A are
returned to the caller.

C++ std::set_union reference implementation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

template <class InputIterator1, class InputIterator2, class
OutputIterator>
 OutputIterator set_union (InputIterator1 first1, InputIterator1
last1,
 InputIterator2 first2, InputIterator2
last2,
 OutputIterator result)
{
 while (true)
 {
 if (first1==last1) return std::copy(first2,last2,result);
 if (first2==last2) return std::copy(first1,last1,result);

 if (*first1<*first2) { *result = *first1; ++first1; }
 else if (*first2<*first1) { *result = *first2; ++first2; }
 else { *result = *first1; ++first1; ++first2; }
 ++result;

http://www.cplusplus.com/reference/algorithm/set_union/
http://www.cplusplus.com/reference/algorithm/set_intersection/

 }
}

A: 10 11 20 30 31 32 50 60 61 62 63 70 71 80 81 90

B: 10 20 21 30 31 32 33 60 61 62 63 80

Set-union selects all elements in A plus any elements in B that have no key-rank match in A.

C++ std::set_difference reference implementation

1
2
3
4
5
6
7
8
9
10
11
12
13

template <class InputIterator1, class InputIterator2, class
OutputIterator>
 OutputIterator set_difference (InputIterator1 first1, InputIterator1
last1,
 InputIterator2 first2, InputIterator2
last2,
 OutputIterator result)
{
 while (first1!=last1 && first2!=last2)
 {
 if (*first1<*first2) { *result = *first1; ++result; ++first1; }
 else if (*first2<*first1) ++first2;
 else { ++first1; ++first2; }
 }
 return std::copy(first1,last1,result);
}

A: 10 11 20 30 31 32 50 60 61 62 63 70 71 80 81 90

B: 10 20 21 30 31 32 33 60 61 62 63 80

Set-difference selects only elements in A that don't have key-rank matches in B. Set-difference returns the
elements in A that aren't returned by set-intersection.

C++ std::set_symmetric_difference reference implementation

http://www.cplusplus.com/reference/algorithm/set_symmetric_difference/
http://www.cplusplus.com/reference/algorithm/set_difference/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

template <class InputIterator1, class InputIterator2, class
OutputIterator>
 OutputIterator set_symmetric_difference (
 InputIterator1 first1, InputIterator1
last1,
 InputIterator2 first2, InputIterator2
last2,
 OutputIterator result)
{
 while (true)
 {
 if (first1==last1) return std::copy(first2,last2,result);
 if (first2==last2) return std::copy(first1,last1,result);

 if (*first1<*first2) { *result=*first1; ++result; ++first1; }
 else if (*first2<*first1) { *result = *first2; ++result; ++first2; }
 else { ++first1; ++first2; }
 }
}

A: 10 11 20 30 31 32 50 60 61 62 63 70 71 80 81 90

B: 10 20 21 30 31 32 33 60 61 62 63 80

Set-symmetric-difference selects elements in A that have no key-rank match in B and elements in B that have
no key-rank match in A.

Balanced Path

The four C++ reference codes are not obviously parallelizable. Although they appear merge-like, parallel
Merge Path partitioning is inadequete. Both components of a key-rank matches must be made available to the
same thread and therefore always must appear on the same side of any cross-diagonal. In the sample arrays
above, Merge Path follows all four 6 keys from A before pursuing any of the 6 keys from B.

The merge order is

6a
0 6a

1 6a
2 6a

3 6b
0 6b

1 6b
1 6b

3.

We want a search that finds the intersection of cross-diagonals with a path which interleaves key-rank
matches:

6a
0 6b

0 6a
1 6b

1 6a
2 6b

2 6a
3 6b

3.

Isolating the discovering of key-rank matches to partitioning code helps us cleanly separate scheduling logic
from multiset logic (code resembling the C++ reference implementations from above). This has been a theme
of all MGPU algorithms.

The green line in this figure is the now-familiar Merge Path. It greedily consumes all duplicates from A (the
long right-directed segments) and then consumes all duplicates from B (the long down-directed segments).
The red line is our answer for multiset-like problems: Balanced Path. This curve pairs all inputs by key-rank
match.

To satisfy our partitioning requirements, finding the intersection of the Balanced Path with cross-diagonals is
not sufficient. We must also introduce the concept of starred diagonals.

Consider diag6 in this figure. It cuts the Balanced Path putting key-rank pair (6a
1, 6b

1) on the left and key-

rank pair (6a
2, 6b

2) on the right. This is proper behavior, as the partition to the left is assigned both parts of

the key-rank pair 61 and the partition on the right is assigned both parts of key-rank pair 62.

diag7, on the other hand, intersects the Balanced Path between elements 6a
3 and 6b

3. This violates multisets'

partitioning conditions: the operation-specific logic is constructed with the requirement that each CTA or
thread is given both parts of all key-rank matches. To satisfy this we star the offending cross-diagonal,
causing the partition on the left to steal the next element in B (on the right side of the cross-diagonal) if it's a
key-rank match for the last element in A (on the left side of the cross-diagonal). Starring diag7 assigns four

elements to the partition (diag6, diag7) and only two elements to the partition (diag7, diag8). Balanced Path

partitions aren't precisely equal in size, but they deviate from the target grain size by only ±1.

Important: Like Merge Path, this new Balanced Path curve is constructed sequentially. We are interested in
finding the intersection of the Balanced Path with a cross-diagonal without actually constructing the
Balanced Path. We start by finding the intersection of the cross-diagonal with the Merge Path for the same
data. Establishing this, additional searches locate where the Merge Path and Balanced Path most recently
diverged. We then forward project from this point onto the cross-diagonal to complete the partitioning
search.

This is an intricate task, but fortunately there is a simple geometrically-motivated algorithm:

1. Find the intersection of the cross-diagonal with the Merge Path (the curve in green).

2. Read the key in the B array at the point of intersection. If the cross-diagonal intersects a run of
duplicates, it will be a run of elements with this key, because Merge Path consumes all duplicates
from A before any in B.

3. Binary search to find the first occurrence of this key in arrays A and B—this is the position where the
Balanced Path diverges from the Merge Path. In the figure, diag3 intersects the cross-diagonal where

the A cursor points to 5a
0 and the B cursor to 3b

0. The B key is 3. Binary searching for the lower-

bound of 3 into both arrays reveals the point of divergence at (3, 3), or where diag2 intersects the

Merge Path.

4. Use the distance between the intersection computed in 1 and the divergence point in 3 to establish the
duplicate run length. Project the Balanced Path (the curve in red) from the point of divergence along
this run length, creating a stair-step pattern by dividing the run length evenly over A and B intervals.

5. We can't advance the A and B cursors evenly if the run length is odd. If this projection would separate
a key-rank match, putting the A match on the left and the B match on the right of the cross-diagonal,
we star the cross-diagonal, instructing the left partition to steal the B match and the right partition to
cede it.

include/device/ctasearch.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctasearch.cuh

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

template<bool Duplicates, typename IntT, typename InputIt1, typename
InputIt2,
 typename Comp>
MGPU_HOST_DEVICE int2 BalancedPath(InputIt1 a, int aCount, InputIt2 b,
 int bCount, int diag, int levels, Comp comp) {

 typedef typename std::iterator_traits<InputIt1>::value_type T;

 int p = MergePath<MgpuBoundsLower>(a, aCount, b, bCount, diag,
comp);
 int aIndex = p;
 int bIndex = diag - p;

 bool star = false;
 if(bIndex < bCount) {
 if(Duplicates) {
 T x = b[bIndex];

 // Search for the beginning of the duplicate run in both A
and B.
 // Because
 int aStart = BiasedBinarySearch<MgpuBoundsLower, IntT>(a,
aIndex, x,
 levels, comp);
 int bStart = BiasedBinarySearch<MgpuBoundsLower, IntT>(b,
bIndex, x,
 levels, comp);

 // The distance between the merge path and the lower_bound
is the
 // 'run'. We add up the a- and b- runs and evenly
distribute them to
 // get a stairstep path.
 int aRun = aIndex - aStart;
 int bRun = bIndex - bStart;
 int xCount = aRun + bRun;

 // Attempt to advance b and regress a.
 int bAdvance = max(xCount>> 1, xCount - aRun);
 int bEnd = min(bCount, bStart + bAdvance + 1);
 int bRunEnd = BinarySearch<MgpuBoundsUpper>(b + bIndex,
 bEnd - bIndex, x, comp) + bIndex;
 bRun = bRunEnd - bStart;

 bAdvance = min(bAdvance, bRun);
 int aAdvance = xCount - bAdvance;

 bool roundUp = (aAdvance == bAdvance + 1) && (bAdvance <
bRun);
 aIndex = aStart + aAdvance;

 if(roundUp) star = true;
 } else {

BalancedPath returns the intersection of the cross-diagonal diag and the Balanced Path for input arrays
a and b in .x, and the star status of the intersection in .y. When Duplicates is true, we closely follow
the five steps already listed. (aIndex, bIndex) is the coordinate of the cross-diagonal intersection with the
Merge Path. Binary searches on A and B returns the point of divergence with the Balanced Path at (aStart,
bStart).

The function attemps to evenly distribute the total run length xCount over both inputs. However it can only
distribute within duplicate runs of the sought-for key x. It runs a third binary search, an upper-bound, to find
the last occurrence of the key in A. If the number of duplicates of x in A is less than half the distance from
the divergence point to the cross-diagonal's intersection with the Merge Path, we project the Balanced Path
only to the end of A's duplicate run and distribute the remainder of A's half to B. Graphically this keeps the
red stair-step Balanced Path bounded on the top and to the right by the green Merge Path. In the figure, if we
were to blindly project a stair-step path from the intersection of diag2 with the Merge Path, we'd violate key-

rank ordering where diag3 happens to intersect the Merge Path: 5a
0 would be consumed prior to 3b

3.

FindSetPartition, the multisets counterpart to MergePathPartitions, moves the starred flag into the
most-significant bit of the index when executing a global partitioning pass.

include/device/ctasearch.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/ctasearch.cuh
http://nvlabs.github.io/moderngpu/mergesort.html#mergepathpartitions

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

template<MgpuBounds Bounds, typename IntT, typename It, typename T,
 typename Comp>
MGPU_HOST_DEVICE void BinarySearchIt(It data, int& begin, int& end, T
key,
 int shift, Comp comp) {

 IntT scale = (1<< shift) - 1;
 int mid = (int)((begin + scale * end)>> shift);

 T key2 = data[mid];
 bool pred = (MgpuBoundsUpper == Bounds) ?
 !comp(key, key2) :
 comp(key2, key);
 if(pred) begin = mid + 1;
 else end = mid;
}

template<MgpuBounds Bounds, typename IntT, typename T, typename It,
 typename Comp>
MGPU_HOST_DEVICE int BiasedBinarySearch(It data, int count, T key, int
levels,
 Comp comp) {

 int begin = 0;
 int end = count;

 if(levels >= 4 && begin < end)
 BinarySearchIt<Bounds, IntT>(data, begin, end, key, 9, comp);
 if(levels >= 3 && begin < end)
 BinarySearchIt<Bounds, IntT>(data, begin, end, key, 7, comp);
 if(levels >= 2 && begin < end)
 BinarySearchIt<Bounds, IntT>(data, begin, end, key, 5, comp);
 if(levels >= 1 && begin < end)
 BinarySearchIt<Bounds, IntT>(data, begin, end, key, 4, comp);

 while(begin < end)
 BinarySearchIt<Bounds, int>(data, begin, end, key, 1, comp);
 return begin;
}

The cost of launching two conventional binary searches in addition to the Merge Path inside
BalancedPath would be very high. If both input arrays have 10 million elements, and the intersection of
the center cross-diagonal at 10 million with the Merge Path splits both arrays in half at 5 million, it hardly
makes sense to run a conventional binary search over (0, 5000000) on both arrays to find the first occurrence
of key x. Each search has 23 levels of depth, a heavy price to pay for key ranking. These multset functions
assume that the number of duplicates in a run is much smaller than the length of the inputs; i.e., the first
occurrence is, on average, close to the intersection of the cross-diagonal with the Merge Path, no matter
where that intersection is. (It's unlikely that the user would want to run multiset operations on arrays with
many thousands of duplicates of each key.)

We start with the interval (0, 5000000), but rather than splitting at the middle, we split 511/512ths of the way
to the right, at 4990234. If there are fewer than 9766 duplicates of x in the array (highly likely), the begin

iterator is advanced to 49909235—this gamble saved us 8 levels of binary searching. Otherwise we search
again at (0, 4990234).

On the next level, we split the interval (0, 4990234) 127/128ths of the way to the right, at 4999923. If the
first occurence of x is to the right of this (meaning there are fewer than 77 duplicates), we set begin to
4999924 and have saved another 6 levels of searching.

This strategy is called BiasedBinarySearch. When executed on data in a CTA's shared memory, two
biased iterations are run before the dynamic loop of symmetric iterations, with weights 31/32 and 15/16. For
global memory searches, we run four searches: 511/512, 127/128, 31/32, and 15/16 before entering the
dynamic loop of symmetric searches.

To avoid undesirable division, we multiply the end iterator by 511 and add it to the left iterator, then shift 9
bits to simulate division. The multiplication may cause an overflow during searches into global memory,
where the input arrays are large compared to the capacity of 32-bit ints. Biased search uses 64-bit integers to
accommodate the need for more bits during midpoint calculation, but only during global search, when
overflow is acutally possible. When called from the global partitioning kernel, BalancedPath is
specialized with IntT = int64 and passed levels = 4, to use wide multiplication and more
aggressive biasing. When called from the intra-CTA multisets function, BalancedPath is specialized with
IntT = int and passed levels = 2.

Serial multiset operations

BalancedPath partitions global data into NV±1-sized tiles. These intervals are loaded into CTA shared
memory and further partitioned into VT±1-sized chunks. Just as we have SerialMerge to merge short
intervals from shared memory into register, we have four serial set functions to read key-rank pairs from
shared memory and produce results into register.

CUDA serial set-intersection from include/device/serialsets.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/serialsets.cuh

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

template<int VT, bool RangeCheck, typename T, typename Comp>
MGPU_DEVICE int SerialSetIntersection(const T* data, int aBegin, int
aEnd,
 int bBegin, int bEnd, int end, T* results, int* indices, Comp comp)
{

 const int MinIterations = VT / 2;
 int commit = 0;

 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 bool test = RangeCheck ?
 ((aBegin + bBegin < end) && (aBegin < aEnd) && (bBegin <
bEnd)) :
 (i < MinIterations || (aBegin + bBegin < end));

 if(test) {
 T aKey = data[aBegin];
 T bKey = data[bBegin];

 bool pA = comp(aKey, bKey);
 bool pB = comp(bKey, aKey);

 // The outputs must come from A by definition of set
interection.
 results[i] = aKey;
 indices[i] = aBegin;

 if(!pB) ++aBegin;
 if(!pA) ++bBegin;
 if(pA == pB) commit |= 1<< i;
 }
 }
 return commit;
}

A: 10 11 20 30 31 32 50 60 61 62 63 70 71 80 81 90

B: 10 20 21 30 31 32 33 60 61 62 63 80

For a full tile, the number of inputs equals VT±1. When key-rank elements are arranged in slots, as above,
each iteration of the serial set operation advances exactly one slot, and increments one or both input pointers.
Because we don't know a priori how many outputs a thread generates, each iteration stores the result (there
can be no more than one result per slot) to results[i] and sets the i'th bit in the commit bitfield. After
the loop has ended, each thread will count its outputs, cooperatively scan them, and compact into shared
memory. This technique lets us load keys from shared memory (we need dynamic indexing, so that much is a
requirement) and store to register (indexing into the output arrays is static thanks to loop unrolling by the
template argument VT).

If we're processing a full tile and the caller is able to load one additional element from both A and B arrays,

the four serial set ops are specialized with RangeCheck = false. In this case the function knows it
won't be dealing with the end of the array and can elide range-checking tests. This reduces latency in the
function, and because the kernel is intentionally underoccupied (we jack VT up to amortize the expensive
Balanced Path intersection searches), it significantly boosts performance.

SerialSetIntersection takes indices (aBegin, bBegin) to the start of the thread's partition in
shared memory. (aEnd, bEnd) are indices to the end of the tile's A and B intervals in shared memory. end
is passed as aBegin + bBegin + partition size. This lets us check if we've consumed all the inputs for the
entire partition with just a single comparison, no matter the state that the set operation takes us to.

Each thread makes exactly VT iterations through the inner loop, although as few as VT / 2 actually perform
key comparisons. If the cross-diagonal on the left is starred, and the cross-diagonal on the right isn't, the
thread has VT - 1 inputs. If VT = 11, there are minimally 10 elements per thread (for a full tile), and if all
inputs are paired, there are only 5 active slots. So the first 5 iterations, 0-4, are executed unconditionally, and
the next six, 5-10, execute only if aBegin + bBegin < end is true.

The actual logic for multiset operations is very simple:

1. Load the next keys from A and B into aKey and bKey.

2. Evaluate aKey < bKey and bKey < aKey.

3. Speculatively store A into the results array—all results in set-intersection come from A, and an
iteration's bit in the commit bitfield must be set for the result to be compacted.

4. Advance the indices to the next key-rank slot. If aKey <= bKey (i.e. !comp(bKey, aKey)),
increment aBegin. If bKey <= aKey (i.e. !comp(aKey, bKey)), increment bBegin.

5. If the set condition was satisfied, set bit i in commit to commit the result. In the case of set-
intersection, both elements must make a key-rank match. We've already compared both keys against
each other, and want to emit if they're equal. Predicates pA and pB can both be false (indicating
equality), but they can't both be true (indicating A < B and B < A). For set-intersection we set the
commit bit if pA == pB.

CUDA serial set-union from include/device/serialsets.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/serialsets.cuh

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

template<int VT, bool RangeCheck, typename T, typename Comp>
MGPU_DEVICE int SerialSetUnion(const T* data, int aBegin, int aEnd,
 int bBegin, int bEnd, int end, T* results, int* indices, Comp comp)
{

 const int MinIterations = VT / 2;
 int commit = 0;

 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 bool test = RangeCheck ?
 (aBegin + bBegin < end) :
 (i < MinIterations || (aBegin + bBegin < end));

 if(test) {
 T aKey = data[aBegin];
 T bKey = data[bBegin];

 bool pA = false, pB = false;
 if(RangeCheck && aBegin >= aEnd)
 pB = true;
 else if(RangeCheck && bBegin >= bEnd)
 pA = true;
 else {
 // Both are in range.
 pA = comp(aKey, bKey);
 pB = comp(bKey, aKey);
 }

 // Output A in case of a tie, so check if b < a.
 results[i] = pB ? bKey : aKey;
 indices[i] = pB ? bBegin : aBegin;
 if(!pB) ++aBegin;
 if(!pA) ++bBegin;
 commit |= 1<< i;
 }
 }
 return commit;
}

A: 10 11 20 30 31 32 50 60 61 62 63 70 71 80 81 90

B: 10 20 21 30 31 32 33 60 61 62 63 80

The range-checking logic is basically the same for all four serial set op functions. The material difference is
how results are selected and committed. If both keys are in-range, SerialSetUnion compares them and
sets the result to A, or B if B is smaller. One value from each key-rank slot is always emitted, so the commit
flag is set unconditionally.

CUDA serial set-difference from include/device/serialsets.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/serialsets.cuh

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

template<int VT, bool RangeCheck, typename T, typename Comp>
MGPU_DEVICE int SerialSetDifference(const T* data, int aBegin, int aEnd,
 int bBegin, int bEnd, int end, T* results, int* indices, Comp comp)
{

 const int MinIterations = VT / 2;
 int commit = 0;

 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 bool test = RangeCheck ?
 (aBegin + bBegin < end) :
 (i < MinIterations || (aBegin + bBegin < end));
 if(test) {
 T aKey = data[aBegin];
 T bKey = data[bBegin];

 bool pA = false, pB = false;
 if(RangeCheck && aBegin >= aEnd)
 pB = true;
 else if(RangeCheck && bBegin >= bEnd)
 pA = true;
 else {
 pA = comp(aKey, bKey);
 pB = comp(bKey, aKey);
 }

 // The outputs must come from A by definition of set
difference.
 results[i] = aKey;
 indices[i] = aBegin;
 if(!pB) ++aBegin;
 if(!pA) ++bBegin;
 if(pA) commit |= 1<< i;
 }
 }
 return commit;
}

A: 10 11 20 30 31 32 50 60 61 62 63 70 71 80 81 90

B: 10 20 21 30 31 32 33 60 61 62 63 80

Set-difference is the complement of set-intersection. The result is unconditionally set to the A element and
committed if aKey < bKey.

CUDA serial set-symmetric difference from include/device/serialsets.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/device/serialsets.cuh

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

template<int VT, bool RangeCheck, typename T, typename Comp>
MGPU_DEVICE int SerialSetSymDiff(const T* data, int aBegin, int aEnd,
 int bBegin, int bEnd, int end, T* results, int* indices, Comp comp)
{

 const int MinIterations = VT / 2;
 int commit = 0;

 #pragma unroll
 for(int i = 0; i < VT; ++i) {
 bool test = RangeCheck ?
 (aBegin + bBegin < end) :
 (i < MinIterations || (aBegin + bBegin < end));
 if(test) {
 T aKey = data[aBegin];
 T bKey = data[bBegin];

 bool pA = false, pB = false;
 if(RangeCheck && (bBegin >= bEnd))
 pA = true;
 else if(RangeCheck && (aBegin >= aEnd))
 pB = true;
 else {
 pA = comp(aKey, bKey);
 pB = comp(bKey, aKey);
 }

 results[i] = pA ? aKey : bKey;
 indices[i] = pA ? aBegin : bBegin;
 if(!pA) ++bBegin;
 if(!pB) ++aBegin;
 if(pA != pB) commit |= 1<< i;
 }
 }
 return commit;
}

A: 10 11 20 30 31 32 50 60 61 62 63 70 71 80 81 90

B: 10 20 21 30 31 32 33 60 61 62 63 80

Set-symmetric difference uses the identical range-checking expressions as set-difference. However instead of
conditionally emitting A, it emits A or B, whichever is smaller. If the keys are equal, the function moves to
the next key-rank frame.

Multisets kernel

include/kernels/sets.cuh

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/sets.cuh

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

template<int NT, int VT, MgpuSetOp Op, bool Duplicates, typename
InputIt1,
 typename InputIt2, typename T, typename Comp>
MGPU_DEVICE int DeviceComputeSetAvailability(InputIt1 a_global, int
aCount,
 InputIt2 b_global, int bCount, const int* bp_global, Comp comp,
 int tid, int block, T* results, int* indices, int4& range,
 bool& extended, T* keys_shared) {

 const int NV = NT * VT;
 int gid = NV * block;
 int bp0 = bp_global[block];
 int bp1 = bp_global[block + 1];

 // Compute the intervals into the two source arrays.
 int a0 = 0x7fffffff & bp0;
 int a1 = 0x7fffffff & bp1;
 int b0 = gid - a0;
 int b1 = min(aCount + bCount, gid + NV) - a1;

 // If the most sig bit flag is set, we're dealing with a 'starred'
diagonal
 // that shifts the point of intersection up.
 int bit0 = (0x80000000 & bp0) ? 1 : 0;
 int bit1 = (0x80000000 & bp1) ? 1 : 0;
 b0 += bit0;
 b1 += bit1;

 // Attempt to load an 'extended' frame by grabbing an extra value
from each
 // array.
 int aCount2 = a1 - a0;
 int bCount2 = b1 - b0;
 extended = (a1 < aCount) && (b1 < bCount);
 int bStart = aCount2 + (int)extended;

 DeviceLoad2ToShared<NT, VT, VT + 1>(a_global + a0, aCount2 +
(int)extended,
 b_global + b0, bCount2 + (int)extended, tid, keys_shared);
 int count = aCount2 + bCount2;

 // Run a Balanced Path search for each thread's starting point.
 int diag = min(VT * tid - bit0, count);
 int2 bp = BalancedPath<Duplicates, int>(keys_shared, aCount2,
 keys_shared + bStart, bCount2, diag, 2, comp);

 int a0tid = bp.x;
 int b0tid = VT * tid + bp.y - bp.x - bit0;

 int commit;
 if(extended)
 commit = SerialSetOp<VT, false, Op>(keys_shared, a0tid,

102
103

aCount2,
 bStart + b0tid, bStart + bCount2, bp.y, results, indices,
comp);
 else
 commit = SerialSetOp<VT, true, Op>(keys_shared, a0tid,
aCount2,
 bStart + b0tid, bStart + bCount2, bp.y, results, indices,
comp);

 range = make_int4(a0, a1, b0, b1);
 return commit;
}

Threads load the tile's Balanced Path intersections and extract the source list ranges (a0, a1) and (b0, b1).
Note that a star flag causes an increment to the B component of each intersection.

Due to the relative complexity of the serial set operations, we attempt to load an extra element in A and B. If
this succeeds we can elide range-checking logic because we are guaranteed of not running off the end of the
arrays in shared memory. This optimization is also used in the vectorized sorted search. The MGPU kernels
tend to run underoccupied on current generation hardware, and reducing predicate latency often outweighs
the costs of the additional global loads.

The remaining code resembles DeviceMergeKeysIndices of MGPU Merge. BalancedPath finds
the starting positions for serial set ops for each thread. As with Merge the results and indices are computed
into register. However because multiset operations generate a data-dependent number of outputs, we return a
bitfield commit that encodes the validity of each result. Results are compacted over this bitfield by the
kernel.

The MGPU Multisets function SetOpKeys has two modes of operation:

• If compact = false:

1. KernelSetOp is launched with Stage = 0. This fully processes the input arrays, counts
the outputs for each tile, and discards the results. Each tile stores its output count to global
memory.

2. The caller scans the output counts and uses the reduction to allocate exact space for the
globally-compact results.

3. KernelSetOp is launched with Stage = 1. This makes a second pass over the input
arrays. The results are now compacted within the tile and cooperatively stored to the
destination buffer.

• If compact = true:

1. The host function allocates a temporary buffer large enough to hold all the inputs.

2. KernelSetOp is launched with Stage = 2. This compacts multiset results within tiles
and stores the results to the temporary buffer at tile offsets. Each tile stores its output count to
global memory.

3. The caller scans the output counts and uses the reduction to allocate exact space for the

http://nvlabs.github.io/moderngpu/merge.html#algorithm
http://nvlabs.github.io/moderngpu/sortedsearch.html#parallel

globally-compacted results.

4. The host launches KernelSetCompact to compact tiles of results from the temporary
buffer into the destination buffer.

Compaction behavior is more efficient because the input arrays are processed only once, but it requires a lot
of temporary storage. This is the default mode for StreamOpKeys (the keys-only multiset function). The
compaction mode is not available for StreamOpPairs: we'd need two temporary buffers (for keys and
values), and would have to copy values twice, wasting both space and bandwidth. By using the count-scan-
stream pattern, the first KernelSetOp launch only touches keys; the second KernelSetOp launch
compacts keys and indices inside the CTA; it stores the keys then cooperatively gathers and stores values.

include/kernels/sets.cuh

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

template<typename Tuning, MgpuSetOp Op, bool Duplicates, int Stage,
 bool HasValues, typename KeysIt1, typename KeysIt2, typename
KeysIt3,
 typename ValsIt1, typename ValsIt2, typename ValsIt3, typename Comp>
MGPU_LAUNCH_BOUNDS void KernelSetOp(KeysIt1 aKeys_global, ValsIt1
aVals_global,
 int aCount, KeysIt2 bKeys_global, ValsIt2 bVals_global, int bCount,
 int* counts_global, const int* bp_global, KeysIt3 keys_global,
 ValsIt3 values_global, Comp comp) {

 typedef typename std::iterator_traits<KeysIt1>::value_type KeyType;
 typedef typename std::iterator_traits<ValsIt1>::value_type ValType;
 typedef MGPU_LAUNCH_PARAMS Params;
 const int NT = Params::NT;
 const int VT = Params::VT;
 const int NV = NT * VT;
 typedef CTAReduce<NT, ScanOpAdd> R;
 typedef CTAScan<NT, ScanOpAdd> S;

 union Shared {
 KeyType keys[NT * (VT + 1)];
 int indices[NV];
 typename R::Storage reduce;
 typename S::Storage scan;
 };
 __shared__ Shared shared;

 int tid = threadIdx.x;
 int block = blockIdx.x;

 // Run the set operation. Return a bitfield for the selected keys.
 KeyType results[VT];
 int indices[VT];
 int4 range;
 bool extended;
 int commit = DeviceComputeSetAvailability<NT, VT, Op, Duplicates>(
 aKeys_global, aCount, bKeys_global, bCount, bp_global, comp,
tid, block,

https://github.com/NVlabs/moderngpu/blob/master/include/kernels/sets.cuh

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

 results, indices, range, extended, shared.keys);
 aCount = range.y - range.x;
 bCount = range.w - range.z;

 // scan or reduce over the number of emitted keys per thread.
 int outputCount = popc(commit);
 int outputTotal;
 if(0 == Stage) {
 // Stage 0 - count the outputs.
 outputTotal = R::Reduce(tid, outputCount, shared.reduce);
 } else {
 int globalStart = (1 == Stage) ? counts_global[block] : (NV *
block);

 // Stage 1 or 2 - stream the keys.
 int scan = S::Scan(tid, outputCount, shared.scan,
&outputTotal);

 // Write the commit results to shared memory.
 int start = scan;
 #pragma unroll
 for(int i = 0; i < VT; ++i)
 if((1<< i) & commit)
 shared.keys[start++] = results[i];
 __syncthreads();

 // Store keys to global memory.
 DeviceSharedToGlobal<NT, VT>(outputTotal, shared.keys, tid,
 keys_global + globalStart);

 if(HasValues) {
 // indices[] has gather indices in thread order. Compact
and store
 // these to shared memory for a transpose to strided
order.
 start = scan;
 #pragma unroll
 for(int i = 0; i < VT; ++i)
 if((1<< i) & commit)
 shared.indices[start++] = indices[i];
 __syncthreads();

 aVals_global += range.x;
 bVals_global += range.z;
 values_global += globalStart;
 if(MgpuSetOpIntersection == Op || MgpuSetOpDiff == Op)
 DeviceGatherGlobalToGlobal<NT, VT>(outputTotal,
aVals_global,
 shared.indices, tid, values_global, false);
 else
 DeviceTransferMergeValues<NT, VT>(outputTotal,
aVals_global,

 bVals_global, aCount + (int)extended,
shared.indices, tid,
 values_global, false);
 }
 }

 if(1 != Stage && !tid)
 counts_global[block] = outputTotal;
}

Judicious factoring allows one implementation of KernelSetOp to support all three multiset launches
described above. Although the function feels more like a merge, the implementation has more in common
with vectorized sorted search, in that valid outputs are compacted with a loop over a commit bitfield. To
copy values, we make a second loop over the set bits in commit, compact the indices of valid outputs to
shared memory, and cooperatively gather and store data from values_global using these indices.

Set-union and set-symmetric difference return elements from both arrays, and for these merge-like operations
we tap DeviceTransferMergeValues to facilitate the gather and store. Set-intersection and set-
difference return only elements from the A input, presenting an opportunity for optimization: we call
DeviceGatherGlobalToGlobal; it's similar to DeviceTransferMergeValues but drops
predication by only supports a single input array.

http://nvlabs.github.io/moderngpu/sortedsearch.html

	0. FAQ
	1. Introduction
	2. Performance
	3. The Library
	4. Reduce and Scan
	5. Bulk Remove and Bulk Insert
	6. Merge
	7. Mergesort
	8. Segmented Sort and Locality Sort
	9. Vectorized Sorted Search
	10. Load-Balancing Search
	11. IntervalExpand and IntervalMove
	12. Relational Joins
	13. Multisets
	Downloading
	Compiling
	Debugging
	cuda-memcheck
	printf

	Getting started
	Contact
	License
	Libraries
	Goals
	1. Utility
	2. Novelty
	3. Clarity
	4. Hackability

	Two-phase decomposition
	From scan to load-balancing search
	Expand
	Expand with load-balancing search

	Algorithms
	Occupancy and latency
	Launch bounds

	Getting more performance from MGPU
	LaunchBox

	Framework
	Load/store functions
	Task range
	Benchmark and usage
	Host functions
	Algorithm
	Scan operators
	ScanOp
	ScanOpIndex

	CTAReduce
	CTAScan and shfl scan
	Reduce kernel
	Scan kernel
	ScanOpValue

	Benchmark and usage
	Host functions
	Bulk Remove algorithm
	BinarySearchPartitions
	KernelBulkRemove
	Bulk Insert partitioning
	Merge Path
	Bulk insert algorithm
	Bulk insert host function and kernel
	Benchmark and usage
	Host functions
	Two-stage design
	Algorithm
	Benchmark and usage
	Host functions
	Algorithm
	Sorting networks
	Blocksort
	Flexible merge partitioning
	MergePathPartitions
	Launching from the host
	Benchmark and usage
	Host functions
	Algorithm
	Segmented blocksort
	Early-exit
	Filling the work queue
	Servicing the work queue
	Benchmark and usage
	Host functions
	Algorithm
	Parallel sorted search
	CTASortedSearch
	SortedEqualityCount
	Benchmark and usage
	Host function
	Algorithm
	CTALoadBalance
	Benchmark and usage
	Host functions
	IntervalExpand
	IntervalMove
	Benchmark and usage
	Host functions
	Algorithm
	Benchmark and usage
	Host functions
	The four multiset operations
	Balanced Path
	Serial multiset operations
	Multisets kernel

