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CUDA hands-on sessions 
Examples: VectorAdd,  

ReverseArray, ReduceSum, MxM 
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What is CUDA? 
Compute Unified Device Architecture  

• CUDA Architecture 

– Massive parallel architecture of modern GPUs 
with hundreds of cores 

• CUDA Programming Model 

– A way to program these modern GPUs to solve 
general purpose problems in parallel 

– Program all these GPU cores easily and efficiently 

– Process thousands of elements for a particular 
task in parallel 
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How can CUDA help us? 

• On a GPU we have hundreds of cores  

• Each of them working on tens or hundreds of 
threads simultaneously (juggling them)  

• These are thousands of threads on a given time 
working on the GPU 

• CUDA provides a scalable and easy way to 
express parallelism 
– We simple write our program for one data element 

– It gets automatically distributed on hundreds of 
cores for thousands of threads 
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A simple example 

• We want to sum two vectors A, B and store 
the results in C 

 
 
  C    =  A    +  B 
 
 

A  B    C 
 

+   = 
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A simple example 

• In C language we solve this with a for loop 
– for each element of the vector at a time, from 

i=0 to i=n-1, the loop adds every pair of elements 
and then puts the result in corresponding 
element of C 

    for (i=0; i<n; i++) 
{ 
  C[i] = A[i] + B[i] 
} 
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A simple example 

• With CUDA each individual addition will be 
a thread: each thread produces an 
element of the result 

    

 Each thread i does an single operation: 
{ 
  C[i] = A[i] + B[i] 
} 
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A simple example 

• Instead of using a loop we write the 
elementary operation as a function 
(kernel) that receives the three vectors 

    

VecAdd(A,B,C) 
{    
  C[i] = A[i] + B[i] 
} 
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A simple example 

• The same function will be executed by all 
threads but on a different element (using 
the index of the thread) 

    

VecAdd(A,B,C) 
{  int i=threadIdx…; 
  C[i] = A[i] + B[i] 
} 
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A simple example 

• Now we only need to launch n threads in 
parallel running this function 

    
A  B    C 
 

+   = 
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VecAdd(A,B,C) 
{  int i=threadIdx…; 
  C[i] = A[i] + B[i] 
} 
 
VecAdd <<< n >>> (A, B, C) 

Modified syntax to launch n copies of the function 
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A simple example: summary 

• Our function, instead of executing exactly 
once per call, 
 
 
executes n times as in separate threads 
– 1 thread per data element 

• This gives us an easy way to express 
parallelism 

• And n can become very large (thousands, 
millions…) 
– Scale up to greater levels of parallelism   

VecAdd <<< n >>> (A, B, C) 
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CUDA Language: 
C with Minimal Extensions 

• Philosophy: provide minimal set of extensions necessary to 
expose power 

• Declaration specifiers to indicate where things live 
__global__ void KernelFunc(...);     // kernel function, runs on device 

__device__  int  GlobalVar;             //variable in device memory 

__shared__  int  SharedVar;      // variable in per-block shared memory 

• Extend function invocation syntax for parallel kernel launch 
KernelFunc<<<500, 128>>>(...);    //  launch 500 blocks w/ 128 

threads each 

• Special variables for thread identification in kernels 
dim3 threadIdx;  dim3 blockIdx;  dim3 blockDim;  dim3 gridDim; 

• Intrinsics that expose specific operations in kernel code 
__syncthreads();       // barrier synchronization within kernel 
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Steps for building our CUDA program 

1. Identify those parts with a good potential to run in 
parallel exploiting SIMD data parallelism 

– CUDA is good for lots of computations and lots of data 

2. Identify all data necessary for the computations 

3. Move data to the GPU 

4. Call to the computational kernel 

5. Establish the required CPU-GPU synchronization 

6. Transfer results from GPU back to CPU 

7. Integrate the GPU results into CPU variables 
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1. Adding two vectors 

a b c 
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The required code for the GPU kernel  
and its invocation from the CPU side 

The __global__ prefix indicates that vecAdd() will execute 
on device (GPU) and will be called from host (CPU) 

A, B and C are pointers to device memory, so we need to: 
Allocate/free memory on GPU, using cudaMalloc()/cudaFree() 

These pointers cannot be dereferenced in host code 

// Add two vectors of size N: C[1..N] = A[1..N] + B[1..N] 

// Each thread calculates a single component of the output vector  

__global__ void vecAdd(float* A, float* B, float* C) { 

 int i = threadIdx.x + (blockDim.x* blockIdx.x); 

 C[i] = A[i] + B[i]; 

} 

GPU code 

int main() { // Launch N/256 blocks of 256 threads each 

 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C); 

} 
CPU code 
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• unsigned int size= N * sizeof(float); 

• // Allocates CPU memory 

• float* h_A = (float*) malloc(size); 

• float* h_B = (float*) malloc(size); 

• ... initializes h_A and h_B ... 

• // Allocates GPU memory 

• float* d_A;  cudaMalloc((void**)&d_A, size); 

• float* d_B;  cudaMalloc((void**)&d_B, size); 

• float* d_C;  cudaMalloc((void**)&d_C, size); 

• // Copy input data from CPU into GPU 

• cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice); 

• cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice); 

• ... CALL TO THE VecAdd KERNEL IN THE PREVIOUS SLIDE HERE... 

• // Copy results from GPU back to CPU 

• float* h_C = (float*) malloc(size); 

• cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost); 

• // Free video memory 

• cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); 

CPU code to handle memory  
and gather results from the GPU  
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Running in parallel 
(regardless of hardware generation) 

vecAdd<<< 1, 1 >>>(): 
Executes 1 block composed 
of 1 thread - no parallelism. 
vecAdd<<< N, 1 >>>(): 
Executes N blocks 
composed on 1 thread. 
Inter-multiprocessor 
parallelism. 
vecAdd<<< N, M >>>(): 
Executes N blocks 
composed of M threads 
each. Inter- and intra-
multiprocessor parallelism. 

GPU 

Multiprocessor N 

Multiprocessor 2 

Multiprocessor 1 

Global memory 

Shared memory 

Core 1 

Registers 

… Core 2 

Registers 

Core M 

Registers 

Texture cache 

(scalability in 2nd gener.) 

(scalability in 3rd gener.) 
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Indexing arrays with blocks and 
threads 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 

threadIdx.x threadIdx.x threadIdx.x threadIdx.x 

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3 

7 
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Handling arbitrary vector sizes 

Typical problems are not friendly multiples of 
blockDim.x, so we have to prevent accessing 
beyond the end of arrays: 

 

 

 

 

And now, update the kernel launch to include the 
"incomplete" block of threads: 

// Add two vectors of size N: C[1..N] = A[1..N] + B[1..N] 

__global__ void vecAdd(float* A, float* B, float* C, N) { 

int i = threadIdx.x + (blockDim.x * blockIdx.x); 

if (i< N) 

  C[i] = A[i] + B[i]; 

} 

 vecAdd<<< (N + 256-1)/256, 256>>>(d_A, d_B, d_C, N); 



19 

2. Reverse the order to  
the elements of a vector 



Array size= 16 
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GPU code for the ReverseArray kernel 
(1) using a single block 

__global__ void reverseArray(int *in, int *out)  

{   

  int index_in = threadIdx.x; 

  int index_out = blockDim.x - 1 - threadIdx.x; 

  // Reverse array contents using a single block  out[index_out] = in[index_in]; 

} 

 

It is a solution too naive, which does not aspire to apply 
massive parallelism. The maximum block size is 1024 threads. 

threadIdx.x=0..15 

blockIdx.x = 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 



Array size= 16 
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GPU code for the ReverseArray kernel 
(1) using a single block 

__global__ void reverseArray(int *in, int *out)  

{   

  int index_in = threadIdx.x; 

  int index_out = blockDim.x - 1 - threadIdx.x; 

  // Reverse array contents using a single block  out[index_out] = in[index_in]; 

} 

 

It is a solution too naive, which does not aspire to apply 
massive parallelism. The maximum block size is 1024 threads. 

threadIdx.x=0..15 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

blockIdx.x = 0 
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GPU code for the ReverseArray kernel 
(2) using multiple blocks 

__global__ void reverseArray(int *in, int *out)  

{   

  int in_offset = blockIdx.x * blockDim.x;   

  int out_offset = blockDim.x * (gridDim.x - 1 - blockIdx.x);  

  int index_in = threadIdx.x + in_offset; 

  int index_out = out_offset + (blockDim.x - 1 - threadIdx.x); 

  // Reverse contents in chunks of whole blocks  out[index_out] = in[index_in]; 

} 

Array size= 16 

threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3 

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 
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GPU code for the ReverseArray kernel 
(2) using multiple blocks 

__global__ void reverseArray(int *in, int *out)  

{   

  int in_offset = blockIdx.x * blockDim.x;   

  int out_offset = blockDim.x * (gridDim.x - 1 - blockIdx.x);  

  int index_in = threadIdx.x + in_offset; 

  int index_out = out_offset + (blockDim.x - 1 - threadIdx.x); 

  // Reverse contents in chunks of whole blocks  out[index_out] = in[index_in]; 

} 

threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3 

blockIdx.x = 0 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 

Array size= 16 



Array size= 16 
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What if we also use shared memory 
to speed up the process? 

1. Copy to shared memory in reversed order 
2. Wait to all threads in block finalize step 1 
3. Copy to output vector (global memory) 

threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3 

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

Shared Memory for each Block 



Array size= 16 
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What if we also use shared memory 
to speed up the process? 

1. Copy to shared memory in reversed order 
2. Wait to all threads in block finalize step 1 
3. Copy to output vector (global memory) 

threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3 

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

3 2 1 0 Shared Memory for each Block 



Array size= 16 
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Now write operations to global 
memory are aligned (then coalesced) 

1. Copy to shared memory in reversed order 
2. Wait to all threads in block finalize step 1 
3. Copy to output vector (global memory) 

threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3 threadIdx.x=0..3 

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

3 2 1 0 Shared Memory for each Block 

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 
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ReverseArray using Shared Memory 
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GPU code for the ReverseArray kernel 
(3) using multiple blocks and shared 

memory 

__global__ void reverseArray(int *in, int *out)  

{ 

   __shared__ int temp[BLOCK_SIZE];   

   int gindex = threadIdx.x + blockIdx.x * blockDim.x;   

   int lindex = threadIdx.x;   

 

  // Read input elements into shared memory  temp[lindex] = in[gindex]; 

 

  // Reverse local arrays within each block  temp[lindex] = temp[blockDim.x-lindex-1]; 

 

  // Reverse contents in chunks of whole blocks   

  // out[threadIdx.x + ((N/blockDim.x)-blockIdx.x-1) * blockDim.x] = temp[lindex];} 
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3. Reduce sum 
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Reduction example 

Reduce N values to a single one: 

Result = Sum(V0, V1, V2, V3, …, VN-2, VN-1) 

Common primitive in parallel programing 
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Reduction example 

We will use 1 Block for simplicity 

Start with N/2 threads to apply the reduction 
N 
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Reduction kernel first step 

Copy data from Global to Shared Memory 

Each threadi loads 2 data elements Vi and Vi+N/2 

 

 

 

 

 

 

 

Wait until all the threads have load data:  
__syncthreads(); 

3 1 7 0 4 1 6 3 

3 1 7 0 4 1 6 3 

Th0 Th1 Th2 Th3 Th0 Th1 Th2 Th3 

N 

N/2 Threads 

Shared Memory 

Global Memory 
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Reduction kernel second step 

Do sum reduction on the shared memory data 

__syncthreads() after each iteration 

3 1 7 0 4 1 6 3 

7 2 13 3 4 1 6 3 

Th0 Th1 Th2 Th3 

N 

Iteration 1 
N/2 Threads 

20 5 13 3 4 1 6 3 

Th0 Th1 
Iteration 2 

N/4 Threads 

25 5 13 3 4 1 6 3 

Th0 
Iteration 3 

N/8 Threads 
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Reduction kernel last step 

Write result back to Global Memory 

 

 

 

 

 

The kernel has finished. The host can get the 
final result from first element of the array 

25 1 7 0 4 1 6 3 

25 5 13 3 4 1 6 3 

Th0 

Shared Memory 

Global Memory 
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4. Matrix product 
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Typical CPU code written in C language 

C = A x B. 

All square matrices of size N x N. 

Matrices are serialized into vectors to 
simplify dynamic memory allocation 

void MxMonCPU(float* A, float* B, float* C, int N); 

{ 

  for (int i=0; i<N; i++) 

    for (int j=0; j<N; j++) 

    { 

      float sum=0; 

      for (int k=0; k<N; k++)  

      { 

                float a = A[i*N + k]; 

             float b = B[k*N + j]; 
        sum += a*b; 

      } 

      C[i*N + j] = sum; 

    } 

} 

A 

B 

C 

N
 

N N 
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CUDA version for the matrix product: 
A draft for the parallel code 

__global__ MxMonGPU(float* A, float* B, float* C, int N); 

{ 

  float sum=0; 

  int i, j; 

  i = threadIdx.x + blockIdx.x * blockDim.x; 

  j = threadIdx.y + blockIdx.y * blockDim.y; 

  for (int k=0; k<N; k++)  

  { 

    float a = A[i*N + k]; 

    float b = B[k*N + j]; 
    sum += a*b; 

  } 

  C[i*N + j] = sum; 

} 

 

A 

B 

C 

N
 

N N 
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CUDA version for the matrix product: 
Explaining parallelization 

Each thread computes a single element of C 
Matrices A and B are loaded N times from video memory 

Blocks accommodate threads in groups of 1024 threads (internal 
CUDA constraint in Fermi and Kepler). That way, we may use 2D 
blocks composed of 32x32 threads each 

N
 

N
 

N 
N 

X = C(x, y) 

WidthA 

HeightA 

WidthB 

HeightA 

WidthB 

C A B 
· · · · · · · · · · · · · · · 

· · · · · · · 
· · · · 

· · · · 
· · · · · · 

· · · · 

· · · · 
· · · · · · 

· · · · · · · 
· · · · 

· · · · 
· · · · · · 

· · · · 

· · · · 
· · · · · · 

Grid 

Block 

Th(x,y) 

dim2 dimBlock(BLOCKSIZE, BLOCKSIZE); 

dim2 dimGrid(WidthB/BLOCKSIZE, 

HeightA/BLOCKSIZE); 

... 

MxMonGPU <<<dimGrid,dimBlock>>> (A, B, C, N); 
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CUDA version for the matrix product: 
Analysis 

 

Problems: 

Low arithmetic intensity 

Demanding on memory bandwidth, which becomes 
the bottleneck 

 Solution: 

Use shared memory on each multiprocessor 
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The 32x32 submatrix Csub computed 
by each thread block uses tiles of 
32x32 elements of A and B which are 
repeatedly allocated on shared 
memory 

A and B are loaded only (N/32) times 
from global memory 

Achievements: 

Less demanding on                           memory 
bandwidth 

More arithmetic 
intensity 

A 

B 

C 

Csub 

M M M M 

M
 

M
 

M
 

M
 

N
 

N
 

N N 

Using shared memory: Version with tiling 
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Tiling: Implementation details 

We have to manage all tiles involved within a thread block: 
Load in parallel (all threads contribute) the input tiles (A and B) from global 
memory into shared memory. Tiles reuse the shared memory space 

 __syncthreads() (to make sure we have loaded matrices before starting 
the computation) 

Compute all products and sums for C using tiles within shared memory 

Each thread can now iterate efficiently on tile elements 

 __syncthreads() (to make sure that the computation with the tile is over 
before loading two new tiles of A and B in the next iteration) 

Transfer the output values for C allocated on global memory 

41 
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A trick to avoid shared memory bank 
conflicts 

Rationale: 
The shared memory is structured into 16 (pre-Fermi) or 32 banks 
Threads within a block are numbered in column major order, that 
is, the x dimension is the fastest varying 

When using the regular indexing scheme to shared memory 
arrays: shData[threadIdx.x][threadIdx.y], threads within a 
half-warp will be reading from the same column, that is, 
from the same shared memory bank 
However, using shData[threadIdx.y][threadIdx.x], threads 
within a half-warp will be reading from the same row, 
which implies reading from a different bank each 
So, tiles store/access data in shared memory transposed. 
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Tiling: The CUDA code for the GPU 
kernel 

__global__ void MxMonGPU(float *A, float *B, float *C, int N)  

{ 

  int sum=0, tx, ty, i, j; 

  tx = threadIdx.x;                  ty = threadIdx.y; 

  i = tx + blockIdx.x*blockDim.x;    j = ty + blockIdx.y*blockDim.y; 

  __shared__ float As[32][32], float Bs[32][32]; 
 

  // Traverse tiles of A and B required to compute the block submatrix for C 

  for (int tile=0; tile<(N/32); tile++)  

  {    

    // Load tiles (32x32) from A and B in parallel (and store them transposed) 

    As[ty][tx]= A[(i*N) + (ty+(tile*32))];    
    Bs[ty][tx]= B[((tx+(tile*32))*N) + j]; 

    __syncthreads(); 

    // Compute results for the submatrix of C 
    for (int k=0; k<32; k++) // Data have to be read from tiles transposed too 

      sum += As[k][tx] * Bs[ty][k]; 

    __syncthreads(); 
  } 

  // Write all results for the block in parallel 

  C[i*N+j] = sum; 

} 
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A compiler optimization: Loop 
unrolling 

• Without loop unrolling:               Unrolling the loop: 

   ... 

   __syncthreads(); 
 

   // Compute results for that tile 
   for (k=0; k<32; k++) 

 sum += As[tx][k]*Bs[k][ty]; 

 

   __syncthreads(); 
} 

C[indexC] = sum; 

   ... 

   __syncthreads(); 
 

   // Compute results for that tile 
   sum += As[tx][0]*Bs[0][ty]; 

   sum += As[tx][1]*Bs[1][ty]; 

   sum += As[tx][2]*Bs[2][ty]; 

   sum += As[tx][3]*Bs[3][ty]; 

   sum += As[tx][4]*Bs[4][ty]; 

   sum += As[tx][5]*Bs[5][ty]; 

   sum += As[tx][6]*Bs[6][ty]; 

   sum += As[tx][7]*Bs[7][ty]; 

   sum += As[tx][8]*Bs[8][ty]; 

 

 ···· 

   sum += As[tx][31]*Bs[31][ty]; 

   __syncthreads(); 
} 

C[indexC] = sum; 
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Performance on the G80 for tiling & 
unrolling 
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Bibliography and tools 
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Books and documents 

Books: 

GPU Gem series (1,2,3) [http://developer.vidia.com/content/GPUGems3/gpugems3_part01.html]  

A list of CUDA books [http://www.nvidia.com/object/cuda_books.html] 

CUDA developer guides and docs: 

Programming Guide. CUDA basics. 

Best Practices Guide. For code optimizers. 

http://developer.nvidia.com/object/gpucomputing.html 

Learn more on CUDA Zone [http://www.nvidia.com/cuda]:  

Codes developed in CUDA along with the speed factors achieved. 

Research papers describing applications and implementations. 

Tutorials, forums, programming courses, ... 

GPU computing webinars [http://developer.nvidia.com/gpu-computing-webinars] 

Talks from GPU Tech. Conf. 2013 [http://www.gputechconf.com/gtcnew/on-demand-gtc.php] 

http://developer.vidia.com/content/gpu-gems-3]
http://www.nvidia.com/object/cuda_books.html]
http://developer.nvidia.com/object/gpucomputing.html
http://www.nvidia.com/cuda
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
http://developer.nvidia.com/gpu-computing-webinars]
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Developers 

 Sign up as a registered developer:  

 http://developer.nvidia.com/user/register 

 Meeting point with many other developers 

 http://www.gpucomputing.net 

 GPU news and events 

 http://www.gpgpu.org 

 List of CUDA-enabled GPUs 

 http://developer.nvidia.com/cuda-gpus 

48 

http://developer.nvidia.com/user/register]
http://www.gpucomputing.net
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus
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Software tools (free use) 

 CUDA Toolkit 5.0, already covering Kepler. It includes: 
 The nvcc compiler, libraries and documentation. 

 CUDA SDK, with compilation scripts, utilities,  
examples and whitepapers. 

 Available for Linux, MacOS and Windows 7. 

 http://developer.nvidia.com/cuda-downloads 

 CUDA Occupancy Calculator. 

 CUDA Profiler: To study execution times, coalesced accesses to 
memory, execution times, diverging warps, conflicts when 
accessing shared memory, ... 

 Nvidia Parallel Nsight: Programming environment integrated into 
Visual Studio. 

http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads

